Metabolomic Changes Associated with AGXT2 Genotype Variants and Stone Formation in a Colony of Cats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Serum Metabolomics
2.2. Gene-Wide Association Study
2.3. Complete Blood Count and Serum Biochemistries
2.4. Stone Formation and CKD Diagnosis
2.5. Statistical Methods
3. Results
3.1. Genome-Wide Association Study of Colony Cats
3.2. CBC and Serum Biochemistries
3.3. Serum Metabolite Factors
3.4. Discriminant Variable Selection among Genotypes
3.5. Discriminant Variable Selection for Stone Formation
4. Discussion
4.1. Genotype and Stone Formation Demographics
4.2. Complete Blood Count and Serum Biochemistry Analytes
4.3. Serum Metabolomic Factors
4.4. Therapeutic Strategies Based on Genotype and Metabolomic Factors
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hall, J.A.; Yerramilli, M.; Obare, E.; Li, J.; Jewell, D.E. Serum concentrations of symmetric dimethylarginine and creatinine in cats with kidney stones. PLoS ONE 2017, 12, e0174854. [Google Scholar] [CrossRef] [PubMed]
- Bartges, J.W. Feline calcium oxalate urolithiasis: Risk factors and rational treatment approaches. J. Feline Med. Surg. 2016, 18, 712–722. [Google Scholar] [CrossRef] [PubMed]
- Kruger, J.M.; Osborne, C.A.; Goyal, S.M.; Wickstrom, S.L.; Johnston, G.R.; Fletcher, T.F.; Brown, P.A. Clinical evaluation of cats with lower urinary tract disease. J. Am. Vet. Med. Assoc. 1991, 199, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Buffington, C.A.; Chew, D.J.; Kendall, M.S.; Scrivani, P.V.; Thompson, S.B.; Blaisdell, J.L.; Woodworth, B.E. Clinical evaluation of cats with nonobstructive urinary tract diseases. J. Am. Vet. Med. Assoc. 1997, 210, 46–50. [Google Scholar] [CrossRef]
- Burggraaf, N.D.; Westgeest, D.B.; Corbee, R.J. Analysis of 7866 feline and canine uroliths submitted between 2014 and 2020 in the Netherlands. Res. Vet. Sci. 2021, 137, 86–93. [Google Scholar] [CrossRef]
- Kopecny, L.; Palm, C.A.; Segev, G.; Larsen, J.A.; Westropp, J.L. Urolithiasis in cats: Evaluation of trends in urolith composition and risk factors (2005–2018). J. Vet. Intern. Med. 2021, 35, 1397–1405. [Google Scholar] [CrossRef]
- Queau, Y. Nutritional management of urolithiasis. Vet. Clin. N. Am. Small Pract. 2019, 49, 175–186. [Google Scholar] [CrossRef]
- Tefft, K.M.; Byron, J.K.; Hostnik, E.T.; Daristotle, L.; Carmella, V.; Frantz, N.Z. Effect of a struvite dissolution diet in cats with naturally occurring struvite urolithiasis. J. Feline Med. Surg. 2021, 23, 269–277. [Google Scholar] [CrossRef]
- Bijsmans, E.S.; Queau, Y.; Feugier, A.; Biourge, V.C. The effect of urine acidification on calcium oxalate relative supersaturation in cats. J. Anim. Physiol. Anim. Nutr. 2021, 105, 579–586. [Google Scholar] [CrossRef]
- Geddes, R.F.; Davison, L.J.; Elliott, J.; Syme, H.M.; O’Neill, D.G. Risk factors for upper urinary tract uroliths and ureteral obstruction in cats under referral veterinary care in the United Kingdom. J. Vet. Intern. Med. 2023, 37, 567–577. [Google Scholar] [CrossRef]
- Hall, J.A.; Brockman, J.A.; Davidson, S.J.; MacLeay, J.M.; Jewell, D.E. Increased dietary long-chain polyunsaturated fatty acids alter serum fatty acid concentrations and lower risk of urine stone formation in cats. PLoS ONE 2017, 12, e0187133. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.A.; Panickar, K.S.; Brockman, J.A.; Jewell, D.E. Cats with genetic variants of AGXT2 respond differently to a dietary intervention known to reduce the risk of calcium oxalate stone formation. Genes 2022, 13, 791. [Google Scholar] [CrossRef] [PubMed]
- Sayer, J.A. Progress in understanding the genetics of calcium-containing nephrolithiasis. J. Am. Soc. Nephrol. 2017, 28, 748–759. [Google Scholar] [CrossRef]
- Halbritter, J. Genetics of kidney stone disease—Polygenic meets monogenic. Nephrol. Ther. 2021, 17S, S88–S94. [Google Scholar] [CrossRef] [PubMed]
- NRC. Guide for the Care and Use of Laboratory Animals; National Academy Press: Washington, DC, USA, 2011. [Google Scholar]
- Hall, J.A.; Jackson, M.I.; Vondran, J.C.; Vanchina, M.A.; Jewell, D.E. Comparison of circulating metabolite concentrations in dogs and cats when allowed to freely choose macronutrient intake. Biol. Open 2018, 7, bio036228. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.A.M.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, s13742-015-0047-8. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. AJHG 2007, 81, 559–575. [Google Scholar] [CrossRef]
- International Renal Interest Society. IRIS Staging of CKD (Modified 2023). Available online: http://www.iris-kidney.com/guidelines/staging.html (accessed on 25 September 2024).
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis, 3rd ed.; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1992. [Google Scholar]
- SAS/STAT® 15.1 User’s Guide; SAS Institute, Inc.: Cary, NC, USA, 2018.
- Hall, J.A.; Yerramilli, M.; Obare, E.; Yerramilli, M.; Jewell, D.E. Comparison of serum concentrations of symmetric dimethylarginine and creatinine as kidney function biomarkers in cats with chronic kidney disease. J. Vet. Intern. Med. 2014, 28, 1676–1683. [Google Scholar] [CrossRef]
- Yi, S.Y.; Park, D.J.; Min, K.; Chung, J.W.; Ha, Y.S.; Kim, B.S.; Kim, H.T.; Kim, T.H.; Yoo, E.S. Significance of albumin to globulin ratio as a predictor of febrile urinary tract infection after ureteroscopic lithotripsy. Yeungnam Univ. J. Med. 2021, 38, 225–230. [Google Scholar] [CrossRef]
- Taylor, E.N.; Stampfer, M.J.; Curhan, G.C. Diabetes mellitus and the risk of nephrolithiasis. Kidney Int. 2005, 68, 1230–1235. [Google Scholar] [CrossRef]
- Hung, J.A.; Li, C.H.; Geng, J.H.; Wu, D.W.; Chen, S.C. Dyslipidemia increases the risk of incident kidney stone disease in a large Taiwanese population follow-up study. Nutrients 2022, 14, 1339. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.W.; Seo, S.P.; Kim, W.T.; Kim, Y.J.; Yun, S.J.; Lee, S.C.; Kim, W.J. Hypertriglyceridemia is associated with increased risk for stone recurrence in patients with urolithiasis. Urology 2014, 84, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Schmiedl, A.; Schwille, P.O.; Bonucci, E.; Erben, R.G.; Grayczyk, A.; Sharma, V. Nephrocalcinosis and hyperlipidemia in rats fed a cholesterol- and fat-rich diet: Association with hyperoxaluria, altered kidney and bone minerals, and renal tissue phospholipid-calcium interaction. Urol. Res. 2000, 28, 404–415. [Google Scholar] [CrossRef] [PubMed]
- Paulin, M.V.; Dunn, M.; Vachon, C.; Beauchamp, G.; Conversy, B. Association between hyperlipidemia and calcium oxalate lower urinary tract uroliths in dogs. J. Vet. Intern. Med. 2022, 36, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Taylor, E.N.; Hoofnagle, A.N.; Curhan, G.C. Calcium and phosphorus regulatory hormones and risk of incident symptomatic kidney stones. CJASN 2015, 10, 667–675. [Google Scholar] [CrossRef]
- Rendina, D.; Mossetti, G.; De Filippo, G.; Cioffi, M.; Strazzullo, P. Fibroblast growth factor 23 is increased in calcium nephrolithiasis with hypophosphatemia and renal phosphate leak. J. Clin. Endocrinol. Metab. 2006, 91, 959–963. [Google Scholar] [CrossRef]
- Erben, R.G. Physiological actions of fibroblast growth factor-23. Front. Endocrinol. 2018, 9, 267. [Google Scholar] [CrossRef]
- van den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genom. 2006, 7, 142. [Google Scholar] [CrossRef]
- Yamamoto, H.; Fujimori, T.; Sato, H.; Ishikawa, G.; Kami, K.; Ohashi, Y. Statistical hypothesis testing of factor loading in principal component analysis and its application to metabolite set enrichment analysis. BMC Bioinform. 2014, 15, 51. [Google Scholar] [CrossRef]
- Rodionov, R.N.; Jarzebska, N.; Weiss, N.; Lentz, S.R. AGXT2: A promiscuous aminotransferase. Trends Pharmacol. Sci. 2014, 35, 575–582. [Google Scholar] [CrossRef]
- Jewell, D.E.; Tavener, S.K.; Hollar, R.L.; Panickar, K.S. Metabolomic changes in cats with renal disease and calcium oxalate uroliths. Metabolomics 2022, 18, 68. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.A.; Jackson, M.I.; Jewell, D.E.; Ephraim, E. Chronic kidney disease in cats alters response of the plasma metabolome and fecal microbiome to dietary fiber. PLoS ONE 2020, 15, e0235480. [Google Scholar] [CrossRef] [PubMed]
- Nealon, N.J.; Summers, S.; Quimby, J.; Winston, J.A. Untargeted metabolomic profiling of serum from client-owned cats with early and late-stage chronic kidney disease. Sci. Rep. 2024, 14, 4755. [Google Scholar] [CrossRef] [PubMed]
- Ephraim, E.; Jewell, D.E. Betaine and soluble fiber improve body composition and plasma metabolites in cats with chronic kidney disease. Front. Biosci. (Elite Ed.) 2023, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Ruberti, B.; Machado, D.P.; Vendramini, T.H.A.; Pedrinelli, V.; Marchi, P.H.; Jeremias, J.T.; Pontieri, C.F.F.; Kogika, M.M.; Brunetto, M.A. Serum metabolites characterization produced by cats CKD affected, at the 1 and 2 stages, before and after renal diet. Metabolites 2023, 13, 43. [Google Scholar] [CrossRef]
- Norris, G.H.; Blesso, C.N. Dietary and endogenous sphingolipid metabolism in chronic inflammation. Nutrients 2017, 9, 1180. [Google Scholar] [CrossRef]
- Slotte, J.P. Biological functions of sphingomyelins. Prog. Lipid Res. 2013, 52, 424–437. [Google Scholar] [CrossRef]
- Maceyka, M.; Spiegel, S. Sphingolipid metabolites in inflammatory disease. Nature 2014, 510, 58–67. [Google Scholar] [CrossRef]
- Hall, J.A.; Jewell, D.E.; Ephraim, E. Feeding cats with chronic kidney disease food supplemented with betaine and prebiotics increases total body mass and reduces uremic toxins. PLoS ONE 2022, 17, e0268624. [Google Scholar] [CrossRef]
- Khan, S.R. Role of renal epithelial cells in the initiation of calcium oxalate stones. Nephron. Exp. Nephrol. 2004, 98, e55–e60. [Google Scholar] [CrossRef]
- Summers, S.; Quimby, J. Insights into the gut-kidney axis and implications for chronic kidney disease management in cats and dogs. Vet. J. 2024, 306, 106181. [Google Scholar] [CrossRef] [PubMed]
- Ephraim, E.; Jewell, D.E. High protein consumption with controlled phosphorus level increases plasma concentrations of uremic toxins in cats with early chronic kidney disease. HSOA J. Food Sci. Nutr. 2021, 7, 096. [Google Scholar] [CrossRef] [PubMed]
- Ephraim, E.; Jewell, D.E. Effect of nutrition on age-related metabolic markers and the gut microbiota in cats. Microorganisms 2021, 9, 2430. [Google Scholar] [CrossRef] [PubMed]
- Jewell, D.E.; Jackson, M.I. Dietary betaine interacts with very long chain n-3 polyunsaturated fatty acids to influence fat metabolism and circulating single carbon status in the cat. Animals 2022, 12, 2837. [Google Scholar] [CrossRef]
Genotype | Normal | CKD | Total | Prob > Χ2 | Genotype | Neutered Male | Spayed Female | Total | Prob > Χ2 | |
---|---|---|---|---|---|---|---|---|---|---|
AA, n | 25 | 5 | 30 | 0.5592 | AA, n | 15 | 15 | 30 | 0.3706 | |
% | 83.3 | 16.7 | % | 50.0 | 50.0 | |||||
AG, n | 126 | 41 | 167 | AG, n | 84 | 83 | 167 | |||
% | 75.5 | 24.6 | % | 50.3 | 49.7 | |||||
GG, n | 195 | 53 | 248 | GG, n | 108 | 140 | 248 | |||
% | 78.6 | 21.4 | % | 43.6 | 56.5 | |||||
Total | 346 | 99 | 445 | Total | 207 | 238 | 445 | |||
Genotype | Normal | Stones | Total | Prob > Χ2 | StoneFormer | Neutered Male | Spayed Female | Total | Prob > Χ2 | |
AA, n | 20 | 10 | 30 | 0.0899 | No, n | 169 | 194 | 363 | 0.9719 | |
% | 66.7 | 33.3 | % | 46.6 | 53.4 | |||||
AG, n | 139 | 28 | 167 | Yes, n | 38 | 44 | 82 | |||
% | 83.2 | 16.8 | % | 46.3 | 53.7 | |||||
GG, n | 204 | 44 | 248 | Total | 207 | 238 | 445 | |||
% | 82.3 | 17.7 | ||||||||
Total | 363 | 82 | 445 | |||||||
Age of All Cats in the Study (Alive and Dead) | ||||||||||
Genotype | n | Mean Age (y) | SE | Prob > F | StoneFormer | n | Mean Age (y) | SE | Prob > F | |
AA | 30 | 11.26 | 0.50 | 0.0378 | No | 363 | 12.43 | 0.14 | 0.4601 | |
AG | 167 | 12.29 | 0.21 | Yes | 82 | 12.18 | 0.30 | |||
GG | 248 | 12.58 | 0.17 | |||||||
Age of Cats that had Died | ||||||||||
Genotype | n | Mean Age (y) | SE | Prob > F | StoneFormer | n | Mean Age (y) | SE | Prob > F | |
AA | 19 | 11.38 | 0.68 | 0.0899 | No | 181 | 13.08 | 0.22 | 0.0196 | |
AG | 87 | 12.91 | 0.32 | Yes | 59 | 12.03 | 0.39 | |||
GG | 134 | 12.97 | 0.26 |
Stones | Genotype = AA | Genotype = AG | Genotype = GG | p-Values | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Analyte | n | Mean | SE | n | Mean | SE | n | Mean | SE | Source | Prob > F | |||||
Globulin | No | 19 | 3.453 | 0.149 | 137 | 3.464 | 0.055 | 201 | 3.473 | 0.046 | Genotype | 0.5912 | ||||
(g/dL) | Yes | 10 | 3.780 | 0.205 | 28 | 3.811 | 0.123 | 44 | 3.630 | 0.098 | Stones | 0.0070 | ||||
Gen*Stones | 0.5109 | |||||||||||||||
Album:Globulin | No | 19 | 1.021 | 0.054 | 137 | 1.020 | 0.020 | 201 | 1.018 | 0.017 | Genotype | 0.544 | ||||
Ratio | Yes | 10 | 0.880 | 0.074 | 28 | 0.911 | 0.044 | 44 | 0.968 | 0.035 | Stones | 0.0073 | ||||
Gen*Stones | 0.4988 | |||||||||||||||
Alkaline | No | 19 | 36.47 | 5.39 | 137 | 32.46 | 2.01 | 201 | 29.64 | 1.66 | Genotype | 0.4918 | ||||
Phosphatase | Yes | 10 | 27.90 | 7.43 | 28 | 24.79 | 4.44 | 44 | 23.50 | 3.54 | Stones | 0.0444 | ||||
(U/L) | Gen*Stones | 0.9531 | ||||||||||||||
Blood Urea | No | 19 | 20.02 | 0.99 | 137 | 20.76 | 0.37 | 201 | 20.98 | 0.30 | Genotype | 0.0430 | ||||
Nitrogen | Yes | 10 | 23.17 | 1.36 | 28 | 24.54 | 0.81 | 44 | 21.45 | 0.65 | Stones | 0.0003 | ||||
(mg/dL) | Gen*Stones | 0.0115 | ||||||||||||||
Creatinine | No | 19 | 1.190 | 0.066 | 137 | 1.198 | 0.025 | 200 | 1.238 | 0.020 | Genotype | 0.3360 | ||||
(mg/dL) | Yes | 10 | 1.368 | 0.092 | 28 | 1.410 | 0.055 | 44 | 1.257 | 0.044 | Stones | 0.0029 | ||||
Gen*Stones | 0.0351 | |||||||||||||||
Cholesterol | No | 19 | 145.4 | 11.0 | 137 | 149.4 | 4.1 | 201 | 161.9 | 3.4 | Genotype | 0.0932 | ||||
(mg/dL) | Yes | 10 | 158.2 | 15.1 | 28 | 168.5 | 9.0 | 44 | 177.5 | 7.2 | Stones | 0.0364 | ||||
Gen*Stones | 0.9393 | |||||||||||||||
Glucose | No | 19 | 95.21 | 3.82 | 136 | 99.63 | 1.43 | 201 | 97.33 | 1.18 | Genotype | 0.4795 | ||||
(mg/dL) | Yes | 10 | 110.40 | 5.27 | 28 | 99.50 | 3.15 | 44 | 99.77 | 2.51 | Stones | 0.0268 | ||||
Gen*Stones | 0.1144 | |||||||||||||||
Inorganic | No | 19 | 4.44 | 0.26 | 137 | 4.09 | 0.10 | 201 | 3.82 | 0.08 | Genotype | 0.7117 | ||||
Phosphorus | Yes | 10 | 3.42 | 0.36 | 28 | 3.61 | 0.21 | 44 | 3.70 | 0.17 | Stones | 0.0028 | ||||
(mg/dL) | Gen*Stones | 0.1284 | ||||||||||||||
Magnesium | No | 19 | 2.011 | 0.032 | 137 | 2.031 | 0.012 | 200 | 2.028 | 0.010 | Genotype | 0.6190 | ||||
(mg/dL) | Yes | 10 | 2.010 | 0.044 | 28 | 2.021 | 0.026 | 44 | 1.989 | 0.021 | Stones | 0.4629 | ||||
Gen*Stones | 0.6546 | |||||||||||||||
Sodium | No | 19 | 152.95 | 0.39 | 137 | 153.01 | 0.14 | 201 | 153.35 | 0.12 | Genotype | 0.3787 | ||||
(mmol/L) | Yes | 10 | 153.10 | 0.53 | 28 | 153.54 | 0.32 | 44 | 153.59 | 0.25 | Stones | 0.2483 | ||||
Gen*Stones | 0.7768 | |||||||||||||||
SDMA | No | 19 | 14.46 | 0.65 | 136 | 12.73 | 0.24 | 201 | 12.09 | 0.20 | Genotype | <.0001 | ||||
(µg/dL) | Yes | 10 | 16.05 | 0.90 | 28 | 14.56 | 0.54 | 44 | 12.36 | 0.43 | Stones | 0.0060 | ||||
Gen*Stones | 0.0972 | |||||||||||||||
Total Protein | No | 19 | 6.78 | 0.13 | 137 | 6.86 | 0.05 | 201 | 6.88 | 0.04 | Genotype | 0.4881 | ||||
(g/dL) | Yes | 10 | 6.99 | 0.19 | 28 | 7.18 | 0.11 | 44 | 7.02 | 0.09 | Stones | 0.0171 | ||||
Gen*Stones | 0.5473 | |||||||||||||||
Hemoglobin | No | 19 | 11.55 | 0.37 | 135 | 11.09 | 0.14 | 200 | 11.12 | 0.11 | Genotype | 0.8211 | ||||
(g/dL) | Yes | 10 | 10.85 | 0.50 | 28 | 10.91 | 0.30 | 44 | 10.87 | 0.24 | Stones | 0.1305 | ||||
Gen*Stones | 0.7593 | |||||||||||||||
HCT | No | 19 | 34.95 | 1.13 | 135 | 33.71 | 0.42 | 200 | 33.89 | 0.35 | Genotype | 0.9276 | ||||
(%) | Yes | 10 | 32.24 | 1.56 | 28 | 32.68 | 0.93 | 44 | 32.83 | 0.74 | Stones | 0.0400 | ||||
Gen*Stones | 0.7141 | |||||||||||||||
MCV | No | 19 | 43.13 | 0.89 | 135 | 43.43 | 0.33 | 200 | 43.84 | 0.27 | Genotype | 0.0371 | ||||
(fL) | Yes | 10 | 39.52 | 1.22 | 28 | 42.60 | 0.73 | 44 | 43.03 | 0.58 | Stones | 0.0044 | ||||
Gen*Stones | 0.2163 | |||||||||||||||
MCH | No | 19 | 14.25 | 0.26 | 135 | 14.29 | 0.10 | 200 | 14.37 | 0.08 | Genotype | 0.0786 | ||||
(pg) | Yes | 10 | 13.28 | 0.36 | 28 | 14.21 | 0.22 | 44 | 14.25 | 0.17 | Stones | 0.0325 | ||||
Gen*Stones | 0.1844 | |||||||||||||||
MCHC | No | 19 | 33.09 | 0.35 | 135 | 32.95 | 0.13 | 200 | 32.85 | 0.11 | Genotype | 0.4081 | ||||
(g/dL) | Yes | 10 | 33.68 | 0.49 | 28 | 33.43 | 0.29 | 44 | 33.15 | 0.23 | Stones | 0.0609 | ||||
Gen*Stones | 0.8673 | |||||||||||||||
Absolute | No | 19 | 0.068 | 0.006 | 135 | 0.061 | 0.002 | 200 | 0.061 | 0.002 | Genotype | 0.0230 | ||||
Reticulocytes | Yes | 10 | 0.075 | 0.009 | 28 | 0.066 | 0.005 | 44 | 0.053 | 0.004 | Stones | 0.7742 | ||||
(M/µL) | Gen*Stones | 0.1411 | ||||||||||||||
Neutrophils | No | 19 | 55.95 | 3.00 | 132 | 58.82 | 1.14 | 198 | 59.41 | 0.93 | Genotype | 0.0407 | ||||
(%) | Yes | 10 | 55.16 | 4.14 | 28 | 65.71 | 2.47 | 44 | 58.75 | 1.97 | Stones | 0.3806 | ||||
Gen*Stones | 0.0827 |
(A) | ||||||||||||
Factor 1 | Factor 2 | |||||||||||
Metabolite | Loading | Metabolite | Loading | |||||||||
sphingomyelin (d18:2/23:0, d18:1/23:1, d17:1/24:1) | 0.9119 | decanoylcarnitine (C10) | 0.8832 | |||||||||
Cholesterol | 0.8531 | myristoylcarnitine (C14) | 0.8601 | |||||||||
sphingomyelin (d18:1/21:0, d17:1/22:0, d16:1/23:0) | 0.8497 | octanoylcarnitine (C8) | 0.8477 | |||||||||
tricosanoyl sphingomyelin (d18:1/23:0) | 0.8477 | hexanoylcarnitine (C6) | 0.8219 | |||||||||
sphingomyelin (d18:1/15:0, d16:1/17:0) | 0.8413 | eicosenoylcarnitine (C20:1) | 0.8184 | |||||||||
palmitoyl sphingomyelin (d18:1/16:0) | 0.8260 | dihomo-linoleoylcarnitine (C20:2) | 0.8181 | |||||||||
sphingomyelin (d18:1/19:0, d19:1/18:0) | 0.8243 | laurylcarnitine (C12) | 0.8166 | |||||||||
sphingomyelin (d18:2/21:0, d16:2/23:0) | 0.7929 | palmitoylcarnitine (C16) | 0.8026 | |||||||||
sphingomyelin (d17:2/16:0, d18:2/15:0) | 0.7905 | myristoleoylcarnitine (C14:1) | 0.8021 | |||||||||
sphingomyelin (d18:2/23:1) | 0.7898 | oleoylcarnitine (C18) | 0.7998 | |||||||||
sphingomyelin (d18:2/16:0, d18:1/16:1) | 0.7851 | palmitoleoylcarnitine (C16:1) | 0.7941 | |||||||||
sphingomyelin (d18:1/17:0, d17:1/18:0, d19:1/16:0) | 0.7634 | margaroylcarnitine | 0.7794 | |||||||||
1-lignoceroyl-GPC (24:0) | 0.7593 | stearoylcarnitine (C18) | 0.7793 | |||||||||
behenoyl sphingomyelin (d18:1/22:0) | 0.7351 | linoleoylcarnitine (C18:2) | 0.7712 | |||||||||
glycosyl ceramide (d18:2/24:1, d18:1/24:2) | 0.7164 | 3-hydroxybutyrylcarnitine (1) | 0.7601 | |||||||||
sphingomyelin (d18:1/20:0, d16:1/22:0) | 0.7090 | acetylcarnitine (C2) | 0.7305 | |||||||||
sphingomyelin (d18:1/22:1, d18:2/22:0, d16:1/24:1) | 0.7009 | butyrylcarnitine (C4) | 0.7274 | |||||||||
S-methylcysteine | −0.2027 | erucoylcarnitine (C22:1) | 0.7137 | |||||||||
4-imidazoleacetate | −0.2379 | cis-4-decenoylcarnitine (C10:1) | 0.7053 | |||||||||
pyridoxal | −0.3106 | |||||||||||
Factor 3 | 2-hydroxyglutarate | −0.3128 | ||||||||||
Metabolite | Loading | phosphate | −0.3145 | |||||||||
N6-carbamoylthreonyladenosine | 0.8181 | N-acetylfelinine | −0.3149 | |||||||||
pseudouridine | 0.7937 | γ-glutamylfelinylglycine | −0.3196 | |||||||||
allantoin | 0.7706 | hydroxyproline | −0.3732 | |||||||||
N1-methylinosine | 0.7678 | 1-(1-enyl-palmitoyl)-2-oleoyl-GPE (P-16:0/18:1) | −0.3791 | |||||||||
C-glycosyltryptophan | 0.7576 | |||||||||||
N-acetyltaurine | 0.7413 | Factor 5 | ||||||||||
allantoic acid | 0.7349 | Metabolite | Loading | |||||||||
erythronate | 0.7086 | linoleate (18:2n6) | 0.9026 | |||||||||
7-methylguanine | 0.7025 | oleate/vaccenate (18:1) | 0.8998 | |||||||||
erythritol | 0.6829 | palmitate (16:0) | 0.8854 | |||||||||
N-acetylthreonine | 0.6809 | stearate (18:0) | 0.8794 | |||||||||
O-sulfo-L-tyrosine | 0.6443 | 10-nonadecenoate (19:1n9) | 0.8764 | |||||||||
dimethylarginine (ADMA + SDMA) | 0.6414 | eicosenoate (20:1n9 or 1n11) | 0.8546 | |||||||||
1-methylhistidine | 0.6387 | margarate (17:0) | 0.8518 | |||||||||
N-acetylserine | 0.6383 | palmitoleate (16:1n7) | 0.8350 | |||||||||
kynurenate | 0.6111 | 10-heptadecenoate (17:1n7) | 0.8335 | |||||||||
docosadioate | −0.3012 | dihomolinolenate (20:3n3 or 3n6) | 0.8285 | |||||||||
threonine | −0.3303 | dihomolinoleate (20:2n6) | 0.8240 | |||||||||
nonadecanoate (19:0) | 0.8173 | |||||||||||
Factor 9 | p-cresol sulfate | −0.2573 | ||||||||||
Metabolite | Loading | tryptophan | −0.2587 | |||||||||
suberate (octanedioate) | 0.9364 | hypotaurine | −0.2821 | |||||||||
azelate (nonanedioate; C9) | 0.9295 | |||||||||||
dodecanedioate (C12) | 0.9255 | Factor 12 | ||||||||||
sebacate (decanedioate) | 0.9248 | Metabolite | Loading | |||||||||
undecanedioate | 0.9197 | pyruvate | 0.7949 | |||||||||
1,11-undecanedicarboxylate | 0.9192 | α-ketoglutarate | 0.7825 | |||||||||
8-hydroxyoctanoate | 0.9035 | lactate | 0.7563 | |||||||||
pimelate (heptanedioate) | 0.8859 | fumarate | 0.7077 | |||||||||
adipate | 0.8646 | malate | 0.7055 | |||||||||
pelargonate (9:0) | 0.8434 | 3-methyl-2-oxobutyrate | 0.6306 | |||||||||
tetradecanedioate (C14) | 0.7882 | alanine | 0.6271 | |||||||||
5-hydroxyhexanoate | 0.7306 | 2-oxoadipate | 0.5845 | |||||||||
glutarate (pentanedioate) | 0.7067 | 4-methyl-2-oxopentanoate | 0.5525 | |||||||||
1-palmitoyl-2-oleoyl-GPI (16:0/18:1) | −0.1730 | 3-methyl-2-oxovalerate | 0.5372 | |||||||||
1-stearoyl-GPI (18:0) | −0.1774 | N-acetylglutamine | 0.5263 | |||||||||
2-hydroxy-3-methylvalerate | 0.5207 | |||||||||||
4-guanidinobutanoate | −0.4604 | |||||||||||
Factor 18 | Factor 20 | |||||||||||
Metabolite | Loading | Metabolite | Loading | |||||||||
cysteine sulfinic acid | 0.5742 | γ-glutamylfelinylglycine | 0.3975 | |||||||||
benzoate | 0.5623 | sulfate | 0.3684 | |||||||||
heme | 0.5429 | 7-hydroxyindole sulfate | 0.3679 | |||||||||
biliverdin | 0.3969 | cysteine s-sulfate | 0.3487 | |||||||||
cortisone | 0.3705 | homocitrulline | 0.3473 | |||||||||
pyridoxal | 0.3523 | isovalerylglycine | 0.3354 | |||||||||
2’-deoxyuridine | 0.3406 | 2-oxoarginine | 0.3325 | |||||||||
glycerol | 0.3041 | 4-guanidinobutanoate | 0.3162 | |||||||||
thioproline | −0.2927 | fumarate | 0.3140 | |||||||||
maltose | −0.3395 | dimethylmalonic acid | 0.3140 | |||||||||
mannitol/sorbitol | −0.4998 | malate | 0.3108 | |||||||||
N-linolenoyltaurine | −0.3460 | |||||||||||
(B) | ||||||||||||
Analyte | Stones | Genotype = AA | Genotype = AG | Genotype = GG | p-Values | |||||||
Present | n | Mean | SE | n | Mean | SE | n | Mean | SE | Source | Prob > F | |
Factor 1 | No | 20 | −0.43 | 0.22 | 139 | −0.08 | 0.08 | 204 | −0.02 | 0.07 | Genotype | 0.0740 |
Yes | 10 | −0.14 | 0.31 | 28 | 0.28 | 0.19 | 44 | 0.41 | 0.15 | Stones | 0.0202 | |
Gen*Stones | 0.9247 | |||||||||||
Factor 2 | No | 20 | −0.12 | 0.22 | 139 | −0.18 | 0.08 | 204 | 0.15 | 0.07 | Genotype | 0.0416 |
Yes | 10 | −0.32 | 0.31 | 28 | −0.16 | 0.19 | 44 | 0.11 | 0.15 | Stones | 0.6513 | |
Gen*Stones | 0.8801 | |||||||||||
Factor 3 | No | 20 | 0.14 | 0.22 | 139 | −0.10 | 0.08 | 204 | −0.08 | 0.07 | Genotype | 0.0144 |
Yes | 10 | 0.66 | 0.31 | 28 | 0.70 | 0.19 | 44 | 0.02 | 0.15 | Stones | 0.0024 | |
Gen*Stones | 0.0273 | |||||||||||
Factor 5 | No | 20 | 0.39 | 0.22 | 139 | 0.16 | 0.08 | 204 | −0.07 | 0.07 | Genotype | 0.4347 |
Yes | 10 | −0.31 | 0.31 | 28 | −0.15 | 0.19 | 44 | −0.22 | 0.15 | Stones | 0.0128 | |
Gen*Stones | 0.4084 | |||||||||||
Factor 9 | No | 20 | 0.42 | 0.22 | 139 | −0.08 | 0.08 | 204 | 0.09 | 0.07 | Genotype | 0.6422 |
Yes | 10 | −0.34 | 0.31 | 28 | −0.19 | 0.19 | 44 | −0.16 | 0.15 | Stones | 0.0153 | |
Gen*Stones | 0.3264 | |||||||||||
Factor 12 | No | 20 | 0.09 | 0.22 | 139 | 0.04 | 0.08 | 204 | −0.12 | 0.07 | Genotype | 0.0533 |
Yes | 10 | 0.92 | 0.31 | 28 | 0.12 | 0.19 | 44 | 0.11 | 0.15 | Stones | 0.0151 | |
Gen*Stones | 0.2376 | |||||||||||
Factor 18 | No | 20 | −0.42 | 0.22 | 139 | 0.06 | 0.08 | 204 | 0.03 | 0.07 | Genotype | 0.0072 |
Yes | 10 | −0.75 | 0.31 | 28 | −0.17 | 0.19 | 44 | 0.11 | 0.15 | Stones | 0.2949 | |
Gen*Stones | 0.3928 | |||||||||||
Factor 20 | No | 20 | −0.28 | 0.22 | 139 | −0.09 | 0.08 | 204 | 0.05 | 0.07 | Genotype | 0.0006 |
Yes | 10 | −0.40 | 0.31 | 28 | −0.30 | 0.19 | 44 | 0.43 | 0.15 | Stones | 0.9375 | |
Gen*Stones | 0.0655 |
Step | Entered | Partial R2 | F Value | Pr > F |
---|---|---|---|---|
1 | SDMA | 0.0726 | 16.87 | <0.0001 |
2 | Cholesterol | 0.0234 | 5.15 | 0.0062 |
3 | Factor 3 | 0.0188 | 4.11 | 0.0171 |
4 | Factor 12 | 0.0204 | 4.46 | 0.0122 |
5 | Factor 18 | 0.0177 | 3.86 | 0.0219 |
6 | Total Bilirubin | 0.0146 | 3.15 | 0.0439 |
7 | Factor 1 | 0.0158 | 3.41 | 0.0341 |
8 | Factor 20 | 0.0137 | 2.94 | 0.0537 |
9 | Factor 2 | 0.0118 | 2.52 | 0.0820 |
10 | Factor 5 | 0.0107 | 2.28 | 0.1038 |
11 | Glucose | 0.0104 | 2.21 | 0.1109 |
Step | Entered | Partial R2 | F Value | Pr > F |
---|---|---|---|---|
1 | Factor 3 | 0.0260 | 11.53 | 0.0007 |
2 | ALP | 0.0205 | 9.01 | 0.0028 |
3 | MCHC | 0.0233 | 10.24 | 0.0015 |
4 | Factor 1 | 0.0160 | 6.97 | 0.0086 |
5 | Total Protein | 0.0120 | 5.20 | 0.0230 |
6 | Magnesium | 0.0116 | 5.02 | 0.0255 |
7 | Sodium | 0.0103 | 4.45 | 0.0355 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hall, J.A.; Brockman, J.A.; Brejda, J.J.; Jewell, D.E. Metabolomic Changes Associated with AGXT2 Genotype Variants and Stone Formation in a Colony of Cats. Genes 2024, 15, 1264. https://doi.org/10.3390/genes15101264
Hall JA, Brockman JA, Brejda JJ, Jewell DE. Metabolomic Changes Associated with AGXT2 Genotype Variants and Stone Formation in a Colony of Cats. Genes. 2024; 15(10):1264. https://doi.org/10.3390/genes15101264
Chicago/Turabian StyleHall, Jean A., Jeffrey A. Brockman, John J. Brejda, and Dennis E. Jewell. 2024. "Metabolomic Changes Associated with AGXT2 Genotype Variants and Stone Formation in a Colony of Cats" Genes 15, no. 10: 1264. https://doi.org/10.3390/genes15101264
APA StyleHall, J. A., Brockman, J. A., Brejda, J. J., & Jewell, D. E. (2024). Metabolomic Changes Associated with AGXT2 Genotype Variants and Stone Formation in a Colony of Cats. Genes, 15(10), 1264. https://doi.org/10.3390/genes15101264