RNA Polymerases IV and V Are Involved in Olive Fruit Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Transcriptomic Analysis
2.3. Annotation of lncRNAs in Olive
2.4. Analysis of the Differentially Expressed lncRNAs
3. Results
3.1. Olive Genes Coding for RNA Pol IV and V Subunits
3.2. Gene Expression Profile in Different Plant Organs/Tissues
3.3. Expression Profile in Response to Biotic and Abiotic Stresses
3.4. Expression Profile during Fruit Development
3.5. Annotation and Expression of lncRNAs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ream, T.S.; Haag, J.R.; Pontvianne, F.; Nicora, C.D.; Norbeck, A.D.; Pasa-Tolic, L.; Pikaard, C.S. Subunit compositions of Arabidopsis RNA polymerases I and III reveal Pol I- and Pol III-specific forms of the AC40 subunit and alternative forms of the C53 subunit. Nucleic Acids Res. 2015, 43, 4163–4178. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Bermúdez, A.; Martínez-Fernández, V.; Garrido-Godino, A.I.; Navarro, F. Subunits common to RNA polymerases. In The Yeast Role in Medical Applications; Abdulkhair, W.M.H., Ed.; IntechOpen: London, UK, 2017; Volume 1, pp. 151–165. [Google Scholar]
- Werner, F.; Grohmann, D. Evolution of multisubunit RNA polymerases in the three domains of life. Nat. Rev. Microbiol. 2011, 9, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Law, J.A. RNA Pol IV and V in gene silencing: Rebel polymerases evolving away from Pol II’s rules. Curr. Opin. Plant Biol. 2015, 27, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Tucker, S.L.; Reece, J.; Ream, T.S.; Pikaard, C.S. Evolutionary history of plant multisubunit RNA polymerases IV and V: Subunit origins via genome-wide and segmental gene duplications, retrotransposition, and lineage-specific subfunctionalization. Cold Spring Harb. Symp. Quant. Biol. 2010, 75, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Lahmy, S.; Bies-Etheve, N.; Lagrange, T. Plant-specific multisubunit RNA polymerase in gene silencing. Epigenetics 2010, 5, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Haag, J.R.; Pikaard, C.S. Multisubunit RNA polymerases IV and V: Purveyors of non-coding RNA for plant gene silencing. Nat. Rev. Mol. Cell Biol. 2011, 12, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Ramirez, V.; Garcia-Andrade, J.; Flors, V.; Vera, P. The RNA silencing enzyme RNA polymerase v is required for plant immunity. PLoS Genet. 2011, 7, e1002434. [Google Scholar] [CrossRef]
- Ream, T.; Haag, J.; Pikaard, C. Plant Multisubunit RNA Polymerases IV and V. In Nucleic Acid Polymerases; Trakselis, K., Ed.; Springer-Verlag: Heidelberg, Germany, 2014; Volume 30. [Google Scholar]
- Moo, L.d.R.C.; González, A.K.; Rodríguez-Zapata, L.C.; Suarez, V.; Castaño, E. Expression of RNA polymerase IV and V in Oryza sativa. Electron. J. Biotechnol. 2012, 15, 9. [Google Scholar]
- Huang, Y.; Kendall, T.; Forsythe, E.S.; Dorantes-Acosta, A.; Li, S.; Caballero-Perez, J.; Chen, X.; Arteaga-Vazquez, M.; Beilstein, M.A.; Mosher, R.A. Ancient Origin and Recent Innovations of RNA Polymerase IV and V. Mol. Biol. Evol. 2015, 32, 1788–1799. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, X.Q.; Xie, H.T.; Zhao, S.S.; Wu, J.G. Multifaceted roles of RNA polymerase IV in plant growth and development. J. Exp. Bot. 2020, 71, 5725–5732. [Google Scholar] [CrossRef]
- Barba-Aliaga, M.; Alepuz, P.; Perez-Ortin, J.E. Eukaryotic RNA Polymerases: The Many Ways to Transcribe a Gene. Front. Mol. Biosci. 2021, 8, 663209. [Google Scholar] [CrossRef] [PubMed]
- Werner, M.; Thuriaux, P.; Soutourina, J. Structure-function analysis of RNA polymerases I and III. Curr. Opin. Struct. Biol. 2009, 19, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Morcillo, M.; Taylor, N.M.; Gruene, T.; Legrand, P.; Rashid, U.J.; Ruiz, F.M.; Steuerwald, U.; Muller, C.W.; Fernandez-Tornero, C. Solving the RNA polymerase I structural puzzle. Acta Crystallogr. D Biol. Crystallogr. 2014, 70, 2570–2582. [Google Scholar] [CrossRef] [PubMed]
- Moir, R.D.; Willis, I.M. Regulation of pol III transcription by nutrient and stress signaling pathways. Biochim. Biophys. Acta 2013, 1829, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Tornero, C.; Bottcher, B.; Rashid, U.J.; Muller, C.W. Analyzing RNA polymerase III by electron cryomicroscopy. RNA Biol. 2011, 8, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Turowski, T.W.; Boguta, M. Specific Features of RNA Polymerases I and III: Structure and Assembly. Front. Mol. Biosci. 2021, 8, 680090. [Google Scholar] [CrossRef] [PubMed]
- Armache, K.J.; Mitterweger, S.; Meinhart, A.; Cramer, P. Structures of complete RNA polymerase II and its subcomplex, Rpb4/7. J. Biol. Chem. 2005, 280, 7131–7134. [Google Scholar] [CrossRef]
- Perez-Ortin, J.E.; Mena, A.; Barba-Aliaga, M.; Singh, A.; Chavez, S.; Garcia-Martinez, J. Cell volume homeostatically controls the rDNA repeat copy number and rRNA synthesis rate in yeast. PLoS Genet. 2021, 17, e1009520. [Google Scholar] [CrossRef]
- Tan, E.H.; Blevins, T.; Ream, T.S.; Pikaard, C.S. Functional consequences of subunit diversity in RNA polymerases II and V. Cell Rep. 2012, 1, 208–214. [Google Scholar] [CrossRef]
- Ream, T.S.; Haag, J.R.; Wierzbicki, A.T.; Nicora, C.D.; Norbeck, A.D.; Zhu, J.K.; Hagen, G.; Guilfoyle, T.J.; Pasa-Tolic, L.; Pikaard, C.S. Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. Mol. Cell 2009, 33, 192–203. [Google Scholar] [CrossRef]
- Pikaard, C.S.; Tucker, S. RNA-silencing enzymes Pol IV and Pol V in maize: More than one flavor? PLoS Genet. 2009, 5, e1000736. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhou, W.; Zhang, X.; Li, Y. Roles of long non-coding RNAs in plant immunity. PLoS Pathog. 2023, 19, e1011340. [Google Scholar] [CrossRef] [PubMed]
- Haag, J.R.; Brower-Toland, B.; Krieger, E.K.; Sidorenko, L.; Nicora, C.D.; Norbeck, A.D.; Irsigler, A.; LaRue, H.; Brzeski, J.; McGinnis, K.; et al. Functional diversification of maize RNA polymerase IV and V subtypes via alternative catalytic subunits. Cell Rep. 2014, 9, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Marcussen, T.; Oxelman, B.; Skog, A.; Jakobsen, K.S. Evolution of plant RNA polymerase IV/V genes: Evidence of subneofunctionalization of duplicated NRPD2/NRPE2-like paralogs in Viola (Violaceae). BMC Evol. Biol. 2010, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- He, X.J.; Hsu, Y.F.; Pontes, O.; Zhu, J.; Lu, J.; Bressan, R.A.; Pikaard, C.; Wang, C.S.; Zhu, J.K. NRPD4, a protein related to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for RNA-directed DNA methylation. Genes Dev. 2009, 23, 318–330. [Google Scholar] [CrossRef]
- Fernandez-Parras, I.; Ramirez-Tejero, J.A.; Luque, F.; Navarro, F. Several Isoforms for Each Subunit Shared by RNA Polymerases are Differentially Expressed in the Cultivated Olive Tree (Olea europaea L.). Front. Mol. Biosci. 2021, 8, 679292. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, J.T.; Seetharam, A.S.; Hufford, M.B.; Beilstein, M.A.; Mosher, R.A. Evidence for a Unique DNA-Dependent RNA Polymerase in Cereal Crops. Mol. Biol. Evol. 2018, 35, 2454–2462. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, T.; Trujillo, J.T.; Kendall, T.; Mosher, R.A. A null allele of the pol IV second subunit impacts stature and reproductive development in Oryza sativa. Plant J. 2022, 111, 748–755. [Google Scholar] [CrossRef]
- Bohmdorfer, G.; Rowley, M.J.; Kucinski, J.; Zhu, Y.; Amies, I.; Wierzbicki, A.T. RNA-directed DNA methylation requires stepwise binding of silencing factors to long non-coding RNA. Plant J. 2014, 79, 181–191. [Google Scholar] [CrossRef]
- Wierzbicki, A.T.; Haag, J.R.; Pikaard, C.S. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 2008, 135, 635–648. [Google Scholar] [CrossRef]
- Liu, X.; Hao, L.; Li, D.; Zhu, L.; Hu, S. Long non-coding RNAs and their biological roles in plants. Genom. Proteom. Bioinform. 2015, 13, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Vandivier, L.E.; Tu, B.; Gao, L.; Won, S.Y.; Zheng, B.; Gregory, B.D.; Chen, X. Detection of Pol IV/RDR2-dependent transcripts at the genomic scale in Arabidopsis reveals features and regulation of siRNA biogenesis. Genome Res. 2015, 25, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.V.; Chekanova, J.A. Long Noncoding RNAs in Plants. Adv. Exp. Med. Biol. 2017, 1008, 133–154. [Google Scholar] [PubMed]
- Chen, L.; Zhu, Q.H.; Kaufmann, K. Long non-coding RNAs in plants: Emerging modulators of gene activity in development and stress responses. Planta 2020, 252, 92. [Google Scholar] [CrossRef]
- Budak, H.; Kaya, S.B.; Cagirici, H.B. Long Non-coding RNA in Plants in the Era of Reference Sequences. Front. Plant Sci. 2020, 11, 276. [Google Scholar] [CrossRef]
- Wierzbicki, A.T.; Blevins, T.; Swiezewski, S. Long Noncoding RNAs in Plants. Annu. Rev. Plant Biol. 2021, 72, 245–271. [Google Scholar] [CrossRef]
- Rai, M.I.; Alam, M.; Lightfoot, D.A.; Gurha, P.; Afzal, A.J. Classification and experimental identification of plant long non-coding RNAs. Genomics 2019, 111, 997–1005. [Google Scholar] [CrossRef]
- Heo, J.B.; Sung, S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 2011, 331, 76–79. [Google Scholar] [CrossRef]
- Shin, J.H.; Chekanova, J.A. Arabidopsis RRP6L1 and RRP6L2 function in FLOWERING LOCUS C silencing via regulation of antisense RNA synthesis. PLoS Genet. 2014, 10, e1004612. [Google Scholar] [CrossRef]
- Kim, D.H.; Sung, S. Vernalization-Triggered Intragenic Chromatin Loop Formation by Long Noncoding RNAs. Dev. Cell 2017, 40, 302–312.e4. [Google Scholar] [CrossRef]
- Di, C.; Yuan, J.; Wu, Y.; Li, J.; Lin, H.; Hu, L.; Zhang, T.; Qi, Y.; Gerstein, M.B.; Guo, Y.; et al. Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features. Plant J. 2014, 80, 848–861. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Zhang, Y.; Dong, J.; Sun, Y.; Lim, B.L.; Liu, D.; Lu, Z.J. Systematic characterization of novel lncRNAs responding to phosphate starvation in Arabidopsis thaliana. BMC Genom. 2016, 17, 655. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yamada, M.; Han, X.; Ohler, U.; Benfey, P.N. High-Resolution Expression Map of the Arabidopsis Root Reveals Alternative Splicing and lincRNA Regulation. Dev. Cell 2016, 39, 508–522. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, F.; Arnaud, T.; Garrido, A. Contribution of polyphenols to the oxidative stability of virgin olive oil. J. Sci. Food Agric. 2001, 81, 1463–1470. [Google Scholar] [CrossRef]
- Donaire, L.; Pedrola, L.; de la Rosa, R.; Llave, C. High-throughput sequencing of RNA silencing-associated small RNAs in olive (Olea europaea L.). PLoS ONE 2011, 6, e27916. [Google Scholar] [CrossRef] [PubMed]
- Conde, C.; Delrot, S.; Geros, H. Physiological, biochemical and molecular changes occurring during olive development and ripening. J. Plant Physiol. 2008, 165, 1545–1562. [Google Scholar] [CrossRef] [PubMed]
- Moret, M.; Ramírez-Tejero, J.A.; Serrano, A.; Ramírez-Yera, E.; Cueva-López, M.D.; Belaj, A.; León, L.; de la Rosa, R.; Bombarely, A.; Luque, F. Identification of Genetic Markers and Genes Putatively Involved in Determining Olive Fruit Weight. Plants 2023, 12, 155. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Ruiz, J.; Leyva-Pérez, M.d.l.O.; Schilirò, E.; Barroso, J.B.; Bombarely, A.; Mueller, L.; Mercado-Blanco, J.; Luque, F. Transcriptomic Analysis of Olea europaea L. Roots during the Verticillium dahliae Early Infection Process. Plant Genome 2017, 10, 1–15. [Google Scholar] [CrossRef]
- Leyva-Pérez, M.O.; Valverde-Corredor, A.; Valderrama, R.; Jiménez-Ruiz, J.; Muñoz-Mérida, A.; Trelles, O.; Barroso, J.B.; Mercado-Blanco, J.; Luque, F. Early and delayed long-term transcriptional changes and short-term transient responses during cold acclimation in olive leaves. DNA Res. 2015, 22, 1–11. [Google Scholar] [CrossRef]
- Ramírez-Tejero, J.A.; Jiménez-Ruiz, J.; Leyva-Pérez, M.O.; Barroso, J.B.; Luque, F. Gene Expression Pattern in Olive Tree Organs (Olea europaea L.). Genes 2020, 11, 5. [Google Scholar] [CrossRef]
- Jiménez-Ruiz, J.; Ramírez Tejero, J.; Fernández Pozo, N.; Leyva-Pérez, M.D.L.O.; Yan, H.; de la Rosa, R.; Belaj, A.; Montes, E.; Rodríguez-Ariza, M.; Navarro, F.; et al. Transposon activation is a major driver in the genome evolution of cultivated olive trees (Olea europaea L.). Plant Genome 2020, 13, e20010. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef] [PubMed]
- Pertea, G.; Pertea, M. GFF Utilities: GffRead and GffCompare. F1000Res 2020, 9. [Google Scholar] [CrossRef]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. tRNAscan-SE 2.0: Improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.J.; Yang, D.C.; Kong, L.; Hou, M.; Meng, Y.Q.; Wei, L.; Gao, G. CPC2: A fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 2017, 45, W12–W16. [Google Scholar] [CrossRef]
- Unver, T.; Wu, Z.; Sterck, L.; Turktas, M.; Lohaus, R.; Li, Z.; Yang, M.; He, L.; Deng, T.; Escalante, F.J.; et al. Genome of wild olive and the evolution of oil biosynthesis. Proc. Natl. Acad. Sci. USA 2017, 114, E9413–E9422. [Google Scholar] [CrossRef]
- Popova, O.V.; Dinh, H.Q.; Aufsatz, W.; Jonak, C. The RdDM pathway is required for basal heat tolerance in Arabidopsis. Mol. Plant 2013, 6, 396–410. [Google Scholar] [CrossRef]
- Luo, J.; Hall, B.D. A multistep process gave rise to RNA polymerase IV of land plants. J. Mol. Evol. 2007, 64, 101–112. [Google Scholar] [CrossRef]
- Huang, L.; Jones, A.M.; Searle, I.; Patel, K.; Vogler, H.; Hubner, N.C.; Baulcombe, D.C. An atypical RNA polymerase involved in RNA silencing shares small subunits with RNA polymerase II. Nat. Struct. Mol. Biol. 2009, 16, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ma, H. Step-wise and lineage-specific diversification of plant RNA polymerase genes and origin of the largest plant-specific subunits. New Phytol. 2015, 207, 1198–1212. [Google Scholar] [CrossRef] [PubMed]
- Leyva-Pérez, M.O.; Jiménez-Ruiz, J.; Gómez-Lama Cabanas, C.; Valverde-Corredor, A.; Barroso, J.B.; Luque, F.; Mercado-Blanco, J. Tolerance of olive (Olea europaea) cv Frantoio to Verticillium dahliae relies on both basal and pathogen-induced differential transcriptomic responses. New Phytol. 2018, 217, 671–686. [Google Scholar] [CrossRef] [PubMed]
RNA Pol II | RNA Pol IV | RNA Pol V | |||
---|---|---|---|---|---|
NRPB1 | Oleur061Scf2303g05021.1 | NRPD1 | Oleur061Scf8288g09024.1 Oleur061Scf3115g03008.1 Oleur061Scf1883g00024.1 | NRPE1 | Oleur061Scf1459g03013.1 Oleur061Scf0397g00013.1 Oleur061Scf0194g01004.1 |
Oleur061Scf0709g00017.1 | |||||
Oleur061Scf1475g00008.1 | |||||
Oleur061Scf0012g03006.1 | |||||
NRPB2 | Oleur061Scf0169g06007.1 Oleur061Scf0008g04041.1 Oleur061Scf3112g05037.1 | NRPDE2 | Oleur061Scf2342g06016.1 | ||
NRPB4 | Oleur061Scf7473g00034.1 Oleur061Scf0021g02004.1 | NRPDE4 | Oleur061Scf9139g02012.1 | ||
Oleur061Scf1057g07004.1 | |||||
Oleur061Scf2091g00019.1 | |||||
NRPB7 | Oleur061Scf0456g03006.1 | NRPDE7 | Oleur061Scf8086g00007.1 Oleur061Scf8230g00012.1 | ||
Oleur061Scf1270g16022.1 | |||||
Oleur061Scf3490g10013.1 | |||||
Oleur061Scf0186g07027.1 | |||||
Oleur061Scf0397g02002.1 | |||||
NRPB7-like | Oleur061Scf4485g00001.1 | ||||
Oleur061Scf7934g03011.1 |
LncRNA Type | lncRNAs | Average RPKMs | |||
---|---|---|---|---|---|
Upregulated | Downregulated | Flower | 15 Days AFB | p-Value | |
Intergenic | 106 | 237 | 525.43 | 594.10 | 0.0399 |
Intronic | 13 | 22 | 234.96 | 336.53 | 0.0023 |
Antisense | 24 | 14 | 2484.33 | 2046.71 | 0.4484 |
Total | 143 | 273 | 718.68 | 733.22 | 0.8365 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano, A.; Moret, M.; Fernández-Parras, I.; Bombarely, A.; Luque, F.; Navarro, F. RNA Polymerases IV and V Are Involved in Olive Fruit Development. Genes 2024, 15, 1. https://doi.org/10.3390/genes15010001
Serrano A, Moret M, Fernández-Parras I, Bombarely A, Luque F, Navarro F. RNA Polymerases IV and V Are Involved in Olive Fruit Development. Genes. 2024; 15(1):1. https://doi.org/10.3390/genes15010001
Chicago/Turabian StyleSerrano, Alicia, Martín Moret, Isabel Fernández-Parras, Aureliano Bombarely, Francisco Luque, and Francisco Navarro. 2024. "RNA Polymerases IV and V Are Involved in Olive Fruit Development" Genes 15, no. 1: 1. https://doi.org/10.3390/genes15010001