Expression Pattern of DAB Adaptor Protein 2 in Left- and Right-Side Colorectal Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Normal and Carcinogenic Adult Human Tissues
2.2. Sample Preparation and Immunohistochemistry
2.3. Data Acquisition and Analysis
2.4. Statistical Analysis
2.5. Statistical Analysis in the TCGA-KIRC Cohort
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz. Gastroenterol. 2019, 14, 89–103. [Google Scholar] [CrossRef]
- Fleming, M.; Ravula, S.; Tatishchev, S.F.; Wang, H.L. Colorectal carcinoma: Pathologic aspects. J. Gastrointest. Oncol. 2012, 3, 153–173. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.L.; Fleet, J.C. Animal models of colorectal cancer. Cancer Metastasis Rev. 2013, 32, 39–61. [Google Scholar] [CrossRef] [Green Version]
- Stintzing, S.; Tejpar, S.; Gibbs, P.; Thiebach, L.; Lenz, H.J. Understanding the role of primary tumour localisation in colorectal cancer treatment and outcomes. Eur. J. Cancer 2017, 84, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Baran, B.; Mert Ozupek, N.; Yerli Tetik, N.; Acar, E.; Bekcioglu, O.; Baskin, Y. Difference Between Left-Sided and Right-Sided Colorectal Cancer: A Focused Review of Literature. Gastroenterol. Res. 2018, 11, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.Y.; Cho, M.S.; Kim, N.K. Difference between right-sided and left-sided colorectal cancers: From embryology to molecular subtype. Expert Rev. Anticancer Ther. 2018, 18, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Madden, D.R.; Swiatecka-Urban, A. Tissue-specific control of CFTR endocytosis by Dab2: Cargo recruitment as a therapeutic target. Commun. Integr. Biol. 2012, 5, 473–476. [Google Scholar] [CrossRef] [Green Version]
- Shang, N.; Lee, J.T.Y.; Huang, T.; Wang, C.; Lee, T.L.; Mok, S.C.; Zhao, H.; Chan, W.Y. Disabled-2: A positive regulator of the early differentiation of myoblasts. Cell Tissue Res. 2020, 381, 493–508. [Google Scholar] [CrossRef]
- Ogbu, S.C.; Musich, P.R.; Zhang, J.; Yao, Z.Q.; Howe, P.H.; Jiang, Y. The role of disabled-2 (Dab2) in diseases. Gene 2021, 769, 145202. [Google Scholar] [CrossRef]
- Fu, L.; Rab, A.; Tang, L.P.; Rowe, S.M.; Bebok, Z.; Collawn, J.F. Dab2 is a key regulator of endocytosis and post-endocytic trafficking of the cystic fibrosis transmembrane conductance regulator. Biochem. J. 2012, 441, 633–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figliuolo da Paz, V.; Ghishan, F.K.; Kiela, P.R. Emerging Roles of Disabled Homolog 2 (DAB2) in Immune Regulation. Front. Immunol. 2020, 11, 580302. [Google Scholar] [CrossRef] [PubMed]
- Hocevar, B.A.; Mou, F.; Rennolds, J.L.; Morris, S.M.; Cooper, J.A.; Howe, P.H. Regulation of the Wnt signaling pathway by disabled-2 (Dab2). EMBO J. 2003, 22, 3084–3094. [Google Scholar] [CrossRef] [Green Version]
- Hocevar, B.A.; Prunier, C.; Howe, P.H. Disabled-2 (Dab2) mediates transforming growth factor β (TGFbeta)-stimulated fibronectin synthesis through TGFbeta-activated kinase 1 and activation of the JNK pathway. J. Biol. Chem. 2005, 280, 25920–25927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, W.; Moore, R.; Smith, E.R.; Xu, X.X. Endocytosis and Physiology: Insights from Disabled-2 Deficient Mice. Front. Cell Dev. Biol. 2016, 4, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhoul, J.; Hernandez, G.; Tu, S.W.; Huang, C.L.; Tseng, C.P.; Hsieh, J.T. The role of DOC-2/DAB2 in modulating androgen receptor-mediated cell growth via the nongenomic c-Src-mediated pathway in normal prostatic epithelium and cancer. Cancer Res. 2005, 65, 9906–9913. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.; Cai, K.Q.; Tao, W.; Smith, E.R.; Xu, X.X. Differential requirement for Dab2 in the development of embryonic and extra-embryonic tissues. BMC Dev. Biol. 2013, 13, 39. [Google Scholar] [CrossRef] [Green Version]
- Kleeff, J.; Huang, Y.; Mok, S.C.; Zimmermann, A.; Friess, H.; Büchler, M.W. Down-regulation of DOC-2 in colorectal cancer points to its role as a tumor suppressor in this malignancy. Dis. Colon Rectum 2002, 45, 1242–1248. [Google Scholar] [CrossRef]
- Fulop, V.; Colitti, C.V.; Genest, D.; Berkowitz, R.S.; Yiu, G.K.; Ng, S.W.; Szepesi, J.; Mok, S.C. DOC-2/hDab2, a candidate tumor suppressor gene involved in the development of gestational trophoblastic diseases. Oncogene 1998, 17, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Mok, S.C.; Chan, W.Y.; Wong, K.K.; Cheung, K.K.; Lau, C.C.; Ng, S.W.; Baldini, A.; Colitti, C.V.; Rock, C.O.; Berkowitz, R.S. DOC-2, a candidate tumor suppressor gene in human epithelial ovarian cancer. Oncogene 1998, 16, 2381–2387. [Google Scholar] [CrossRef] [Green Version]
- Son, H.J.; Jo, Y.S.; Kim, M.S.; Yoo, N.J.; Lee, S.H. DAB2IP with tumor-inhibiting activities exhibits frameshift mutations in gastrointestinal cancers. Pathol. Res. Pract. 2018, 214, 2075–2080. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, Z.H.; Bi, Y.H. MicroRNA-889 promotes cell proliferation in colorectal cancer by targeting DAB2IP. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 3326–3334. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Wang, M.; Wang, H.; Zhang, Y.; Peng, R.; Zhang, R.; Zhang, M.; Qiu, P.; Liu, L.; et al. DOC-2/DAB2 interactive protein destabilizes c-Myc to impair the growth and self-renewal of colon tumor-repopulating cells. Cancer Sci. 2021, 112, 4593–4603. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, Z.; Zhang, H.; Li, H.; Zhang, M.; Wang, H.; Qiu, P.; Zhang, R.; Liu, J. DNMT3A facilitates colorectal cancer progression via regulating DAB2IP mediated MEK/ERK activation. Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868, 166353. [Google Scholar] [CrossRef]
- Zhu, X.H.; Wang, J.M.; Yang, S.S.; Wang, F.F.; Hu, J.L.; Xin, S.N.; Men, H.; Lu, G.F.; Lan, X.L.; Zhang, D.; et al. Down-regulation of DAB2IP promotes colorectal cancer invasion and metastasis by translocating hnRNPK into nucleus to enhance the transcription of MMP2. Int. J. Cancer 2017, 141, 172–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, Z.K.; Lokman, N.A.; Yoshihara, M.; Kajiyama, H.; Oehler, M.K.; Ricciardelli, C. Disabled-2 (DAB2): A Key Regulator of Anti- and Pro-Tumorigenic Pathways. Int. J. Mol. Sci. 2022, 24, 696. [Google Scholar] [CrossRef]
- Juric, M.; Balog, M.; Ivic, V.; Benzon, B.; Racetin, A.; Bocina, I.; Kevic, N.; Konjevoda, S.; Szucs, K.F.; Gaspar, R.; et al. Chronic Stress and Gonadectomy Affect the Expression of Cx37, Cx40 and Cx43 in the Spinal Cord. Life 2021, 11, 1330. [Google Scholar] [CrossRef] [PubMed]
- Meter, D.; Racetin, A.; Vukojevic, K.; Balog, M.; Ivic, V.; Zjalic, M.; Heffer, M.; Filipovic, N. A Lack of GD3 Synthase Leads to Impaired Renal Expression of Connexins and Pannexin1 in St8sia1 Knockout Mice. Int. J. Mol. Sci. 2022, 23, 6237. [Google Scholar] [CrossRef]
- Goldman, M.J.; Craft, B.; Hastie, M.; Repecka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 2020, 38, 675–678. [Google Scholar] [CrossRef]
- Afrăsânie, V.A.; Marinca, M.V.; Alexa-Stratulat, T.; Gafton, B.; Păduraru, M.; Adavidoaiei, A.M.; Miron, L.; Rusu, C. KRAS, NRAS, BRAF, HER2 and microsatellite instability in metastatic colorectal cancer—Practical implications for the clinician. Radiol. Oncol. 2019, 53, 265–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marisa, L.; de Reyniès, A.; Duval, A.; Selves, J.; Gaub, M.P.; Vescovo, L.; Etienne-Grimaldi, M.C.; Schiappa, R.; Guenot, D.; Ayadi, M.; et al. Gene expression classification of colon cancer into molecular subtypes: Characterization, validation, and prognostic value. PLoS Med. 2013, 10, e1001453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gervaz, P.; Bucher, P.; Morel, P. Two colons-two cancers: Paradigm shift and clinical implications. J. Surg. Oncol. 2004, 88, 261–266. [Google Scholar] [CrossRef]
- Ogino, S.; Cantor, M.; Kawasaki, T.; Brahmandam, M.; Kirkner, G.J.; Weisenberger, D.J.; Campan, M.; Laird, P.W.; Loda, M.; Fuchs, C.S. CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative DNA methylation analysis and prospective cohort studies. Gut 2006, 55, 1000–1006. [Google Scholar] [CrossRef] [Green Version]
- Hannigan, A.; Smith, P.; Kalna, G.; Lo Nigro, C.; Orange, C.; O’Brien, D.I.; Shah, R.; Syed, N.; Spender, L.C.; Herrera, B.; et al. Epigenetic downregulation of human disabled homolog 2 switches TGF-β from a tumor suppressor to a tumor promoter. J. Clin. Investig. 2010, 120, 2842–2857. [Google Scholar] [CrossRef] [Green Version]
- Dariya, B.; Aliya, S.; Merchant, N.; Alam, A.; Nagaraju, G.P. Colorectal Cancer Biology, Diagnosis, and Therapeutic Approaches. Crit. Rev. Oncog. 2020, 25, 71–94. [Google Scholar] [CrossRef] [PubMed]
- Ternes, S.B.; Rowling, M.J. Vitamin D transport proteins megalin and disabled-2 are expressed in prostate and colon epithelial cells and are induced and activated by all-trans-retinoic acid. Nutr. Cancer 2013, 65, 900–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawaura, A.; Tanida, N.; Sawada, K.; Oda, M.; Shimoyama, T. Supplemental administration of 1 α-hydroxyvitamin D3 inhibits promotion by intrarectal instillation of lithocholic acid in N-methyl-N-nitrosourea-induced colonic tumorigenesis in rats. Carcinogenesis 1989, 10, 647–649. [Google Scholar] [CrossRef]
- Finkielstein, C.V.; Capelluto, D.G. Disabled-2: A modular scaffold protein with multifaceted functions in signaling. BioEssays News Rev. Mol. Cell. Dev. Biol. 2016, 38 (Suppl. S1), S45–S55. [Google Scholar] [CrossRef]
Variable | Pearsons r | p Value |
---|---|---|
Location (R-CRC/L-CRC) | −0.40475 | 0.017577 |
Histological grade | 0.37953 | 0.026839 |
Variables in Model | Effect Size (95% CI) | R2 | ΔcAIC * | p Value * |
---|---|---|---|---|
Intercept | 35.54 (−76.15 to 147.2) | 28.52% | 6.4 | 0.0055 |
Location (R/L) | −52.51 (−101.1 to −3.927) | |||
Histological grade | 45.9 (−3.304 to 95.10) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šustić, I.; Racetin, A.; Vukojević, K.; Benzon, B.; Tonkić, A.; Šundov, Ž.; Puljiz, M.; Glavina Durdov, M.; Filipović, N. Expression Pattern of DAB Adaptor Protein 2 in Left- and Right-Side Colorectal Carcinoma. Genes 2023, 14, 1306. https://doi.org/10.3390/genes14071306
Šustić I, Racetin A, Vukojević K, Benzon B, Tonkić A, Šundov Ž, Puljiz M, Glavina Durdov M, Filipović N. Expression Pattern of DAB Adaptor Protein 2 in Left- and Right-Side Colorectal Carcinoma. Genes. 2023; 14(7):1306. https://doi.org/10.3390/genes14071306
Chicago/Turabian StyleŠustić, Ivan, Anita Racetin, Katarina Vukojević, Benjamin Benzon, Ante Tonkić, Željko Šundov, Mario Puljiz, Merica Glavina Durdov, and Natalija Filipović. 2023. "Expression Pattern of DAB Adaptor Protein 2 in Left- and Right-Side Colorectal Carcinoma" Genes 14, no. 7: 1306. https://doi.org/10.3390/genes14071306