Nongenetic and Genetic Factors Associated with White Matter Brain Aging: Exposome-Wide and Genome-Wide Association Study
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Exposure Variables
2.3. White Matter Brain Age Gap (WM BAG)
2.4. Genotype Data
2.5. Statistical Analysis
2.5.1. Exposome-Wide Association Study (XWAS)
2.5.2. Genome-Wide Association Studies (GWASs) and Polygenic Risk Score (PRS) Analysis
3. Results
3.1. Descriptive Statistics
3.2. XWAS Analysis
3.3. GWAS and PRS Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shanmugasundaram, M.; Tamilarasu, A. The impact of digital technology, social media, and artificial intelligence on cognitive functions: A review. Front. Cognit. 2023, 2, 1203077. [Google Scholar] [CrossRef]
- Firth, J.; Torous, J.; Stubbs, B.; Firth, J.A.; Steiner, G.Z.; Smith, L.; Alvarez-Jimenez, M.; Gleeson, J.; Vancampfort, D.; Armitage, C.J.; et al. The “online brain”: How the Internet may be changing our cognition. World Psychiatry 2019, 18, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Peters, R. Ageing and the brain. Postgrad. Med. J. 2006, 82, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Swan, G.E.; Lessov-Schlaggar, C.N. The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychol. Rev. 2007, 17, 259–273. [Google Scholar] [CrossRef]
- Linli, Z.; Rolls, E.T.; Zhao, W.; Kang, J.; Feng, J.; Guo, S. Smoking is associated with lower brain volume and cognitive differences: A large population analysis based on the UK Biobank. Prog. Neuropsychopharmacol. Biol. Psychiatry 2023, 123, 110698. [Google Scholar] [CrossRef]
- Durazzo, T.C.; Mattsson, N.; Weiner, M.W.; Alzheimer’s Disease Neuroimaging, I. Smoking and increased Alzheimer’s disease risk: A review of potential mechanisms. Alzheimers Dement. 2014, 10, S122–S145. [Google Scholar] [CrossRef] [PubMed]
- Lefevre-Arbogast, S.; Thomas, A.; Samieri, C. Dietary factors and brain health. Curr. Opin. Lipidol. 2022, 33, 25–30. [Google Scholar] [CrossRef]
- van Soest, A.P.; Beers, S.; van de Rest, O.; de Groot, L.C. The Mediterranean-Dietary Approaches to Stop Hypertension Intervention for Neurodegenerative Delay (MIND) Diet for the Aging Brain: A Systematic Review. Adv. Nutr. 2024, 15, 100184. [Google Scholar] [CrossRef]
- Lobo, F.; Haase, J.; Brandhorst, S. The Effects of Dietary Interventions on Brain Aging and Neurological Diseases. Nutrients 2022, 14, 5086. [Google Scholar] [CrossRef]
- McGrattan, A.M.; McGuinness, B.; McKinley, M.C.; Kee, F.; Passmore, P.; Woodside, J.V.; McEvoy, C.T. Diet and Inflammation in Cognitive Ageing and Alzheimer’s Disease. Curr. Nutr. Rep. 2019, 8, 53–65. [Google Scholar] [CrossRef]
- Ye, Z.; Mo, C.; Liu, S.; Gao, S.; Feng, L.; Zhao, B.; Canida, T.; Wu, Y.C.; Hatch, K.S.; Ma, Y.; et al. Deciphering the causal relationship between blood pressure and regional white matter integrity: A two-sample Mendelian randomization study. J. Neurosci. Res. 2023, 101, 1471–1483. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Ye, Z.; Mo, C.; Wang, J.; Liu, S.; Gao, S.; Ke, H.; Canida, T.A.; Pan, Y.; Greevenbroek, M.M.J.V.; et al. Elevated blood pressure accelerates white matter brain aging among late middle-aged women: A Mendelian Randomization study in the UK Biobank. J. Hypertens. 2023, 41, 1811–1820. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Ye, Z.; Du, Z.; Pan, Y.; Canida, T.; Ke, H.; Liu, S.; Chen, S.; Hong, L.E.; Kochunov, P.; et al. Association between allostatic load and accelerated white matter brain aging: Findings from the UK Biobank. medRxiv 2024. [Google Scholar] [CrossRef]
- Pini, L.; Salvalaggio, A.; Wennberg, A.M.; Dimakou, A.; Matteoli, M.; Corbetta, M. The pollutome-connectome axis: A putative mechanism to explain pollution effects on neurodegeneration. Ageing Res. Rev. 2023, 86, 101867. [Google Scholar] [CrossRef]
- Cole, J.H. Multimodality neuroimaging brain-age in UK biobank: Relationship to biomedical, lifestyle, and cognitive factors. Neurobiol. Aging 2020, 92, 34–42. [Google Scholar] [CrossRef]
- Lin, L.; Xiong, M.; Jin, Y.; Kang, W.; Wu, S.; Sun, S.; Fu, Z. Quantifying Brain and Cognitive Maintenance as Key Indicators for Sustainable Cognitive Aging: Insights from the UK Biobank. Sustainability 2023, 15, 9620. [Google Scholar] [CrossRef]
- Subramaniapillai, S.; Suri, S.; Barth, C.; Maximov, I.I.; Voldsbekk, I.; van der Meer, D.; Gurholt, T.P.; Beck, D.; Draganski, B.; Andreassen, O.A.; et al. Sex- and age-specific associations between cardiometabolic risk and white matter brain age in the UK Biobank cohort. Hum. Brain Mapp. 2022, 43, 3759–3774. [Google Scholar] [CrossRef]
- Mulugeta, A.; Navale, S.S.; Lumsden, A.L.; Llewellyn, D.J.; Hypponen, E. Healthy Lifestyle, Genetic Risk and Brain Health: A Gene-Environment Interaction Study in the UK Biobank. Nutrients 2022, 14, 3907. [Google Scholar] [CrossRef]
- Zannas, A.S. Gene-environment Interactions in Late Life: Linking Psychosocial Stress with Brain Aging. Curr. Neuropharmacol. 2018, 16, 327–333. [Google Scholar] [CrossRef]
- Cole, J.H.; Franke, K. Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers. Trends Neurosci. 2017, 40, 681–690. [Google Scholar] [CrossRef]
- Cole, J.H.; Marioni, R.E.; Harris, S.E.; Deary, I.J. Brain age and other bodily ‘ages’: Implications for neuropsychiatry. Mol. Psychiatry 2019, 24, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Voineskos, A.N.; Rajji, T.K.; Lobaugh, N.J.; Miranda, D.; Shenton, M.E.; Kennedy, J.L.; Pollock, B.G.; Mulsant, B.H. Age-related decline in white matter tract integrity and cognitive performance: A DTI tractography and structural equation modeling study. Neurobiol. Aging 2012, 33, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Assaf, Y.; Pasternak, O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: A review. J. Mol. Neurosci. 2008, 34, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Garin-Muga, A.; Borro, D. Review and Challenges of Brain Analysis through DTI Measurements. Stud. Health Technol. Inform. 2014, 207, 27–36. [Google Scholar]
- Gaser, C.; Franke, K.; Kloppel, S.; Koutsouleris, N.; Sauer, H.; Alzheimer’s Disease Neuroimaging, I. BrainAGE in Mild Cognitive Impaired Patients: Predicting the Conversion to Alzheimer’s Disease. PLoS ONE 2013, 8, e67346. [Google Scholar] [CrossRef]
- Kolbeinsson, A.; Filippi, S.; Panagakis, Y.; Matthews, P.M.; Elliott, P.; Dehghan, A.; Tzoulaki, I. Accelerated MRI-predicted brain ageing and its associations with cardiometabolic and brain disorders. Sci. Rep. 2020, 10, 19940. [Google Scholar] [CrossRef]
- Mo, C.; Wang, J.; Ye, Z.; Ke, H.; Liu, S.; Hatch, K.; Gao, S.; Magidson, J.; Chen, C.; Mitchell, B.D.; et al. Evaluating the causal effect of tobacco smoking on white matter brain aging: A two-sample Mendelian randomization analysis in UK Biobank. Addiction 2022, 118, 739–749. [Google Scholar] [CrossRef]
- Cole, J.H.; Poudel, R.P.K.; Tsagkrasoulis, D.; Caan, M.W.A.; Steves, C.; Spector, T.D.; Montana, G. Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage 2017, 163, 115–124. [Google Scholar] [CrossRef]
- Leonardsen, E.H.; Vidal-Pineiro, D.; Roe, J.M.; Frei, O.; Shadrin, A.A.; Iakunchykova, O.; de Lange, A.G.; Kaufmann, T.; Taschler, B.; Smith, S.M.; et al. Genetic architecture of brain age and its causal relations with brain and mental disorders. Mol. Psychiatry 2023, 28, 3111–3120. [Google Scholar] [CrossRef]
- Bellou, E.; Stevenson-Hoare, J.; Escott-Price, V. Polygenic risk and pleiotropy in neurodegenerative diseases. Neurobiol. Dis. 2020, 142, 104953. [Google Scholar] [CrossRef]
- Lewis, C.M.; Vassos, E. Polygenic risk scores: From research tools to clinical instruments. Genome Med. 2020, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Zhao, B.; Yang, Z.; Erus, G.; Skampardoni, I.; Mamourian, E.; Cui, Y.; Hwang, G.; Bao, J.; Boquet-Pujadas, A.; et al. The genetic architecture of multimodal human brain age. Nat. Commun. 2024, 15, 2604. [Google Scholar] [CrossRef] [PubMed]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef]
- Lin, B.D.; Pries, L.K.; Sarac, H.S.; van Os, J.; Rutten, B.P.F.; Luykx, J.; Guloksuz, S. Nongenetic Factors Associated With Psychotic Experiences Among UK Biobank Participants: Exposome-Wide Analysis and Mendelian Randomization Analysis. JAMA Psychiatry 2022, 79, 857–868. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Jenkinson, M.; Johansen-Berg, H.; Rueckert, D.; Nichols, T.E.; Mackay, C.E.; Watkins, K.E.; Ciccarelli, O.; Cader, M.Z.; Matthews, P.M.; et al. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage 2006, 31, 1487–1505. [Google Scholar] [CrossRef] [PubMed]
- Mori, S.; Wakana, S.; Nagae-Poetscher, L.M.; van Zijl, P.C.M. MRI Atlas of Human White Matter. AJNR Am. J. Neuroradiol. 2006, 27, 1384–1385. [Google Scholar]
- Wakana, S.; Caprihan, A.; Panzenboeck, M.M.; Fallon, J.H.; Perry, M.; Gollub, R.L.; Hua, K.; Zhang, J.; Jiang, H.; Dubey, P.; et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 2007, 36, 630–644. [Google Scholar] [CrossRef]
- Jahanshad, N.; Kochunov, P.V.; Sprooten, E.; Mandl, R.C.; Nichols, T.E.; Almasy, L.; Blangero, J.; Brouwer, R.M.; Curran, J.E.; de Zubicaray, G.I.; et al. Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: A pilot project of the ENIGMA-DTI working group. Neuroimage 2013, 81, 455–469. [Google Scholar] [CrossRef]
- van Velzen, L.S.; Kelly, S.; Isaev, D.; Aleman, A.; Aftanas, L.I.; Bauer, J.; Baune, B.T.; Brak, I.V.; Carballedo, A.; Connolly, C.G.; et al. White matter disturbances in major depressive disorder: A coordinated analysis across 20 international cohorts in the ENIGMA MDD working group. Mol. Psychiatry 2020, 25, 1511–1525. [Google Scholar] [CrossRef]
- Alfaro-Almagro, F.; Jenkinson, M.; Bangerter, N.K.; Andersson, J.L.R.; Griffanti, L.; Douaud, G.; Sotiropoulos, S.N.; Jbabdi, S.; Hernandez-Fernandez, M.; Vallee, E.; et al. Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. Neuroimage 2018, 166, 400–424. [Google Scholar] [CrossRef]
- Timpe, J.C.; Rowe, K.C.; Matsui, J.; Magnotta, V.A.; Denburg, N.L. White matter integrity, as measured by diffusion tensor imaging, distinguishes between impaired and unimpaired older adult decision-makers: A preliminary investigation. J. Cogn. Psychol. 2011, 23, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Le, T.T.; Kuplicki, R.T.; McKinney, B.A.; Yeh, H.W.; Thompson, W.K.; Paulus, M.P.; Tulsa, I. A Nonlinear Simulation Framework Supports Adjusting for Age When Analyzing BrainAGE. Front. Aging Neurosci. 2018, 10, 317. [Google Scholar] [CrossRef] [PubMed]
- Beheshti, I.; Nugent, S.; Potvin, O.; Duchesne, S. Bias-adjustment in neuroimaging-based brain age frameworks: A robust scheme. Neuroimage Clin. 2019, 24, 102063. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, T.; van der Meer, D.; Doan, N.T.; Schwarz, E.; Lund, M.J.; Agartz, I.; Alnaes, D.; Barch, D.M.; Baur-Streubel, R.; Bertolino, A.; et al. Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat. Neurosci. 2019, 22, 1617–1623. [Google Scholar] [CrossRef] [PubMed]
- Ataman, B.; Boulting, G.L.; Harmin, D.A.; Yang, M.G.; Baker-Salisbury, M.; Yap, E.L.; Malik, A.N.; Mei, K.; Rubin, A.A.; Spiegel, I.; et al. Evolution of Osteocrin as an activity-regulated factor in the primate brain. Nature 2016, 539, 242–247. [Google Scholar] [CrossRef]
- Tian, J.; Jia, K.; Wang, T.; Guo, L.; Xuan, Z.; Michaelis, E.K.; Swerdlow, R.H.; Alzheimer’s Disease Neuroimaging, I.; Du, H. Hippocampal transcriptome-wide association study and pathway analysis of mitochondrial solute carriers in Alzheimer’s disease. Transl. Psychiatry 2024, 14, 250. [Google Scholar] [CrossRef]
- Babenko, V.N.; Smagin, D.A.; Galyamina, A.G.; Kovalenko, I.L.; Kudryavtseva, N.N. Altered Slc25 family gene expression as markers of mitochondrial dysfunction in brain regions under experimental mixed anxiety/depression-like disorder. BMC Neurosci. 2018, 19, 79. [Google Scholar] [CrossRef]
- Song, S.; Stern, Y.; Gu, Y. Modifiable lifestyle factors and cognitive reserve: A systematic review of current evidence. Ageing Res. Rev. 2022, 74, 101551. [Google Scholar] [CrossRef]
- Addissouky, T.A.; El Sayed, I.E.T.; Ali, M.M.; Wang, Y.; El Baz, A.; Elarabany, N.; Khalil, A.A. Oxidative stress and inflammation: Elucidating mechanisms of smoking-attributable pathology for therapeutic targeting. Bull. Natl. Res. Cent. 2024, 48, 16. [Google Scholar] [CrossRef]
- Garza, A.P.; Morton, L.; Pallinger, E.; Buzas, E.I.; Schreiber, S.; Schott, B.H.; Dunay, I.R. Initial and ongoing tobacco smoking elicits vascular damage and distinct inflammatory response linked to neurodegeneration. Brain Behav. Immun. Health 2023, 28, 100597. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.S.; Yang, X.; Yeung, S.C.; Chiu, K.; Lau, C.F.; Tsang, A.W.; Mak, J.C.; Chang, R.C. Cigarette smoking accelerated brain aging and induced pre-Alzheimer-like neuropathology in rats. PLoS ONE 2012, 7, e36752. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Pinilla, F. Brain foods: The effects of nutrients on brain function. Nat. Rev. Neurosci. 2008, 9, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Terracina, S.; Petrella, C.; Francati, S.; Lucarelli, M.; Barbato, C.; Minni, A.; Ralli, M.; Greco, A.; Tarani, L.; Fiore, M.; et al. Antioxidant Intervention to Improve Cognition in the Aging Brain: The Example of Hydroxytyrosol and Resveratrol. Int. J. Mol. Sci. 2022, 23, 5674. [Google Scholar] [CrossRef]
- Zwilling, C.E.; Wu, J.; Barbey, A.K. Investigating nutrient biomarkers of healthy brain aging: A multimodal brain imaging study. NPJ Aging 2024, 10, 27. [Google Scholar] [CrossRef]
- Bajerska, J.; Wozniewicz, M.; Suwalska, A.; Jeszka, J. Eating patterns are associated with cognitive function in the elderly at risk of metabolic syndrome from rural areas. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3234–3245. [Google Scholar]
- Oddy, W.H.; Allen, K.L.; Trapp, G.S.A.; Ambrosini, G.L.; Black, L.J.; Huang, R.C.; Rzehak, P.; Runions, K.C.; Pan, F.; Beilin, L.J.; et al. Dietary patterns, body mass index and inflammation: Pathways to depression and mental health problems in adolescents. Brain Behav. Immun. 2018, 69, 428–439. [Google Scholar] [CrossRef]
- Du Preez, A.; Lefevre-Arbogast, S.; Gonzalez-Dominguez, R.; Houghton, V.; de Lucia, C.; Lee, H.; Low, D.Y.; Helmer, C.; Feart, C.; Delcourt, C.; et al. Association of dietary and nutritional factors with cognitive decline, dementia, and depressive symptomatology in older individuals according to a neurogenesis-centred biological susceptibility to brain ageing. Age Ageing 2024, 53, ii47–ii59. [Google Scholar] [CrossRef]
- Ungvari, A.; Gulej, R.; Csik, B.; Mukli, P.; Negri, S.; Tarantini, S.; Yabluchanskiy, A.; Benyo, Z.; Csiszar, A.; Ungvari, Z. The Role of Methionine-Rich Diet in Unhealthy Cerebrovascular and Brain Aging: Mechanisms and Implications for Cognitive Impairment. Nutrients 2023, 15, 4662. [Google Scholar] [CrossRef]
- Muscaritoli, M. The Impact of Nutrients on Mental Health and Well-Being: Insights from the Literature. Front. Nutr. 2021, 8, 656290. [Google Scholar] [CrossRef] [PubMed]
- Kiefte-de Jong, J.C.; Mathers, J.C.; Franco, O.H. Nutrition and healthy ageing: The key ingredients. Proc. Nutr. Soc. 2014, 73, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzi, V.; Custodero, C.; Lozupone, M.; Imbimbo, B.P.; Valiani, V.; Agosti, P.; Schilardi, A.; D’Introno, A.; La Montagna, M.; Calvani, M.; et al. Relationships of Dietary Patterns, Foods, and Micro- and Macronutrients with Alzheimer’s Disease and Late-Life Cognitive Disorders: A Systematic Review. J. Alzheimers Dis. 2017, 59, 815–849. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.L.; Lim, H.W.; Mohammad, T.F. Sunscreens and Photoaging: A Review of Current Literature. Am. J. Clin. Dermatol. 2021, 22, 819–828. [Google Scholar] [CrossRef]
- Yoon, K.N.; Kim, Y.; Cui, Y.; Ji, J.; Park, G.; Chung, J.H.; Lee, Y.S.; An, J.Y.; Lee, D.H. Chronic skin ultraviolet irradiation induces transcriptomic changes associated with microglial dysfunction in the hippocampus. Mol. Brain 2022, 15, 102. [Google Scholar] [CrossRef]
- He, J.; Zhu, G.; Wang, G.; Zhang, F. Oxidative Stress and Neuroinflammation Potentiate Each Other to Promote Progression of Dopamine Neurodegeneration. Oxid. Med. Cell Longev. 2020, 2020, 6137521. [Google Scholar] [CrossRef]
- Montag, C.; Becker, B. Neuroimaging the effects of smartphone (over-)use on brain function and structure-a review on the current state of MRI-based findings and a roadmap for future research. Psychoradiology 2023, 3, kkad001. [Google Scholar] [CrossRef]
- Al-Amri, A.; Abdulaziz, S.; Bashir, S.; Ahsan, M.; Abualait, T. Effects of smartphone addiction on cognitive function and physical activity in middle-school children: A cross-sectional study. Front. Psychol. 2023, 14, 1182749. [Google Scholar] [CrossRef]
- Casale, S.; Musico, A.; Spada, M.M. A systematic review of metacognitions in Internet Gaming Disorder and problematic Internet, smartphone and social networking sites use. Clin. Psychol. Psychother. 2021, 28, 1494–1508. [Google Scholar] [CrossRef]
- Fry, A.; Littlejohns, T.J.; Sudlow, C.; Doherty, N.; Adamska, L.; Sprosen, T.; Collins, R.; Allen, N.E. Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants with Those of the General Population. Am. J. Epidemiol. 2017, 186, 1026–1034. [Google Scholar] [CrossRef]
Characteristic | Group | Results |
---|---|---|
N | 30,375 | |
Age (mean (SD)) | 55.47 (7.44) | |
Sex (n (%)) | Male | 14,704 (48.41) |
Female | 15,671 (51.59) | |
BMI (mean (SD)) | 26.75 (4.25) | |
Education (n (%)) | College or university degree | 13,483 (44.39) |
A-levels/AS-levels or equivalent | 3889 (12.80) | |
O-levels/GCSEs or equivalent | 5929 (19.52) | |
CSEs or equivalent | 1235 (4.07) | |
NVQ, HND, HNC, or equivalent | 1726 (5.68) | |
Other professional qualifications, e.g., nursing, teaching | 1531 (5.04) | |
Townsend deprivation index (mean (SD)) | −1.86 (2.73) | |
Household income (n (%)) | Less than 18,000 | 3293 (10.84) |
18,000 to 30,999 | 6227 (20.50) | |
31,000 to 51,999 | 8300 (27.33) | |
52,000 to 100,000 | 7625 (25.10) | |
Greater than 100,000 | 2007 (6.61) | |
WM BAG (mean (SD)) | 0.14 (3.45) |
Category | Field ID | Description | Data Type | β (LB, UB) | p-Value | BH-Adjusted p-Value |
---|---|---|---|---|---|---|
Electronic device use | 1110 | Length of mobile phone use | Ordinal | −0.05 (−0.08, −0.02) | 6.00 × 10−04 | 3.00 × 10−3 *** |
Smoking | 20160 | Ever smoked | Binary | 0.21 (0.13, 0.29) | 8.40 × 10−8 | 1.00 × 10−6 *** |
Smoking | 20116 | Smoking status (never vs. previous, current) | Binary | 0.29 (0.22, 0.36) | 1.23 × 10−14 | 1.97 × 10−13 *** |
Smoking | 1239 | Current tobacco smoking | Binary | 0.63 (0.49, 0.77) | <2 × 10−16 | 3.4 × 10−15 *** |
Smoking | 1249 | Past tobacco smoking | Binary | 0.14 (0.07, 0.23) | 3.00 × 10−4 | 2.00 × 10−3 *** |
Diet | 1329 | Oily fish intake | Ordinal | 0.08 (0.03, 0.12) | 3.00 × 10−4 | 2.00 × 10−3 *** |
Diet | 1369 | Beef intake | Ordinal | 0.10 (0.05, 0.14) | 3.12 × 10−5 | 3.00 × 10−4 *** |
Diet | 1379 | Lamb/mutton intake | Ordinal | 0.06 (0.002, 0.11) | 4.00 × 10−2 | 4.00 × 10−2 * |
Diet | 6144 | Eat eggs, dairy, wheat, sugar (all vs. some) | Binary | 0.27 (0.18, 0.37) | 1.34 × 10−8 | 2.00 × 10−7 *** |
Diet | 1408 | Cheese intake | Ordinal | −0.04 (−0.07, −0.004) | 0.03 | 4.00 × 10−2 * |
Diet | 1428 | Spread type used (alternative margarine vs. other types) | Binary | 0.14 (0.06, 0.21) | 3.00 × 10−4 | 2.00 × 10−3 *** |
Diet | 1458 | Cereal intake | Numerical | −0.05 (−0.07, −0.04) | 1.58 × 10−13 | 2.37 × 10−12 *** |
Diet | 1498 | Coffee intake | Numerical | 0.06 (0.04, 0.07) | 8.41 × 10−9 | 1.00 × 10−7 *** |
Diet | 1528 | Water intake | Numerical | 0.03 (0.01, 0.05) | 7.00 × 10−4 | 3.00 × 10−3 *** |
Diet | 1538 | No dietary changes in the last 5 years | Binary | 0.13 (0.05, 0.20) | 1.00 × 10−3 | 6.00 × 10−3 ** |
Sun exposure | 2267 | Use of sun/UV protection most of the time (most of the time vs. other) | Binary | 0.20 (0.12, 0.27) | 3.41 × 10−7 | 4.00 × 10−6 *** |
Sun exposure | 2277 | Frequency of solarium/sunlamp use | Numerical | 0.01 (0.003, 0.02) | 7.00 × 10−3 | 2.00 × 10−2 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, L.; Milleson, H.S.; Ye, Z.; Canida, T.; Ke, H.; Liang, M.; Gao, S.; Chen, S.; Hong, L.E.; Kochunov, P.; et al. Nongenetic and Genetic Factors Associated with White Matter Brain Aging: Exposome-Wide and Genome-Wide Association Study. Genes 2024, 15, 1285. https://doi.org/10.3390/genes15101285
Feng L, Milleson HS, Ye Z, Canida T, Ke H, Liang M, Gao S, Chen S, Hong LE, Kochunov P, et al. Nongenetic and Genetic Factors Associated with White Matter Brain Aging: Exposome-Wide and Genome-Wide Association Study. Genes. 2024; 15(10):1285. https://doi.org/10.3390/genes15101285
Chicago/Turabian StyleFeng, Li, Halley S. Milleson, Zhenyao Ye, Travis Canida, Hongjie Ke, Menglu Liang, Si Gao, Shuo Chen, L. Elliot Hong, Peter Kochunov, and et al. 2024. "Nongenetic and Genetic Factors Associated with White Matter Brain Aging: Exposome-Wide and Genome-Wide Association Study" Genes 15, no. 10: 1285. https://doi.org/10.3390/genes15101285
APA StyleFeng, L., Milleson, H. S., Ye, Z., Canida, T., Ke, H., Liang, M., Gao, S., Chen, S., Hong, L. E., Kochunov, P., Lei, D. K. Y., & Ma, T. (2024). Nongenetic and Genetic Factors Associated with White Matter Brain Aging: Exposome-Wide and Genome-Wide Association Study. Genes, 15(10), 1285. https://doi.org/10.3390/genes15101285