Accuracy of Genomic Predictions Cross Populations with Different Linkage Disequilibrium Patterns
Abstract
:1. Background
2. Methods
2.1. Animals and Methods
2.2. Principal Component Analysis and Persistence of Allele Phase
2.3. Simulation
2.4. Genomic Evaluation
2.5. Reference and Validation Populations
2.6. Comparison of Genome Prediction Accuracy of Different Genetic Relationships Across Populations
2.7. Assess Genetic Relationships Between Populations
3. Results
3.1. Genetic Relationships Between Populations
3.2. Multipopulation Genomic Genetic Assessment of Variety Combinations
3.3. Multipopulation Genomic Genetic Assessment Methods
4. Discussion
4.1. Simulation of Genotype and Phenotype
4.2. LD Level and LD Structure Consistency
4.3. Predictive Accuracies from Admixed Population
4.4. Effect of Heritability and Genetic Architecture
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Goddard, M. Genomic selection: Prediction of accuracy and maximisation of long term response. Genetica 2009, 136, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Hayes, B.J.; Bowman, P.J.; Chamberlain, A.J.; Goddard, M.E. Invited review: Genomic selection in dairy cattle: Progress and challenges. J. Dairy Sci. 2009, 92, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Mucha, S.; Mrode, R.; MacLaren-Lee, I.; Coffey, M.; Conington, J. Estimation of genomic breeding values for milk yield in UK dairy goats. J. Dairy Sci. 2015, 98, 8201–8208. [Google Scholar] [CrossRef] [PubMed]
- Hayes, B.J.; Bowman, P.J.; Chamberlain, A.C.; Verbyla, K.; Goddard, M.E. Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet. Sel. Evol. 2009, 41, 51. [Google Scholar] [CrossRef]
- Zhou, L.; Heringstad, B.; Su, G.; Guldbrandtsen, B.; Meuwissen, T.H.; Svendsen, M.; Grove, H.; Nielsen, U.S.; Lund, M.S. Genomic predictions based on a joint reference population for the Nordic Red cattle breeds. J. Dairy Sci. 2014, 97, 4485–4496. [Google Scholar] [CrossRef]
- Sollero, B.P.; Junqueira, V.S.; Gomes, C.C.G.; Caetano, A.R.; Cardoso, F.F. Tag SNP selection for prediction of tick resistance in Brazilian Braford and Hereford cattle breeds using Bayesian methods. Genet. Sel. Evol. 2017, 49, 49. [Google Scholar] [CrossRef]
- van den Berg, I.; Boichard, D.; Guldbrandtsen, B.; Lund, M.S. Using Sequence Variants in Linkage Disequilibrium with Causative Mutations to Improve Across-Breed Prediction in Dairy Cattle: A Simulation Study. G3 Genes Genomes Genet. 2016, 6, 2553–2561. [Google Scholar] [CrossRef]
- Brito, L.F.; Clarke, S.M.; McEwan, J.C.; Miller, S.P.; Pickering, N.K.; Bain, W.E.; Dodds, K.G.; Sargolzaei, M.; Schenkel, F.S. Prediction of genomic breeding values for growth, carcass and meat quality traits in a multi-breed sheep population using a HD SNP chip. BMC Genet. 2017, 18, 7. [Google Scholar] [CrossRef]
- van den Berg, I.; Bowman, P.J.; MacLeod, I.M.; Hayes, B.J.; Wang, T.; Bolormaa, S.; Goddard, M.E. Multi-breed genomic prediction using Bayes R with sequence data and dropping variants with a small effect. Genet. Sel. Evol. 2017, 49, 70. [Google Scholar] [CrossRef]
- Toosi, A.; Fernando, R.L.; Dekkers, J.C. Genomic selection in admixed and crossbred populations. J. Anim. Sci. 2010, 88, 32–46. [Google Scholar] [CrossRef]
- Hoze, C.; Fritz, S.; Phocas, F.; Boichard, D.; Ducrocq, V.; Croiseau, P. Efficiency of multi-breed genomic selection for dairy cattle breeds with different sizes of reference population. J. Dairy Sci. 2014, 97, 3918–3929. [Google Scholar] [CrossRef] [PubMed]
- Daetwyler, H.D.; Swan, A.A.; van der Werf, J.H.; Hayes, B.J. Accuracy of pedigree and genomic predictions of carcass and novel meat quality traits in multi-breed sheep data assessed by cross-validation. Genet. Sel. Evol. 2012, 44, 33. [Google Scholar] [CrossRef] [PubMed]
- Wientjes, Y.C.; Veerkamp, R.F.; Calus, M.P. The effect of linkage disequilibrium and family relationships on the reliability of genomic prediction. Genetics 2013, 193, 621–631. [Google Scholar] [CrossRef]
- Ma, H.; Li, H.; Ge, F.; Zhao, H.; Zhu, B.; Zhang, L.; Gao, H.; Xu, L.; Li, J.; Wang, Z. Improving Genomic Predictions in Multi-Breed Cattle Populations: A Comparative Analysis of BayesR and GBLUP Models. Genes 2024, 15, 253. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, B.; Wang, Z.; Xu, L.; Liu, Y.; Chen, Y.; Zhang, L.; Gao, X.; Gao, H.; Zhang, S. Evaluation of linkage disequilibrium, effective population size and haplotype block structure in Chinese cattle. Animals 2019, 9, 83. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Browning, B.L.; Zhou, Y.; Browning, S.R. A one-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 2018, 103, 338–348. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Jombart, T.; Ahmed, I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 2011, 27, 3070–3071. [Google Scholar] [CrossRef]
- VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Bolormaa, S.; Pryce, J.; Kemper, K.; Savin, K.; Hayes, B.; Barendse, W.; Zhang, Y.; Reich, C.; Mason, B.; Bunch, R. Accuracy of prediction of genomic breeding values for residual feed intake and carcass and meat quality traits in Bos taurus, Bos indicus, and composite beef cattle. J. Anim. Sci. 2013, 91, 3088–3104. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Gao, N.; Wang, Z.; Xu, L.; Liu, Y.; Chen, Y.; Xu, L.; Gao, X.; Zhang, L.; Gao, H. Incorporating genome annotation into genomic prediction for carcass traits in Chinese Simmental beef cattle. Front. Genet. 2020, 11, 481. [Google Scholar] [CrossRef]
- Shi, M.; Umbach, D.M.; Wise, A.S.; Weinberg, C.R. Simulating autosomal genotypes with realistic linkage disequilibrium and a spiked-in genetic effect. BMC Bioinform. 2018, 19, 2. [Google Scholar] [CrossRef]
- Chen, L.; Yu, G.; Langefeld, C.D.; Miller, D.J.; Guy, R.T.; Raghuram, J.; Yuan, X.; Herrington, D.M.; Wang, Y. Comparative analysis of methods for detecting interacting loci. BMC Genom. 2011, 12, 344. [Google Scholar] [CrossRef]
- Carvajal-Rodríguez, A. Simulation of genomes: A review. Curr. Genom. 2008, 9, 155–159. [Google Scholar] [CrossRef]
- Khatkar, M.S.; Nicholas, F.W.; Collins, A.R.; Zenger, K.R.; Cavanagh, J.A.; Barris, W.; Schnabel, R.D.; Taylor, J.F.; Raadsma, H.W. Extent of genome-wide linkage disequilibrium in Australian Holstein-Friesian cattle based on a high-density SNP panel. BMC Genom. 2008, 9, 187. [Google Scholar] [CrossRef]
- Lu, D.; Sargolzaei, M.; Kelly, M.; Li, C.; Vander Voort, G.; Wang, Z.; Plastow, G.; Moore, S.; Miller, S.P. Linkage disequilibrium in Angus, Charolais, and Crossbred beef cattle. Front. Genet. 2012, 3, 152. [Google Scholar] [CrossRef]
- Sudrajad, P.; Seo, D.; Choi, T.; Park, B.; Roh, S.; Jung, W.; Lee, S.; Lee, J.; Kim, S.; Lee, S. Genome-wide linkage disequilibrium and past effective population size in three Korean cattle breeds. Anim. Genet. 2017, 48, 85–89. [Google Scholar] [CrossRef]
- Karoui, S.; Carabaño, M.J.; Díaz, C.; Legarra, A. Joint genomic evaluation of French dairy cattle breeds using multiple-trait models. Genet. Sel. Evol. 2012, 44, 39. [Google Scholar] [CrossRef]
- Meuwissen, T.H.; Hayes, B.J.; Goddard, M. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- Saatchi, M.; McClure, M.C.; McKay, S.D.; Rolf, M.M.; Kim, J.; Decker, J.E.; Taxis, T.M.; Chapple, R.H.; Ramey, H.R.; Northcutt, S.L. Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation. Genet. Sel. Evol. 2011, 43, 40. [Google Scholar] [CrossRef] [PubMed]
- Calus, M.; Meuwissen, T.; De Roos, A.; Veerkamp, R. Accuracy of genomic selection using different methods to define haplotypes. Genetics 2008, 178, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Mouresan, E.; Cañas-Álvarez, J.; González-Rodríguez, A.; Munilla, S.; Altarriba, J.; Díaz, C.; Baró, J.; Molina, A.; Piedrafita, J.; Varona, L. Evaluation of the potential use of a meta-population for genomic selection in autochthonous beef cattle populations. Animal 2018, 12, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- Esfandyari, H.; Sørensen, A.C.; Bijma, P. Maximizing crossbred performance through purebred genomic selection. Genet. Sel. Evol. 2015, 47, 16. [Google Scholar] [CrossRef]
- Morgante, F.; Huang, W.; Maltecca, C.; Mackay, T.F. Effect of genetic architecture on the prediction accuracy of quantitative traits in samples of unrelated individuals. Heredity 2018, 120, 500–514. [Google Scholar] [CrossRef]
- Cañas-Álvarez, J.; Mouresan, E.; Varona, L.; Díaz, C.; Molina, A.; Baro, J.; Altarriba, J.; Carabaño, M.; Casellas, J.; Piedrafita, J. Linkage disequilibrium, persistence of phase, and effective population size in Spanish local beef cattle breeds assessed through a high-density single nucleotide polymorphism chip. J. Anim. Sci. 2016, 94, 2779–2788. [Google Scholar] [CrossRef]
- Van den Berg, I.; Meuwissen, T.; MacLeod, I.; Goddard, M. Predicting the effect of reference population on the accuracy of within, across, and multibreed genomic prediction. J. Dairy Sci. 2019, 102, 3155–3174. [Google Scholar] [CrossRef]
- Van Eenennaam, A.L.; Weigel, K.A.; Young, A.E.; Cleveland, M.A.; Dekkers, J.C. Applied animal genomics: Results from the field. Annu. Rev. Anim. Biosci. 2014, 2, 105–139. [Google Scholar] [CrossRef]
- Pszczola, M.; Strabel, T.; Mulder, H.; Calus, M. Reliability of direct genomic values for animals with different relationships within and to the reference population. J. Dairy Sci. 2012, 95, 389–400. [Google Scholar] [CrossRef]
- Wientjes, Y.C.; Calus, M.P.; Goddard, M.E.; Hayes, B.J. Impact of QTL properties on the accuracy of multi-breed genomic prediction. Genet. Sel. Evol. 2015, 47, 42. [Google Scholar] [CrossRef] [PubMed]
- Kachman, S.D.; Spangler, M.L.; Bennett, G.L.; Hanford, K.J.; Kuehn, L.A.; Snelling, W.M.; Thallman, R.M.; Saatchi, M.; Garrick, D.J.; Schnabel, R.D. Comparison of molecular breeding values based on within-and across-breed training in beef cattle. Genet. Sel. Evol. 2013, 45, 30. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.; Thallman, R.; Keele, J.; Snelling, W.; Bennett, G.; Smith, T.; McDaneld, T.; Allan, M.; Van Eenennaam, A.; Kuehn, L. Accuracy of genomic breeding values in multibreed beef cattle populations derived from deregressed breeding values and phenotypes. J. Anim. Sci. 2012, 90, 4177–4190. [Google Scholar] [CrossRef] [PubMed]
- Rekaya, R. A multi-compartment model for genomic selection in multi-breed populations. Livest. Sci. 2015, 177, 1–7. [Google Scholar]
- Erbe, M.; Hayes, B.; Matukumalli, L.; Goswami, S.; Bowman, P.; Reich, C.; Mason, B.; Goddard, M. Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. J. Dairy Sci. 2012, 95, 4114–4129. [Google Scholar] [CrossRef]
- de Los Campos, G.; Vazquez, A.I.; Fernando, R.; Klimentidis, Y.C.; Sorensen, D. Prediction of complex human traits using the genomic best linear unbiased predictor. PLoS Genet. 2013, 9, e1003608. [Google Scholar] [CrossRef]
- Daetwyler, H.D.; Villanueva, B.; Woolliams, J.A. Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS ONE 2008, 3, e3395. [Google Scholar] [CrossRef]
- Habier, D.; Fernando, R.L.; Dekkers, J. The impact of genetic relationship information on genome-assisted breeding values. Genetics 2007, 177, 2389–2397. [Google Scholar] [CrossRef]
- Wiggans, G.; VanRaden, P.; Cooper, T. The genomic evaluation system in the United States: Past, present, future. J. Dairy Sci. 2011, 94, 3202–3211. [Google Scholar] [CrossRef]
- Chen, L.; Li, C.; Miller, S.; Schenkel, F. Multi-population genomic prediction using a multi-task Bayesian learning model. BMC Genet. 2014, 15, 53. [Google Scholar] [CrossRef]
Cattle Breeds | Abbreviation | Number |
---|---|---|
Inner Mongolia cattle | MGC | 21 |
Yanhuang cattle | YHC | 24 |
Caidamu cattle | CDM | 25 |
Xizang cattle | XZC | 26 |
Pingwu cattle | PWC | 24 |
Liangshan cattle | LSC | 22 |
Zhaotong cattle | ZTC | 23 |
Wenshan cattle | WSC | 24 |
Hannan cattle | HNC | 26 |
Nandan cattle | NDC | 25 |
Phenotypic Simulation Strategy | nQTL 1 | nS 2 | nM 3 | nL 4 | Heritability (h2) |
---|---|---|---|---|---|
Strategy I | 100 | 0 | 0 | 100 | 0.1/0.3/0.6 |
Strategy II | 2000 | 1361 | 614 | 25 | 0.1/0.3/0.6 |
Strategy III | 5000 | 4595 | 390 | 15 | 0.1/0.3/0.6 |
Strategy IV | 10,000 | 10,000 | 0 | 0 | 0.1/0.3/0.6 |
Population 1 | Population 2 | LD Structure Consistencies |
---|---|---|
simnd | simyh | 0.107277 |
simcdm | simws | 0.174347 |
simyh | simzt | 0.2228 |
simnd | simpw | 0.255829 |
simnd | simzt | 0.28869 |
simpw | simws | 0.363149 |
simcdm | simyh | 0.411982 |
simmg | simyh | 0.457195 |
simls | simws | 0.431238 |
simnd | simws | 0.453237 |
simls | simzt | 0.516203 |
Pop | cor100 | Low Heritability | Medium Heritability | High Heritability | |||
---|---|---|---|---|---|---|---|
Population 1 | Population 2 | Population 1 | Population 2 | Population 1 | Population 2 | ||
nd-yh | 0.107 | 0.478 | 0.167 | 0.493 | 0.191 | 0.505 | 0.208 |
cdm-ws | 0.174 | 0.582 | 0.184 | 0.565 | 0.212 | 0.562 | 0.231 |
yh-zt | 0.223 | 0.556 | 0.207 | 0.588 | 0.238 | 0.576 | 0.261 |
nd-pw | 0.256 | 0.479 | 0.234 | 0.494 | 0.270 | 0.505 | 0.298 |
nd-zt | 0.289 | 0.478 | 0.248 | 0.494 | 0.287 | 0.505 | 0.315 |
pw-ws | 0.363 | 0.558 | 0.274 | 0.581 | 0.317 | 0.567 | 0.351 |
cdm-yh | 0.412 | 0.582 | 0.274 | 0.564 | 0.318 | 0.562 | 0.345 |
ls-ws | 0.431 | 0.705 | 0.281 | 0.647 | 0.326 | 0.620 | 0.349 |
nd-ws | 0.453 | 0.516 | 0.259 | 0.553 | 0.301 | 0.553 | 0.307 |
mg-yh | 0.457 | 0.479 | 0.298 | 0.491 | 0.347 | 0.503 | 0.365 |
ls-zt | 0.516 | 0.519 | 0.347 | 0.550 | 0.404 | 0.553 | 0.438 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, L.; Xu, L.; Jin, H.; Zhao, S.; Jia, Y.; Li, J.; Hua, J. Accuracy of Genomic Predictions Cross Populations with Different Linkage Disequilibrium Patterns. Genes 2024, 15, 1419. https://doi.org/10.3390/genes15111419
Jin L, Xu L, Jin H, Zhao S, Jia Y, Li J, Hua J. Accuracy of Genomic Predictions Cross Populations with Different Linkage Disequilibrium Patterns. Genes. 2024; 15(11):1419. https://doi.org/10.3390/genes15111419
Chicago/Turabian StyleJin, Lei, Lei Xu, Hai Jin, Shuanping Zhao, Yutang Jia, Junya Li, and Jinling Hua. 2024. "Accuracy of Genomic Predictions Cross Populations with Different Linkage Disequilibrium Patterns" Genes 15, no. 11: 1419. https://doi.org/10.3390/genes15111419
APA StyleJin, L., Xu, L., Jin, H., Zhao, S., Jia, Y., Li, J., & Hua, J. (2024). Accuracy of Genomic Predictions Cross Populations with Different Linkage Disequilibrium Patterns. Genes, 15(11), 1419. https://doi.org/10.3390/genes15111419