Estimation of Heritability under Correlated Errors Using the Full-Sib Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Two-Way Nested Model
2.2. Estimation of Heritability by Full-Sib Correlation
2.3. Correlated Case
2.4. Derivation of MSE for Full-Sib Model under Correlated Errors (AR(1))
3. Result and Discussion
3.1. Estimation of Heritability and MSE Values in Case of Correlated Errors (AR(1)) and Different Sample Sizes for the Different Parametric Values of Heritability
3.2. Estimation of Heritability and MSE Values in Case of Correlated Errors (AR(2)) and Different Sample Sizes for the Different Parametric Values of Heritability
3.3. Estimation of Heritability and MSE Values in Case of Correlated Errors (AR(1)) and Different Sample Sizes and Different Parametric Values Heritability Using Derived Formulae
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, M.; Vishwakarma, S.R.; Bhushan, B.; Kumar, A. Estimation of Genetic Parameters and Character Association in Barley (Hordeum Vulgare L.). J. Cereal Res. 2013, 5, 76–78. [Google Scholar]
- Falconer, D.S. Introduction to Quantitative Genetics. Longman Scientific and Technical, New York. In Introduction to Quantitative Genetics, 3rd ed.; Longman Scientific and Technical: New York, NY, USA, 1989. [Google Scholar]
- Roy, H.S.; Paul, A.K.; Paul, R.K.; Singh, R.K.; Yeasin, M.; Kumar, P. Estimation of Heritability of Karan Fries Cattle using Bayesian Procedure. Indian J. Anim. Sci. 2022, 92, 645–648. [Google Scholar] [CrossRef]
- Fisher, R.A. Statistical Methods for Research Workers. In Breakthroughs in Statistics; Springer: New York, NY, USA, 1992; pp. 66–70. [Google Scholar]
- Cochran, W.G. The Use of the Analysis of Variance in Enumeration by Sampling. J. Am. Stat. Assoc. 1939, 34, 492–510. [Google Scholar] [CrossRef]
- Henderson, C.R. Estimation of Variance and Covariance Components. Biometrics 1953, 9, 226–252. [Google Scholar] [CrossRef]
- Durbin, J.; Watson, G.S. Testing for Serial Correlation in Least Squares Regression: I. Biometrika 1950, 37, 409–428. [Google Scholar] [PubMed]
- Diblasi, A.; Bowman, A.W. On the Use of the Variogram in Checking for Independence in Spatial Data. Biometrics 2001, 57, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.O.; Bhatia, V.K.; Paul, A.K. Estimation of Variance Components When Errors Are Correlated by Autoregressive of Order One. J. Indian Soc. Agric. Stat. 2006, 60, 126–136. [Google Scholar]
- Costa, C.N.; Carvalheira, J.; Cobuci, J.A.; Freitas, A.F.; Thompson, G. Estimation of Genetic Parameters of Test Day Fat and Protein Yields in Brazilian Holstein Cattle Using an Autoregressive Multiple Lactation Animal Model. S. Afr. J. Anim. Sci. 2009, 39, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Orunmuyi, M.; Adeyinka, I.A.; Oni, O.O. Genetic parameter estimates (full sib and half sib analysis) of fertility and hatchability in two strains of Rhode Island Chickens. Niger. J. Anim. Prod. 2011, 38, 14–22. [Google Scholar] [CrossRef]
- Rameez, R.; Jahageerdar, S.; Chanu, T.I.; Jayaraman, J.; Bangera, R. Genetic variation among full-sib families and the effect of non-genetic factors on growth traits at harvest in Clarias magur (Hamilton, 1822). Aquac. Rep. 2020, 18, 100411. [Google Scholar] [CrossRef]
- Ødegård, J.; Meuwissen, T.H. Estimation of heritability from limited family data using genome-wide identity-by-descent sharing. Genet. Sel. Evol. 2012, 44, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estaghvirou, S.B.O.; Ogutu, J.O.; Piepho, H.-P. Influence of Outliers on Accuracy Estimation in Genomic Prediction in Plant Breeding. G3: Genes, Genomes. Genetics 2014, 4, 2317–2328. [Google Scholar]
- Lourenço, V.M.; Ogutu, J.O.; Piepho, H.-P. Robust Estimation of Heritability and Predictive Accuracy in Plant Breeding: Evaluation Using Simulation and Empirical Data. BMC Genom. 2020, 21, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodge, G.R.; Acosta, J.J. An Algorithm for Genetic Analysis of Full-Sib Datasets with Mixed-Model Software Lacking a Numerator Relationship Matrix Function, and a Comparison with Results from a Dedicated Genetic Software Package. Forests 2020, 11, 1169. [Google Scholar] [CrossRef]
- Prabhakaran, V.T.; Sharma, B.S. On Probability of Heritability Estimates from Full-Sib Analysis Exceeding Unity Based on Underlying Theoretical Distribution. Biom. J. 1994, 36, 341–352. [Google Scholar] [CrossRef]
- Marker, S.C.; Joshi, V.N. Estimation of genetic variance from full-sib and half-sib families in a maize (Zea mays L.) composite. Indian J. Genet. Plant 2005, 65, 180–183. [Google Scholar]
- Rönningen, K. Monte Carlo Simulation of Statistical-Biological Models Which Are of Interest in Animal Breeding. Acta Agric. 1974, 24, 135–142. [Google Scholar] [CrossRef]
Source | *d.f. | *MS | *E(M.S.) |
---|---|---|---|
Between Sires | s-1 | MSs | |
Between dams/sires | s(d-1) | MSd | |
Within Sires | sd(n-1) | MSe |
Methods | |||||||||
---|---|---|---|---|---|---|---|---|---|
r | Sample Size | ANOVA | ML | REML | MIVQUE | ||||
P = 500 | P = 100 | P = 500 | P = 100 | P = 500 | P = 100 | P = 500 | P = 100 | ||
−1 | MSE | 0.098271 −0.181885 | 0.0983139 −0.183327 | 0.0152324 0.0014007 | 0.0153534 0.0002801 | 0.0152362 0.0014926 | 0.0153524 0.0003057 | 0.0152362 0.0014926 | 0.0153524 0.0003057 |
MSE | 0.9578841 −0.383885 | 0.9598772 −0.383327 | 0.6379551 0.0015007 | 0.639591 0.0002901 | 0.6378347 0.0914926 | 0.6395554 0.0013057 | 0.6378347 0.001526 | 0.6395554 0.0023057 | |
MSE | 1.1207918 −0.28 8885 | 1.1210013 −0.283327 | 0.76337 0.0015307 | 0.765174 0.0003001 | 0.7632358 0.0024926 | 0.7651345 0.0004057 | 0.7632358 0.0014896 | 0.7651345 0.0013057 | |
−0.7 | MSE | 0.0379526 0.2647565 | 0.0389461 0.255177 | 0.0305571 0.2545453 | 0.0314585 0.2460257 | 0.0378693 0.2650561 | 0.0345774 0.2563335 | 0.0338693 0.2650561 | 0.0345774 0.2563335 |
MSE | 0.3046345 0.3947565 | 0.3145789 0.295177 | 0.3150439 0.2545453 | 0.3234633 0.2460257 | 0.3041462 0.2775056 | 0.3126467 0.2563335 | 0.3111462 0.3650561 | 0.3126467 0.2563335 | |
MSE | 0.390546 0.28257565 | 0.4019273 0..281551 | 0.4024871 0.2545453 | 0.4121844 0.2460257 | 0.3900127 0.2850567 | 0.3998217 0.2563335 | 0.3900127 0.2695561 | 0.3998217 0.2563335 | |
−0.5 | MSE | 0.1491833 0.5039313 | 0.1595625 0.4903359 | 0.1488045 0.4906877 | 0.1495852 0.4773262 | 0.1691833 0.5039313 | 0.1595402 0.4904137 | 0.1591833 0.5039313 | 0.1595402 0.4904137 |
MSE | 0.1125158 0.6037113 | 0.121275 0.5903359 | 0.1200414 0.5906877 | 0.128886 0.4773262 | 0.1125158 0.5139314 | 0.1211475 0.4904137 | 0.1125158 0.5989313 | 0.1211475 0.5904137 | |
MSE | 0.1625511 0.5145313 | 0.1733496 0.5090335 | 0.1720633 0.5986877 | 0.1829121 0.4773262 | 0.1625511 0.5239317 | 0.1732105 0.4904137 | 0.1625511 0.5187313 | 0.1732105 0.5104137 | |
−0.3 | MSE | 0.3455414 0.6860825 | 0.9612935 1.0813578 | 0.3284329 0.6711132 | 0.9270483 1.0635749 | 0.3455414 0.6860825 | 0.9612935 1.0813578 | 0.3455414 0.6860825 | 0.3612935 1.0813578 |
MSE | 0.0426168 0.8860825 | 0.1239811 1.5813578 | 0.0457459 0.6811132 | 0.1137773 2.0635882 | 0.0426168 0.9863581 | 0.1239811 2.0813578 | 0.0426168 0.6860825 | 0.1239811 2.0814579 | |
MSE | 0.0653294 0.8860825 | 0.0874024 1.0983578 | 0.0707039 0.6921132 | 0.0798661 1.5635231 | 0.0653294 0.7860831 | 0.0874024 1.6781359 | 0.0653294 0.6860825 | 0.0874024 1.3893576 | |
0 | MSE | 0.6271941 0.893568 | 0.603396 0.8764351 | 0.6014082 0.8769554 | 0.5783213 0.8599561 | 0.6271941 0.893568 | 0.603396 0.8764351 | 0.6271941 0.893478 | 0.603396 0.8764351 |
MSE | 0.043762 0.983568 | 0.0431264 1.8014351 | 0.0404352 0.8769554 | 0.0403303 1.8599332 | 0.043762 1.993535 | 0.0431264 1.8764345 | 0.043062 1.803216 | 0.0431264 1.8764321 | |
MSE | 0.0353518 0.895568 | 0.0372861 0.9884351 | 0.0345169 0.8769554 | 0.0369619 0.9599542 | 0.0353518 1.043569 | 0.0372861 0.9964323 | 0.035351 0.993568 | 0.0372861 0.9764363 | |
0.3 | MSE | 0.9853297 1.096046 | 0.9578041 1.0798574 | 0.9504265 1.0781632 | 0.9236276 1.0620805 | 0.9853297 1.096046 | 0.9578041 1.0798574 | 0.9453297 1.096046 | 0.9578041 1.0798574 |
MSE | 0.1281597 2.096046 | 0.1225202 1.1798574 | 0.117433 1.0791632 | 0.1123769 2.0620836 | 0.1281597 1.106046 | 0.1225202 1.0798574 | 0.1201597 1.066046 | 0.1225202 1.0798574 | |
MSE | 0.0893778 1.196046 | 0.0861666 1.1985741 | 0.0813335 1.07781632 | 0.0786898 1.5627685 | 0.0893778 1.119604 | 0.0861666 1.0798574 | 0.0853778 1.096046 | 0.0861666 1.0798574 | |
0.5 | MSE | 1.4527074 1.310457 | 1.4237997 1.2956129 | 1.4079084 1.2915827 | 1.379705 1.2768211 | 1.4527074 1.310457 | 1.4237997 1.2956129 | 1.4227074 1.310457 | 1.4237997 1.2956129 |
MSE | 0.3056672 1.810457 | 0.2968278 1.3956129 | 0.286385 1.2934827 | 0.2781384 2.2768342 | 0.3056672 2.315468 | 0.2968278 1.2956129 | 0.3056672 2.317894 | 0.3168278 1.2956129 | |
MSE | 0.2347236 1.420457 | 0.2281108 1.2985129 | 0.2182726 1.2978827 | 0.2122402 1.8768215 | 0.2347236 1.587567 | 0.2281108 1.2956129 | 0.2347236 1.657892 | 0.2381108 1.2956129 | |
0.7 | MSE | 2.5966888 1.7202475 | 2.5703997 1.7088652 | 2.5339041 1.7004875 | 2.5082108 1.6891521 | 2.5966888 1.7202475 | 2.5703997 1.7088652 | 2.5466888 1.7202475 | 2.5703997 1.7088652 |
MSE | 0.8956373 2.1202475 | 0.8847362 1.7288652 | 0.8595667 1.7004875 | 0.8491983 2.6891534 | 0.8956373 2.7202475 | 0.8847362 1.7088652 | 0.8756373 2.7292471 | 0.8847362 2.7088652 | |
MSE | 0.7632251 1.8902475 | 0.7540315 1.7788652 | 0.7301186 1.7004875 | 0.7214505 1.9891567 | 0.7632251 1.8802462 | 0.7540315 1.7088652 | 0.7432251 1.8892476 | 0.7540315 1.7988865 | |
1 | MSE | 6.7818181 2.7242263 | 6.8135921 2.78902 | 6.6974755 2.7078968 | 6.7295237 2.7127551 | 6.7818181 2.7242263 | 6.8135921 2.72902 | 6.7818181 2.7242263 | 6.8135921 2.72902 |
MSE | 3.7234494 2.9842263 | 3.7487426 2.9810223 | 3.6611832 2.8178968 | 3.6866634 3.7127583 | 3.7234494 3.7242973 | 3.7487426 3.756935 | 3.7234494 3.7242289 | 3.7487426 3.72673 |
Methods | |||||||||
---|---|---|---|---|---|---|---|---|---|
r | Sample Size | ANOVA | ML | REML | MIVQUE | ||||
P = 500 | P = 100 | P = 500 | P = 100 | P = 500 | P = 100 | P = 500 | P = 100 | ||
−1 | MSE | 0.4745049 0.072369 | 0.4821838 0.078842 | 0.3576657 0.0136716 | 0.3628984 0.0084092 | 0.3563739 0.0149473 | 0.3615089 0.0096753 | 0.3563739 0.0149473 | 0.3615089 0.0096753 |
MSE | 0.7696736 0.082369 | 0.7798103 0.088842 | 0.6201683 0.0336716 | 0.6273989 0.0184092 | 0.6183922 0.0299473 | 0.6255288 0.0196754 | 0.6183987 0.2149465 | 0.6255288 0.0296765 | |
MSE | 1.684612 0.080469 | 1.7002153 0.098842 | 1.4624506 0.0134716 | 1.4741249 0.0086092 | 1.4595972 0.0178647 | 1.4711857 0.0099975 | 1.4595972 0.0199478 | 1.4711857 0.0099798 | |
−0.7 | MSE | 0.0362448 0.5215111 | 0.0402199 0.501621 | 0.038248 0.5081017 | 0.0426125 0.4884681 | 0.0362448 0.5215111 | 0.0401717 0.5016599 | 0.0362448 0.5215111 | 0.0401717 0.5016599 |
MSE | 0.1059406 0.5675111 | 0.1174672 0.541621 | 0.1130348 0.5381017 | 0.1248533 0.4984681 | 0.1059406 0.9265113 | 0.1174041 0.9501659 | 0.1059406 1.5215784 | 0.1174041 1.5018753 | |
MSE | 0.5193806 0.5215111 | 0.5477033 0.531621 | 0.5377983 0.5181017 | 0.5661963 0.4804681 | 0.5193806 0.6289117 | 0.5476073 0.5516598 | 0.5193806 0.5900151 | 0.5476073 0.6016556 | |
−0.5 | MSE | 0.0754066 0.8097071 | 0.0878031 0.7851935 | 0.068745 0.7937283 | 0.0619276 0.7694161 | 0.0754066 0.8097071 | 0.0678031 0.7851935 | 0.0754066 0.8097071 | 0.0678031 0.7851935 |
MSE | 0.0356855 0.8397071 | 0.0373889 0.7951935 | 0.0350905 0.8937283 | 0.0375035 0.794161 | 0.0356855 0.8697071 | 0.0373889 1.1125193 | 0.0356855 1.6797895 | 0.0373889 1.4851989 | |
MSE | 0.20576 0.8497071 | 0.2281638 0.7871935 | 0.2186582 0.8537283 | 0.2416015 0.8694161 | 0.20576 0.8597071 | 0.2281638 0.7981934 | 0.20576 0.895432 | 0.2281638 0.8964321 | |
−0.3 | MSE | 0.2017277 1.0127343 | 0.1839696 0.986424 | 0.1875438 0.9953401 | 0.170756 0.9692075 | 0.2017277 1.0127343 | 0.1839696 0.986424 | 0.2017277 1.0127343 | 0.1839696 0.986424 |
MSE | 0.0849251 1.043343 | 0.077156 1.786424 | 0.0773452 0.9953401 | 0.0704789 0.9692075 | 0.0849251 2.0127363 | 0.077156 1.999427 | 0.0849251 2.0127376 | 0.077156 1.186421 | |
MSE | 0.0835544 1.0537343 | 0.0980029 0.9996424 | 0.0906629 0.9953401 | 0.1058641 0.9692075 | 0.0835544 1.3127347 | 0.0980029 0.9964398 | 0.0835544 1.0887344 | 0.0980029 0.999421 | |
0 | MSE | 0.4109657 1.2165893 | 0.3847571 1.191063 | 0.3884926 1.1981041 | 0.3633111 1.1727144 | 0.4109657 1.2165893 | 0.3847571 1.191063 | 0.4109657 1.2165893 | 0.3847571 1.191063 |
MSE | 0.2167674 1.3165812 | 0.2002501 2.191063 | 0.2013123 1.1981041 | 0.1857704 1.1727144 | 0.2167674 2.2165887 | 0.2002501 2.191026 | 0.2167674 2.2165894 | 0.2002501 2.191066 | |
MSE | 0.0432525 1.4165833 | 0.0482907 1.291063 | 0.0434071 1.1981041 | 0.0493054 1.1727144 | 0.0432525 1.3465875 | 0.0482907 1.401069 | 0.0432525 1.3965896 | 0.0482907 1.291061 | |
0.3 | MSE | 0.6359402 1.3780468 | 0.6090954 1.3566075 | 0.6066396 1.3589356 | 0.5806974 1.3375917 | 0.6359402 1.3780468 | 0.6090954 1.3566075 | 0.6359402 1.3780468 | 0.6090954 1.3566075 |
MSE | 0.3804428 1.4280464 | 0.3617376 2.3566075 | 0.358398 1.3589356 | 0.3405591 1.3375917 | 0.3804428 2.3780445 | 0.3617376 2.3566075 | 0.3804428 2.3786732 | 0.3617376 2.4560985 | |
MSE | 0.070586 1.4480321 | 0.0699851 1.4566075 | 0.0646795 1.3589356 | 0.0648645 1.3375917 | 0.070586 1.4380473 | 0.0699851 1.4076607 | 0.070586 1.978046 | 0.0699851 1.4568347 | |
0.5 | MSE | 0.910936 1.5387524 | 0.8871555 1.5216589 | 0.8748306 1.5192238 | 0.8518017 1.5021967 | 0.910936 1.5387524 | 0.8871555 1.5216589 | 0.910936 1.5387524 | 0.8871555 1.5216589 |
MSE | 0.5944249 1.6387524 | 0.5771342 2.5216545 | 0.5657337 2.5192238 | 0.5491693 2.5021967 | 0.5944249 2.5387524 | 0.5771342 2.5213583 | 0.5944249 2.5387556 | 0.5771342 2.5216554 | |
MSE | 0.1488611 1.5688752 | 0.1460049 1.5983481 | 0.1366608 1.6192238 | 0.1344748 1.6421967 | 0.1488611 1.6587524 | 0.1460049 1.8212567 | 0.1488611 1.7687528 | 0.1460049 1.7216521 | |
0.7 | MSE | 1.6325969 1.8683506 | 1.6172951 1.8580999 | 1.5833143 1.848602 | 1.5685335 1.8383872 | 1.6325969 1.8683506 | 1.6172951 1.8580999 | 1.6325969 1.8683506 | 1.6172951 1.8580999 |
MSE | 1.1909502 1.8883506 | 1.1795402 2.8580912 | 1.1491653 2.848602 | 1.1382628 2.8383872 | 1.1909502 2.8683513 | 1.1795402 2.8580999 | 1.1909502 2.8683507 | 1.1795402 2.8580991 | |
MSE | 0.4670591 1.8553506 | 0.4643053 1.8980991 | 0.4419508 1.899863 | 0.4396741 1.8999872 | 0.4670591 1.8989508 | 0.4643053 1.8980999 | 0.4670591 1.8983502 | 0.4643053 1.8980993 | |
1 | MSE | 4.612573 2.7529176 | 4.6506737 2.7603397 | 4.5441372 2.7368118 | 4.5824519 2.744318 | 4.612573 2.7529176 | 4.6506737 2.7603397 | 4.612573 2.7529176 | 4.6506737 2.7603397 |
MSE | 3.8350907 2.9529176 | 3.8703735 3.7603366 | 3.7727696 3.7368116 | 3.8082345 2.744318 | 3.8350907 3.7529112 | 3.8703735 3.7603345 | 3.8350907 3.7529171 | 3.8703735 3.7603332 | |
MSE | 2.3642319 2.8529176 | 2.3932471 2.7897323 | 2.3155112 2.7868112 | 2.3446376 2.744318 | 2.3642319 2.9529178 | 2.3932471 2.9803332 | 2.3642319 2.9529173 | 2.3932471 2.8903393 |
Methods | |||||||||
---|---|---|---|---|---|---|---|---|---|
ANOVA | ML | REML | MIVQUE | ||||||
Sample Size | P = 500 | P = 100 | P = 100 | P = 500 | P = 500 | P = 100 | P = 500 | P = 100 | |
Rc1 = −1 Rc2 = −1 | MSE1 | 0.159 −0.247 | 0.157 −0.231 | 0.015 0.005 | 0.014 0.009 | 0.015 0.010 | 0.013 0.017 | 0.018 0.017 | 0.017 0.015 |
MSE2 | 17.018 4.247 | 16.899 4.231 | 14.989 3.996 | 14.956 3.991 | 14.945 3.989 | 14.895 3.983 | 14.895 3.983 | 14.895 3.983 | |
MSE3 | 3.519 2.5 | 3.324 2.4 | 3.654 2.6 | 3.519 2.7 | 3.543 2.8 | 3.512 2.4 | 3.588 2.6 | 3.467 2.2 | |
Rc1 = −1 Rc2 = −0.5 | MSE1 | 0.122 −0.168 | 0.120 −0.151 | 0.015 0.014 | 0.0169 0.025 | 0.016 0.029 | 0.021 0.044 | 0.021 0.044 | 0.021 0.044 |
MSE2 | 16.392 4.168 | 16.273 4.151 | 14.915 3.986 | 14.835 3.975 | 14.809 3.972 | 14.698 3.956 | 14.698 3.956 | 14.697 3.956 | |
MSE3 | 3.519 2.7 | 3.123 2.6 | 3.413 2.5 | 3.351 2.6 | 3.567 2.7 | 3.534 2.2 | 3.619 2.5 | 3.519 2.3 | |
Rc1 = 0 Rc2 = −0.5 | MSE1 | 0.085 0.049 | 0.085 0.049 | 0.024 0.087 | 0.022 0.082 | 0.042 0.138 | 0.042 0.138 | 0.042 0.138 | 0.042 0.138 |
MSE2 | 14.723 3.951 | 14.722 3.942 | 14.379 3.912 | 14.379 3.913 | 14.014 3.862 | 14.012 3.762 | 14.014 3.866 | 14.011 3.862 | |
MSE3 | 3.519 2.5 | 3.319 2.3 | 3.534 2.8 | 3.519 2.6 | 3.546 2.5 | 3.522 2.1 | 3.523 2.8 | 3.509 2.6 | |
Rc1 = 0 Rc2 = 0.5 | MSE1 | 0.104 0.103 | 0.103 0.103 | 0.038 0.117 | 0.037 0.114 | 0.064 0.181 | 0.063 0.180 | 0.064 0.181 | 0.062 0.179 |
MSE2 | 14.339 3.897 | 14.335 3.892 | 14.169 3.883 | 14.166 3.881 | 13.717 3.819 | 13.713 3.812 | 13.715 3.819 | 13.712 3.813 | |
MSE3 | 3.519 2.4 | 3.565 2.2 | 3.654 2,3 | 3.542 2.1 | 3.519 2.4 | 3.322 2.2 | 3.632 2.8 | 3.519 2.6 | |
Rc1 = 1 Rc2 = 0.5 | MSE1 | 2.996 1.674 | 2.357 1.783 | 2.387 1.484 | 2.225 1.340 | 2.995 1.677 | 2.357 1.434 | 3.357 1.784 | 3.257 1.674 |
MSE2 | 5.444 2.326 | 4.989 2.217 | 6.261 2.516 | 5.803 2.410 | 5.419 2.323 | 4.975 2.216 | 4.975 2.245 | 4.655 2.216 | |
MSE3 | 3.519 2.6 | 3.521 2.5 | 3.996 2.4 | 3.987 2.1 | 3.874 2.5 | 3.765 2.3 | 3.519 2.8 | 3.432 2.5 |
Methods | |||||||||
---|---|---|---|---|---|---|---|---|---|
ANOVA | ML | REML | MIVQUE | ||||||
Sample Size | P = 100 | P = 500 | P = 100 | P = 500 | P = 100 | P = 500 | P = 100 | P = 500 | |
Rc1 = −1 Rc2 = −1 | MSE1 | 0.4721 | 0.5050 | 0.3202 | 0.3162 | 0.3003 | 0.2968 | 0.3003 | 0.2968 |
−0.0169 | −0.0185 | 0.0650 | 0.0801 | 0.1002 | 0.1201 | 0.1002 | 0.1201 | ||
MSE2 | 11.6848 | 11.7266 | 11.0776 | 10.9896 | 10.8617 | 10.7475 | 10.8617 | 10.7475 | |
4.0169 | 4.0185 | 3.9350 | 3.9199 | 3.8998 | 3.8799 | 3.8998 | 3.8799 | ||
MSE3 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | |
2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | ||
Rc1 = −1 Rc2 = −0.5 | MSE1 | 0.3453 | 0.3923 | 0.2758 | 0.2771 | 0.2509 | 0.2592 | 0.2509 | 0.2592 |
0.1352 | 0.1244 | 0.1379 | 0.1522 | 0.2004 | 0.2144 | 0.2004 | 0.2144 | ||
MSE2 | 10.713 | 10.8194 | 10.628 | 10.5494 | 10.2557 | 10.186 | 10.256 | 10.186 | |
3.8648 | 3.8756 | 3.8621 | 3.8478 | 3.7996 | 3.7856 | 3.7996 | 3.7856 | ||
MSE3 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | |
2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | ||
Rc1 = 0 Rc2 = −0.5 | MSE1 | 0.2096 | 0.2908 | 0.1715 | 0.2235 | 0.1859 | 0.2490 | 0.1859 | 0.2490 |
0.0492 | 0.5069 | 0.0871 | 0.4161 | 0.1381 | 0.5358 | 0.1381 | 0.5358 | ||
MSE2 | 8.3297 | 8.5912 | 8.9155 | 9.0288 | 8.2115 | 8.3888 | 8.2115 | 8.3888 | |
3.9508 | 3.4931 | 3.9129 | 3.5839 | 3.8619 | 3.4642 | 3.8619 | 3.4642 | ||
MSE3 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | |
2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | ||
Rc1 = 0 Rc2 = 0.5 | MSE1 | 0.2234 | 0.2985 | 0.1762 | 0.2259 | 0.2030 | 0.2633 | 0.2030 | 0.2633 |
0.5394 | 0.5610 | 0.4271 | 0.4595 | 0.5564 | 0.5854 | 0.5564 | 0.5854 | ||
MSE2 | 8.0183 | 8.2985 | 8.6523 | 8.7898 | 7.9191 | 8.1274 | 7.9191 | 8.1274 | |
3.4606 | 3.4390 | 3.5729 | 3.5405 | 3.4436 | 3.4146 | 3.4436 | 3.4146 | ||
MSE3 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | |
2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | ||
Rc1 = 1 Rc2 = 0.5 | MSE1 | 0.2234 | 2.2715 | 0.1762 | 1.7873 | 0.2030 | 2.2703 | 0.2030 | 2.2703 |
0.5979 | 1.9059 | 0.4753 | 1.7112 | 0.6121 | 1.9068 | 0.6121 | 1.9068 | ||
MSE2 | 8.0183 | 2.7949 | 8.6523 | 3.3928 | 7.9191 | 2.7882 | 7.9191 | 2.7882 | |
3.4021 | 2.0941 | 3.5247 | 2.2888 | 3.3879 | 2.0932 | 3.3879 | 2.0932 | ||
MSE3 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | 1.9316 | |
2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 | 2.0000 |
r | Q | E(MSE) | E(MSB) | E(MSA) | |||
---|---|---|---|---|---|---|---|
−1 | 0 | 0 | 1.28 | 1.7309 | 0.154135 | 3.845865 | 2 |
−0.9 | 0.52631 | 0.078947 | 1.358947 | 1.809847 | 0.118183 | 2.948807 | 1.533495 |
−0.8 | 0.55556 | 0.083334 | 1.363334 | 1.814234 | 0.11667 | 2.91107 | 1.51387 |
−0.7 | 0.58824 | 0.088236 | 1.368236 | 1.819136 | 0.115026 | 2.870035 | 1.49253 |
−0.6 | 0.625 | 0.09375 | 1.37375 | 1.82465 | 0.11323 | 2.825237 | 1.469233 |
−0.5 | 0.66667 | 0.100001 | 1.380001 | 1.830901 | 0.111262 | 2.776117 | 1.443689 |
−0.4 | 0.71429 | 0.107144 | 1.387144 | 1.838044 | 0.109094 | 2.722034 | 1.415564 |
−0.3 | 0.76923 | 0.115385 | 1.395385 | 1.846285 | 0.106696 | 2.662198 | 1.384447 |
−0.2 | 0.83333 | 0.125 | 1.405 | 1.8559 | 0.104028 | 2.595628 | 1.349828 |
−0.1 | 0.90909 | 0.136364 | 1.416364 | 1.867264 | 0.101042 | 2.521118 | 1.31108 |
0 | 1 | 0.15 | 1.43 | 1.8809 | 0.100012 | 2.437167 | 1.267422 |
0.1 | 1.11111 | 0.166667 | 1.446667 | 1.897567 | 0.093857 | 2.341857 | 1.217857 |
0.2 | 1.25 | 0.1875 | 1.4675 | 1.9184 | 0.089483 | 2.232712 | 1.161098 |
0.3 | 1.42857 | 0.214286 | 1.494286 | 1.945186 | 0.084424 | 2.106489 | 1.095457 |
0.4 | 1.66667 | 0.250001 | 1.530001 | 1.980901 | 0.078506 | 1.958832 | 1.018669 |
0.5 | 2 | 0.3 | 1.58 | 2.0309 | 0.071491 | 1.783786 | 0.927638 |
0.6 | 2.5 | 0.375 | 1.655 | 2.1059 | 0.063041 | 1.572941 | 0.817991 |
0.7 | 3.33333 | 0.5 | 1.78 | 2.2309 | 0.052665 | 1.314068 | 0.683367 |
0.8 | 5 | 0.75 | 2.03 | 2.4809 | 0.039623 | 0.988646 | 0.514135 |
0.9 | 9.99997 | 1.499996 | 2.779996 | 3.230896 | 0.022734 | 0.567233 | 0.294983 |
1 | 122 | 18.3 | 19.58 | 20.0309 | 0.002155 | 0.053776 | 0.027965 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paul, A.K.; Roy, H.S.; Paul, R.K.; Kumar, P.; Yeasin, M. Estimation of Heritability under Correlated Errors Using the Full-Sib Model. Genes 2023, 14, 788. https://doi.org/10.3390/genes14040788
Paul AK, Roy HS, Paul RK, Kumar P, Yeasin M. Estimation of Heritability under Correlated Errors Using the Full-Sib Model. Genes. 2023; 14(4):788. https://doi.org/10.3390/genes14040788
Chicago/Turabian StylePaul, Amrit Kumar, Himadri Shekhar Roy, Ranjit Kumar Paul, Prakash Kumar, and Md Yeasin. 2023. "Estimation of Heritability under Correlated Errors Using the Full-Sib Model" Genes 14, no. 4: 788. https://doi.org/10.3390/genes14040788