Genetic Diversity and Population Structure of African Sorghum (Sorghum bicolor L. Moench) Accessions Assessed through Single Nucleotide Polymorphisms Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Germplasm
2.2. DNA Extraction and Genotyping-by-Sequencing (GBS)
2.3. Data Analysis
2.4. Population Structure Analysis
3. Results
3.1. Genetic Parameters
3.2. Population Structure and Genetic Relationships
3.3. Analysis of Molecular Variance (AMOVA)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAOSTAT). Database of Agricultural Production. FAO Statistical Databases. 2021. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 8 August 2022).
- Dillon, S.L.; Lawrence, P.K.; Henry, R.J.; Price, H.J. Sorghum resolved as a distinct genus based on combined ITS1, ndhF and Adh1 analyses. Plant Syst. Evol. 2007, 268, 29–43. [Google Scholar] [CrossRef]
- Pennisi, E. How sorghum withstands heat and drought. Science 2009, 323, 573. [Google Scholar] [CrossRef] [PubMed]
- Atokple, I.D.K. Sorghum and Millet Breeding in West Africa in Practice. In Proceedings of the Workshop on the Proteins of Sorghums and Millets: Enhancing Nutritional and Functional Properties for Africa, Pretoria, South Africa, 2–4 April 2003. [Google Scholar]
- Ayana, A.; Bryngelsson, T.; Bekele, E. Geographic and altitudinal allozyme variation in sorghum (Sorghum bicolor (L.) Moench) landraces from Ethiopia and Eritrea. Hereditas 2001, 135, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S.J.; Biji, K.R.; Gomez, S.M.; Murthy, K.G.; Babu, R.C. Genetic diversity analysis of sorghum (Sorghum bicolor L. Moench) accessions using RAPD markers. Indian J. Crop Sci. 2006, 1, 109–112. [Google Scholar]
- Gerrano, A.S.; Labuschagne, M.T.; van Biljon, A.; Shargie, N.G. Genetic diversity assessment in sorghum accessions using qualitative morphological and amplified fragment length polymorphism markers. Sci. Agric. 2014, 71, 394–401. [Google Scholar] [CrossRef] [Green Version]
- Tadesse, H.; Feyissa, T. Analysis of genetic diversity of Sorghum bicolor ssp. bicolor (L.) Moench using ISSR markers. Asian J. Plant Sci. 2013, 12, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Ritter, K.B.; McIntyre, C.L.; Godwin, I.D.; Jordan, D.R.; Chapman, S.C. An assessment of the genetic relationship between sweet and grain sorghums, within Sorghum bicolor ssp. bicolor (L.) Moench, using AFLP markers. Euphytica 2007, 157, 161–176. [Google Scholar] [CrossRef]
- Cuevas, H.E.; Prom, L.K.; Cooper, E.A.; Knoll, J.E.; Ni, X. Genome-wide association mapping of anthracnose (Colletotrichum subineolum) resistance in the US Sorghum Association Panel. Plant Genome 2018, 1, 87–102. [Google Scholar]
- Ramu, P.; Billot, C.; Rami, J.-F.; Senthilvel, S.; Upadhyaya, H.D.; Ananda Reddy, L.; Hash, C.T. Assessment of genetic diversity in the sorghum reference set using EST-SSR markers. Theor. Appl. Genet. 2013, 126, 2051–2064. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.P.; Ramu, P.; Deshpande, S.P.; Hash, C.T.; Shah, T.; Upadhyaya, H.D.; Riera-Lizarazu, O.; Brown, P.J.; Acharya, C.B.; Mitchell, S.E.; et al. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc. Natl. Acad. Sci. USA 2013, 110, 453–458. [Google Scholar] [CrossRef]
- Afolayan, G.; Deshpande, S.P.; Aladele, S.E.; Kolawole, A.O.; Angarawai, I.; Nwosu, D.J.; Michael, C.; Blay, E.T.; Danquah, E.Y. Genetic diversity assessment of sorghum (Sorghum bicolor (L.) Moench) accessions using single nucleotide polymorphism markers. Plant Genet. Resour. 2019, 17, 412–420. [Google Scholar] [CrossRef]
- Mace, E.S.; Xia, L.; Jordan, D.R.; Halloran, K.; Parh, D.K.; Huttner, E. DArT markers: Diversity analyses and mapping in Sorghum bicolor. BMC Genom. 2008, 9, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthies, I.E.; van Hintum, T.; Weise, S.; Röder, M.S. Population structure revealed by different marker types (SSR or DArT) has an impact on the results of genome-wide association mapping in European barley cultivars. Mol. Breed. 2012, 30, 951–966. [Google Scholar] [CrossRef]
- Laidò, G.; Mangini, G.; Taranto, F.; Gadaleta, A.; Blanco, A.; Cattivelli, L.; Marone, D.; Mastrangelo, A.M.; Papa, R.; De Vita, P. Genetic diversity and population structure of tetraploid wheats (Triticum turgidum L.) estimated by SSR, DArT and pedigree data. PLoS ONE 2013, 8, e67280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, M.; Neal, J.; O’Connor, K.; Kilian, A.; Topp, B. Ultra-high-throughput DArTseq-based silicoDArT and SNP markers for genomic studies in macadamia. PLoS ONE 2018, 13, e0203465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adu, G.B.; Badu-Apraku, B.; Akromah, R.; Garcia-Oliveira, A.L.; Awuku, F.J.; Gedil, M. Genetic diversity and population structure of early-maturing tropical maize inbred lines using SNP markers. PLoS ONE 2019, 14, e0214810. [Google Scholar]
- Girma, G.; Nida, H.; Mekonen, M.; Seyoum, A.; Nega, A.; Gebreyohannes, A.; Ayana, G.; Taddese, T.; Lule, D.; Dessalegn, K.; et al. A large-scale genome-wide association analyses of Ethiopian sorghum landrace collection reveal loci associated with important traits. Front. Plant Sci. 2019, 10, 691. [Google Scholar] [CrossRef] [Green Version]
- Lasky, J.R.; Upadhyaya, H.D.; Ramu, P.; Deshpande, S.; Hash, C.T.; Bonnette, J.; Juenger, T.E.; Hyma, K.; Acharya, C.; Mitchell, S.E.; et al. Genome-environment associations in sorghum landraces predict adaptive traits. Sci. Adv. 2015, 1, e1400218. [Google Scholar] [CrossRef] [Green Version]
- Integrated Genotyping Support and Service (IGSS). DNA Extraction Method. 2019. Available online: https://ordering.igss-africa.org/files/DArT_DNA_isolation.pdf (accessed on 22 October 2019).
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [Green Version]
- Kilian, A.; Wenzl, P.; Huttner, E.; Carling, J.; Xia, L.; Blois, H.; Caig, V.; Heller-Uszynska, K.; Jaccoud, D.; Hopper, C.; et al. Diversity arrays technology: A generic genome profiling technology on open platforms. In Data Production and Analysis in Population Genomics: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2012; pp. 67–89. [Google Scholar]
- Wells, S.J.; Dale, J. Contrasting gene flow at different spatial scales revealed by genotyping-by-sequencing in Isocladus armatus, a massively colour polymorphic New Zealand marine isopod. PeerJ 2018, 6, e5462. [Google Scholar] [CrossRef] [Green Version]
- Altshuler, D.; Pollara, V.J.; Cowles, C.R.; Van Etten, W.J.; Baldwin, J.; Linton, L.; Lander, E.S. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 2000, 407, 513–516. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.A.; von Holdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef] [Green Version]
- Excoffier, L.; Smouse, P.E.; Quattro, J. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 1992, 131, 479–491. [Google Scholar] [CrossRef]
- Kamvar, Z.N.; Brooks, J.C.; Grünwald, N.J. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front. Genet. 2015, 6, 208. [Google Scholar] [CrossRef] [Green Version]
- Rogers, J.S. Chapter VII—Studies in genetics. In Measures of Genetic Similarity and Genetic Distance; Publication 7213; University of Texas: Austin, TX, USA, 1972; pp. 145–153. [Google Scholar]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Jombart, T.; Ahmed, I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 2011, 27, 3070–3071. [Google Scholar] [CrossRef] [Green Version]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef]
- Wright, S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 1965, 19, 395–420. [Google Scholar] [CrossRef]
- Pembleton, L.W.; Cogan, N.O.; Forster, J.W. StAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Resour. 2013, 13, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Reddy, B.; Ashok, K.A.; Sanjana, R.P. Genetic improvement of sorghum in the semi-arid tropics. Sorghum Improvement in the New Millennium. Int. Crops Res. Inst. Semi-Arid Trop. 2008, 105–123. Available online: http://oar.icrisat.org/4396 (accessed on 22 March 2022).
- Enyew, M.; Feyissa, T.; Carlsson, A.S.; Tesfaye, K.; Hammenhag, C.; Geleta, M. Genetic diversity and population structure of sorghum [Sorghum bicolor (L.) Moench] accessions as revealed by single nucleotide polymorphism markers. Front. Plant Sci. 2022, 12, 3110. [Google Scholar] [CrossRef] [PubMed]
- Sleper, D.A.; Poehlman, J.M. Breeding Field Crops, 5th ed.; Blackwell Publishing: Ames, IA, USA, 2006; pp. 345–366. [Google Scholar]
- Nei, M. Genetic distance between populations. Am. Nat. 1972, 106, 283–292. [Google Scholar] [CrossRef]
- Salem, K.F.; Sallam, A. Analysis of population structure and genetic diversity of Egyptian and exotic rice (Oryza sativa L.) genotypes. C. R. Biol. 2016, 339, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yahaya, M.A.; Shimelis, H.; Nebie, B.; Ojiewo, C.O.; Danso-Abbeam, G. Sorghum production in Nigeria: Opportunities, constraints, and recommendations. Acta Agric. Scand. Sect. B Soil Plant Sci. 2022, 72, 660–672. [Google Scholar]
- Motlhaodi, T.; Geleta, M.; Bryngelsson, T.; Fatih, M.; Chite, S.; Ortiz, R. Genetic diversity in ‘ex-situ’ conserved sorghum accessions of Botswana as estimated by microsatellite markers. Aust. J. Crop Sci. 2014, 8, 35–43. [Google Scholar]
- Eltaher, S.; Sallam, A.; Belamkar, V.; Emara, H.A.; Nower, A.A.; Salem, K.F.; Poland, J.; Baenziger, P.S. Genetic diversity and population structure of F3: 6 Nebraska winter wheat genotypes using genotyping-by-sequencing. Front. Genet. 2018, 9, 76. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.H.; Upadhyaya, H.D.; Burrell, A.M.; Sahraeian, S.M.E.; Klein, R.R.; Klein, P.E. Genetic structure and linkage disequilibrium in a diverse, representative collection of the C4 model plant, Sorghum bicolor. G3 Genes Genomes Genet. 2013, 3, 783–793. [Google Scholar] [CrossRef] [Green Version]
- Adugna, A. Analysis of in situ diversity and population structure in Ethiopian cultivated Sorghum bicolor (L.) landraces using phenotypic traits and SSR markers. SpringerPlus 2014, 3, 212. [Google Scholar] [CrossRef] [Green Version]
- Hamrick, J.L. The distribution of genetic variation within and among natural plant populations. Genet. Conserv. 1983, 335–363. [Google Scholar]
- Wright, S. Isolation by distance. Genetics 1943, 28, 114. [Google Scholar] [CrossRef] [PubMed]
- Frankham, R.; Ballou, S.E.J.D.; Briscoe, D.A.; Ballou, J.D. Introduction to Conservation Genetics; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar] [CrossRef]
- Mofokeng, A.; Shimelis, H.; Tongoona, P.; Laing, M. A genetic diversity analysis of South African sorghum genotypes using SSR markers. S. Afr. J. Plant Soil 2014, 31, 145–152. [Google Scholar] [CrossRef]
- Barro-Kondombo, C.; Sagnard, F.; Chantereau, J.; Deu, M.; Von Brocke, K.; Durand, P.; Goze, E.; Zongo, J.D. Genetic structure among sorghum landraces as revealed by morphological variation and microsatellite markers in three agroclimatic regions of Burkina Faso. Theor. Appl. Genet. 2010, 120, 1511–1523. [Google Scholar] [CrossRef] [Green Version]
- Barnaud, A.; Deu, M.; Garine, E.; McKey, D.; Joly, H.I. Local genetic diversity of sorghum in a village in northern Cameroon: Structure and dynamics of landraces. Theor. Appl. Genet. 2007, 114, 237–248. [Google Scholar] [CrossRef]
Genetic Parameters | |||||
---|---|---|---|---|---|
Statistics | GD | Ho | PIC | MAF | MaF |
mean | 0.32 | 0.15 | 0.26 | 0.23 | 0.77 |
lower | 0.10 | 0.01 | 0.09 | 0.05 | 0.50 |
upper | 0.50 | 0.79 | 0.38 | 0.50 | 0.95 |
Source of Variation | Degree of Freedom | Sum Square | Mean Square | Components of Covariance | Proportion of Variance (%) | p Value |
---|---|---|---|---|---|---|
Between Structure Groups | 3 | 247,342.6 | 82,447.5 | 799.7 | 30.8 | 0.0010 |
Between samples Within Structure Groups | 196 | 493,070.7 | 2515.7 | 719.9 | 27.7 | 0.0010 |
Within samples | 200 | 215,176.0 | 1075.9 | 1075.9 | 41.5 | 0.0010 |
Total | 399 | 955,589.3 | 2395.0 | 2595.5 | 100.0 |
Gene Flow (Nm) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G1 | G2 | G3 | G4 | ACCI | IAR | ICRISAT | Kafir | Bicolor | Caudatum | Durra | Guinea | |||
G1 | 0.000 | 1.026 | 1.026 | 1.616 | ACCI | 0.000 | 2.044 | 3.321 | Kafir | 0.000 | 14.036 | 11.166 | 5.024 | 26.066 |
G2 | 0.196 | 0.000 | 1.342 | 0.994 | IAR | 0.109 | 0.000 | 2.438 | Bicolor | 0.018 | 0.000 | 11.542 | 9.79 | 40.734 |
G3 | 0.196 | 0.157 | 0.000 | 0.861 | ICRISAT | 0.070 | 0.093 | 0.000 | Caudatum | 0.022 | 0.021 | 0.000 | 5.619 | 22.686 |
G4 | 0.134 | 0.201 | 0.225 | 0.000 | Durra | 0.047 | 0.025 | 0.043 | 0.000 | 19.13 | ||||
Guinea | 0.01 | 0.006 | 0.011 | 0.013 | 0 | |||||||||
Genetic differentiation (FST) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yahaya, M.A.; Shimelis, H.; Nebie, B.; Ojiewo, C.O.; Rathore, A.; Das, R. Genetic Diversity and Population Structure of African Sorghum (Sorghum bicolor L. Moench) Accessions Assessed through Single Nucleotide Polymorphisms Markers. Genes 2023, 14, 1480. https://doi.org/10.3390/genes14071480
Yahaya MA, Shimelis H, Nebie B, Ojiewo CO, Rathore A, Das R. Genetic Diversity and Population Structure of African Sorghum (Sorghum bicolor L. Moench) Accessions Assessed through Single Nucleotide Polymorphisms Markers. Genes. 2023; 14(7):1480. https://doi.org/10.3390/genes14071480
Chicago/Turabian StyleYahaya, Muhammad Ahmad, Hussein Shimelis, Baloua Nebie, Chris Ochieng Ojiewo, Abhishek Rathore, and Roma Das. 2023. "Genetic Diversity and Population Structure of African Sorghum (Sorghum bicolor L. Moench) Accessions Assessed through Single Nucleotide Polymorphisms Markers" Genes 14, no. 7: 1480. https://doi.org/10.3390/genes14071480
APA StyleYahaya, M. A., Shimelis, H., Nebie, B., Ojiewo, C. O., Rathore, A., & Das, R. (2023). Genetic Diversity and Population Structure of African Sorghum (Sorghum bicolor L. Moench) Accessions Assessed through Single Nucleotide Polymorphisms Markers. Genes, 14(7), 1480. https://doi.org/10.3390/genes14071480