A Complex Intrachromosomal Rearrangement Disrupting IRF6 in a Family with Popliteal Pterygium and Van der Woude Syndromes
Abstract
:1. Introduction
2. Detailed Case Description
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Whole-Genome Sequencing
Appendix A.2. Primer Design
Primer Set | Forward/Reverse | Sequence 5′ > 3′ | Product Size |
---|---|---|---|
P1 | Forward | TCCCAGGGAAGCAGCATTTT | 437 |
Reverse | GAGGTTTGGCAGGAGCAGAT | ||
P2 | Forward | CAGAGCACAATGTTCCCCCA | 231 |
Reverse | CAGTGGCCAGGAACCGTATT | ||
P3 | Forward | AGAAGCAGAAGACCGAGCAA | 132 |
Reverse | CCCAAAACTGAACCCCTGGA |
Appendix A.3. Polymerase Chain Reaction (PCR)
References
- Wilkie, A.O.; Morriss-Kay, G.M. Genetics of craniofacial development and malformation. Nat. Rev. Genet. 2021, 2, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Levi, B.; Brugman, S.; Wong, V.W.; Grova, M.; Longaker, M.T.; Wan, D.C. Palatogenesis: Engineering, pathways and pathologies. Organogenesis 2011, 7, 242–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandrasekharan, D.; Ramanathan, A. Role of IRF6 Gene in Orofacial Clefting: A Systematic Review. Biomed. Pharmacol. J. 2017, 10, 1097. [Google Scholar] [CrossRef]
- Butali, A.; Mossey, P.A.; Adeyemo, W.L.; Eshete, M.A.; Gaines, L.A.; Even, D.; Braimah, R.O.; Aregbesola, B.S.; Rigdon, J.V.; Emeka, C.I.; et al. Novel IRF6 mutations in families with Van Der Woude syndrome and popliteal pterygium syndrome from sub-Saharan Africa. Mol. Genet. Genom. Med. 2014, 2, 254–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leslie, E.J.; Standley, J.; Compton, J.; Bale, S.; Schutte, B.C.; Murray, J.C. Comparative analysis of IRF6 variants in families with Van der Woude syndrome and popliteal pterygium syndrome using public whole-exome databases. Genet. Med. 2013, 15, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Tan, E.C.; Lim, E.C.; Lee, S.T. De Novo 2.3 Mb microdeletion of 1q32. 2 involving the Van der Woude Syndrome locus. Mol. Cytogenet. 2013, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Lees, M.M.; Winter, R.M.; Malcolm, S.; Saal, H.M.; Chitty, L. Popliteal pterygium syndrome: A clinical study of three families and report of linkage to the Van der Woude syndrome locus on 1q32. J. Med. Genet. 1999, 36, 888–892. [Google Scholar]
- Tattini, L.; D’Aurizio, R.; Magi, A. Detection of genomic structural variants from next-generation sequencing data. Front. Bioeng. Biotechnol. 2015, 3, 92. [Google Scholar] [CrossRef] [Green Version]
- Sanchis-Juan, A.; Stephens, J.; French, C.E.; Gleadall, N.; Mégy, K.; Penkett, C.; Shamardina, O.; Stirrups, K.; Delon, I.; Dewhurst, E.; et al. Complex structural variants in Mendelian disorders: Identification and breakpoint resolution using short- and long-read genome sequencing. Genome Med. 2018, 10, 95. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, C.; Ramocki, M.B.; Pehlivan, D.; Franco, L.M.; Gonzaga-Jauregui, C.; Fang, P.; McCall, A.; Pivnick, E.K.; Hines-Dowell, S.; Seaver, L.H.; et al. Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome. Nat. Genet. 2011, 43, 1074–1081. [Google Scholar] [CrossRef] [Green Version]
- Bergant, G.; Maver, A.; Peterlin, B. Whole-genome sequencing in diagnostics of selected slovenian undiagnosed patients with rare disorders. Life 2021, 11, 205. [Google Scholar] [CrossRef] [PubMed]
- Chaisson, M.J.; Wilson, R.K.; Eichler, E.E. Genetic variation and the de novo assembly of human genomes. Nat. Rev. Genet. 2015, 16, 627–640. [Google Scholar] [CrossRef] [PubMed]
- Boycott, K.M.; Vanstone, M.R.; Bulman, D.E.; MacKenzie, A.E. Rare-disease genetics in the era of next-generation sequencing: Discovery to translation. Nat. Rev. Genet. 2013, 14, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, H.; Luo, R.; Wu, H.; Zhu, H.; Li, R.; Cao, H.; Wu, B.; Huang, S.; Shao, H.; et al. Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly. Nat. Biotechnol. 2011, 29, 723–730. [Google Scholar] [CrossRef] [Green Version]
- Fakhro, K.A.; Robay, A.; Rodrigues-Flores, J.L.; Mezey, J.G.; Al-Shakaki, A.A.; Chidiac, O.; Stadler, D.; Malek, J.A.; Imam, A.B.; Sheikh, A.; et al. Point of Care Exome Sequencing Reveals Allelic and Phenotypic Heterogeneity Underlying Mendelian disease in Qatar. Hum. Mol. Genet. 2019, 28, 3970–3981. [Google Scholar] [CrossRef]
- Fakhro, K.A.; Yousri, N.A.; Rodriguez-Flores, J.L.; Robay, A.; Staudt, M.R.; Agosto-Perez, F.; Salit, J.; Malek, J.A.; Suhre, K.; Jayyousi, A.; et al. Copy number variations in the genome of the Qatari population. BMC Genom. 2015, 16, 834. [Google Scholar] [CrossRef] [Green Version]
- Qasim, M.; Shaukat, M. Popliteal pterygium syndrome: A rare entity. APSP J. Case Rep. 2012, 3, 5. [Google Scholar]
- Busche, A.; Hehr, U.; Sieg, P.; Gillessen-Kaesbach, G. Van der Woude and Popliteal Pterygium Syndromes: Broad intrafamilial variability in a three-generation family with mutation in IRF6. Am. J. Med. Genet. Part A 2016, 170, 2404–2407. [Google Scholar] [CrossRef]
- Trappe, K.; Emde, A.K.; Ehrlich, H.C.; Reinert, K. Gustaf: Detecting and correctly classifying SVs in the NGS twilight zone. Bioinformatics 2014, 30, 3484–3490. [Google Scholar] [CrossRef] [Green Version]
- Da’as, S.I.; Aamer, W.; Hasan, W.; Al-Maraghi, A.; Al-Kurbi, A.; Kilani, H.; AlRayahi, J.; Zamel, K.; Stotland, M.A.; Fakhro, K.A. PGAP3 Associated with Hyperphosphatasia with Mental Retardation Plays a Novel Role in Brain Morphogenesis and Neuronal Wiring at Early Development. Cells 2020, 9, 1782. [Google Scholar] [CrossRef]
- Consortium, G.P. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Exome, E.V.S.N.G. Sequencing Project (ESP); Exome Variant Server: Seattle, WA, USA, 2011; Available online: http://evs.gs.washington.edu/EVS/ (accessed on 22 January 2019).
- Jeffares, D.C.; Jolly, C.; Hoti, M.; Speed, D.; Shaw, L.; Rallis, C.; Balloux, F.; Dessimoz, C.; Bähler, J.; Sedlazeck, F.J. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 2017, 8, 14061. [Google Scholar] [CrossRef] [Green Version]
- Geoffroy, V.; Guignard, T.; Kress, A.; Gaillard, J.B.; Solli-Nowlan, T.; Schalk, A.; Gatinois, V.; Dollfus, H.; Scheidecker, S.; Muller, J. AnnotSV and knotAnnotSV: A web server for human structural variations annotations, ranking and analysis. Nucl. Acids Res. 2021, 49, W21–W28. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Kurbi, A.A.; Aliyev, E.; AlSa’afin, S.; Aamer, W.; Palaniswamy, S.; Al-Maraghi, A.; Kilani, H.; Akil, A.A.-S.; Stotland, M.A.; Fakhro, K.A. A Complex Intrachromosomal Rearrangement Disrupting IRF6 in a Family with Popliteal Pterygium and Van der Woude Syndromes. Genes 2023, 14, 849. https://doi.org/10.3390/genes14040849
Al-Kurbi AA, Aliyev E, AlSa’afin S, Aamer W, Palaniswamy S, Al-Maraghi A, Kilani H, Akil AA-S, Stotland MA, Fakhro KA. A Complex Intrachromosomal Rearrangement Disrupting IRF6 in a Family with Popliteal Pterygium and Van der Woude Syndromes. Genes. 2023; 14(4):849. https://doi.org/10.3390/genes14040849
Chicago/Turabian StyleAl-Kurbi, Alya A., Elbay Aliyev, Sana AlSa’afin, Waleed Aamer, Sasirekha Palaniswamy, Aljazi Al-Maraghi, Houda Kilani, Ammira Al-Shabeeb Akil, Mitchell A. Stotland, and Khalid A. Fakhro. 2023. "A Complex Intrachromosomal Rearrangement Disrupting IRF6 in a Family with Popliteal Pterygium and Van der Woude Syndromes" Genes 14, no. 4: 849. https://doi.org/10.3390/genes14040849
APA StyleAl-Kurbi, A. A., Aliyev, E., AlSa’afin, S., Aamer, W., Palaniswamy, S., Al-Maraghi, A., Kilani, H., Akil, A. A.-S., Stotland, M. A., & Fakhro, K. A. (2023). A Complex Intrachromosomal Rearrangement Disrupting IRF6 in a Family with Popliteal Pterygium and Van der Woude Syndromes. Genes, 14(4), 849. https://doi.org/10.3390/genes14040849