Comparing Gene Panels for Non-Retinal Indications: A Systematic Review
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pulido, J.S.; Procopio, R.; Davila, H.J.; Bello, N.; Ku, C.; Pennesi, M.E.; Yang, P.; Nagiel, A.; Mahroo, O.A.; Aleman, T.S.; et al. Inherited Retinal Disease Panels—Caveat Emptor —Truly Know Your Inherited Retinal Disease Panel. Retina 2022, 42, 1–3. [Google Scholar] [CrossRef]
- Stone, E.M.; Andorf, J.L.; Whitmore, S.S.; DeLuca, A.P.; Giacalone, J.C.; Streb, L.M.; Braun, T.A.; Mullins, R.F.; Scheetz, T.E.; Sheffield, V.C.; et al. Clinically Focused Molecular Investigation of 1000 Consecutive Families with Inherited Retinal Disease. Ophthalmology 2017, 124, 1314–1331. [Google Scholar] [CrossRef]
- Concert Genetics. Available online: https://www.concertgenetics.com (accessed on 21 September 2022).
- Available online: bioinformatics.psb.ugent.be (accessed on 21 September 2022).
- Szcześniak, M.W.; Kabza, M.; Karolak, J.A.; Rydzanicz, M.; Nowak, D.M.; Ginter-Matuszewska, B.; Polakowski, P.; PLoSki, R.; Szaflik, J.P.; Gajecka, M. KTCNlncDB-a first platform to investigate lncRNAs expressed in human keratoconus and non-keratoconus corneas. Database 2017, 2017, baw168. [Google Scholar] [CrossRef] [Green Version]
- Hamosh, A.; Scott, A.F.; Amberger, J.; Valle, D.; McKusick, V.A. Online Mendelian Inheritance in Man (OMIM). Hum. Mutat. 2000, 15, 57–61. [Google Scholar] [CrossRef]
- Aldave, A.J.; Han, J.; Frausto, R.F. Genetics of the corneal endothelial dystrophies: An evidence-based review. Clin. Genet. 2013, 84, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Vithana, E.N.; Morgan, P.E.; Ramprasad, V.; Tan, D.T.H.; Yong, V.H.K.; Venkataraman, D.; Venkatraman, A.; Yam, G.H.F.; Nagasamy, S.; Law, R.W.K.; et al. SLC4A11 mutations in Fuchs endothelial corneal dystrophy. Hum. Mol. Genet. 2008, 17, 656–666. [Google Scholar] [CrossRef]
- Chung, D.W.D.; Frausto, R.F.; Ann, L.B.; Jang, M.S.; Aldave, A.J. Functional impact of ZEB1 mutations associated with posterior polymorphous and fuchs’ endothelial corneal dystrophies. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6159–6166. [Google Scholar] [CrossRef] [Green Version]
- Liskova, P.; Prescott, Q.; Bhattacharya, S.S.; Tuft, S.J. British family with early-onset Fuchs’ endothelial corneal dystrophy associated with p.L450W mutation in the COL8A2 gene. Br. J. Ophthalmol. 2007, 91, 1717–1718. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, N.S.; Poulsen, E.T.; Lukassen, M.V.; Chao Shern, C.; Mogensen, E.H.; Weberskov, C.E.; DeDionisio, L.; Schauser, L.; Moore, T.C.B.; Otzen, D.E.; et al. Biochemical mechanisms of aggregation in TGFBI-linked corneal dystrophies. Prog. Retin. Eye Res. 2020, 77, 100843. [Google Scholar] [CrossRef]
- Alsubait, A.; Aldossary, W.; Rashid, M.; Algamdi, A.; Alrfaei, B.M. CYP1B1 gene: Implications in glaucoma and cancer. J. Cancer 2020, 11, 4652–4661. [Google Scholar] [CrossRef]
- Mookherjee, S.; Acharya, M.; Banerjee, D.; Bhattacharjee, A.; Ray, K. Molecular Basis for Involvement of CYP1B1 in MYOC Upregulation and Its Potential Implication in Glaucoma Pathogenesis. PLoS ONE 2012, 7, e45077. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhu, L.; Liu, J.; Huang, H.; Guo, H.; Wang, L.; Li, L.; Gu, S.; Tan, J.; Zhong, J.; et al. Loss of FOXC1 contributes to the corneal epithelial fate switch and pathogenesis. Signal Transduct. Target. Ther. 2021, 6, 5. [Google Scholar] [CrossRef]
- Katoh, M.; Katoh, M. Human FOX gene family (Review). Int. J. Oncol. 2004, 25, 1495–1500. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, L.; He, L.; Cao, M.; Yang, Y.; Duan, X.; Shi, J.; Liu, K. A PITX2 splice-site mutation in a family with Axenfeld-Rieger syndrome leads to decreased expression of nuclear PITX2 protein. Int. Ophthalmol. 2021, 41, 503–1511. [Google Scholar] [CrossRef]
- Cunha, D.L.; Arno, G.; Corton, M.; Moosajee, M. The spectrum of PAX6 mutations and genotype-phenotype correlations in the eye. Genes 2019, 10, 1050. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.; Rudkin, A.; Parry, D.A.; Burdon, K.P.; McKibbin, M.; Logan, C.V.; Abdelhamed, Z.I.A.; Muecke, J.S.; Fernandez-Fuentes, N.; Laurie, K.J.; et al. Homozygous mutations in PXDN cause congenital cataract, corneal opacity, and developmental glaucoma. Am. J. Hum. Genet. 2011, 89, 464–473. [Google Scholar] [CrossRef]
- Gallus, G.N.; Dotti, M.T.; Federico, A. Clinical and molecular diagnosis of cerebrotendinous xanthomatosis with a review of the mutations in the CYP27A1 gene. Neurol. Sci. 2006, 27, 143–149. [Google Scholar] [CrossRef]
- Sasamura, A.; Akazawa, S.; Haraguchi, A.; Horie, I.; Ando, T.; Abiru, N.; Takei, H.; Nittono, H.; Une, M.; Kurosawa, T.; et al. Late-onset cerebrotendinous xanthomatosis with a novel mutation in the CYP27A1 gene. Intern. Med. 2018, 57, 1611–1616. [Google Scholar] [CrossRef] [Green Version]
- Daenzer, J.M.I.; Rasmussen, S.A.; Patel, S.; McKenna, J.; Fridovich-Keil, J.L. Neonatal GALT gene replacement offers metabolic and phenotypic correction through early adulthood in a rat model of classic galactosemia. J. Inherit. Metab. Dis. 2022, 45, 203–214. [Google Scholar] [CrossRef]
- Wang, X.; Wang, D.; Wang, Q.; Huang, W.; Dongye, M.; Zhang, X.; Lin, D.; Lin, Z.; Li, J.; Hu, W.; et al. Broadening the Mutation Spectrum in GJA8 and CHMP4B: Novel Missense Variants and the Associated Phenotypes in Six Chinese Han Congenital Cataracts Families. Front. Med. 2021, 8, 713284. [Google Scholar] [CrossRef]
- Martin, S.; Richards, A.J.; Yates, J.R.W.; Scott, J.D.; Pope, M.; Snead, M.P. Stickler syndrome: Further mutations in COL11A1 and evidence for additional locus heterogeneity. Eur. J. Hum. Genet. 1999, 7, 807–814. [Google Scholar] [CrossRef]
- Brizola, E.; Gnoli, M.; Tremosini, M.; Nucci, P.; Bargiacchi, S.; La Barbera, A.; Giglio, S.; Sangiorgi, L. Variable clinical expression of Stickler Syndrome: A case report of a novel COL11A1 mutation. Mol. Genet. Genom. Med. 2020, 8, e1353. [Google Scholar] [CrossRef]
- Acke, F.R.; Malfait, F.; Vanakker, O.M.; Steyaert, W.; De Leeneer, K.; Mortier, G.; Dhooge, I.; De Paepe, A.; De Leenheer, E.M.R.; Coucke, P.J. Novel pathogenic COL11A1/COL11A2 variants in Stickler syndrome detected by targeted NGS and exome sequencing. Mol. Genet. Metab. 2014, 113, 230–235. [Google Scholar] [CrossRef]
- Yahalom, C.; Macarov, M.; Lazer-Derbeko, G.; Altarescu, G.; Imbar, T.; Hyman, J.H.; Eldar-Geva, T.; Blumenfeld, A. Preimplantation genetic diagnosis as a strategy to prevent having a child born with an heritable eye disease. Ophthalmic Genet. 2018, 39, 450–456. [Google Scholar] [CrossRef]
- Kodsi, S.R.; Bristow, S.L.; Fox, J.E.; Hershlag, A. Prevention of Leber congenital amaurosis through preimplantation genetic diagnosis. J. AAPOS 2018, 22, 240–242. [Google Scholar] [CrossRef]
- Drack, A.V.; Lambert, S.R.; Stone, E.M. From the Laboratory to the Clinic: Molecular Genetic Testing in Pediatric Ophthalmology. Am. J. Ophthalmol. 2010, 149, 10–17.e2. [Google Scholar] [CrossRef] [Green Version]
- NCT02097134. Available online: https://clinicaltrials.gov/ct2/show/record/NCT02097134 (accessed on 5 August 2020).
Phenotype | Associated Gene | Included on How Many Panels % (N of Total Panels Compared) |
---|---|---|
Autosomal dominant optic atrophy | OPA1 | 100% (3) |
Leber hereditary optic neuropathy | MT-ATP6 MT-CO1 MT-CO3 MT-CYB MT-ND1 MT-ND2 MT-ND4 MT-ND4L MT-ND5 MT-ND6 | 100% (2 that list specific mito genes) |
Keratoconus | VSX1 | 75% (4) |
Fuchs endothelial dystrophy | SLC4A11 ZEB1 AGBL1 COL8A2 | 100% (4) 100% (4) 75% (4) 100% (4) |
Lattice corneal dystrophy—type 1 Avellino Reis–Bucklers | TGFB1 | 100% (4) |
Congenital glaucoma | CYP1B1 MYOC | 100% (4) 100% (4) |
Primary open-angle glaucoma | OPTN | 100% (4) |
Anterior segment dysgenesis 1/Peters anomaly | PITX3 | 50% (4) |
Anterior segment dysgenesis 2/congenital primary aphakia | FOXE3 | 100% (4) |
Anterior segment dysgenesis 3/iridogoniodysgenesis, Peters anomaly, Axenfeld anomaly, and Rieger anomaly | FOXC1 | 50% (4) |
Anterior segment dysgenesis 4/iridogoniodysgenesis or Peters anomaly | PITX2 | 50% (4) |
Anterior segment dysgenesis 5/aniridia, Axenfeld and Rieger anomalies, iridogoniodysgenesis, Peters anomaly, and posterior embryotoxon | PAX 6 | 100% (4) |
Anterior segment dysgenesis 6/Peters anomaly | CYP1B1 | 50% (4) |
Anterior segment dysgenesis 7 | PXDN | 75% (4) |
Cerebrotendinous xanthomatosis | CYP27A1 | 80% (5) |
Galactosemia | GALT | 60% (5) |
Cataracts/glaucoma | GJA8 | 100% (5) |
COL11A1 Stickler syndrome | COL11A1 | 80% (5) |
Infantile nystagmus | FRMD7 | 100% (3) |
Phenotype | Commercial Panel # | Accuracy of Deletions | Accuracy of Insertions/Rearrangements | Accuracy of Copy Number Variants |
---|---|---|---|---|
Optic atrophy | 1 | Deletions > 10 base pairs are >99% reliable | Insertions or rearrangements > 10 base pairs are >99% reliable | No data |
2 | Deletions > 10 base pairs are >99% reliable | Insertions or rearrangements > 10 base pairs are >99% reliable | No data | |
3 | No data | No data | No data | |
Corneal dystrophy | 1 | No data | No data | No data |
2 | No data | No data | No data | |
3 | Deletions > 10 base pairs are >99% reliable | Insertions or rearrangements > 10 base pairs are >99% reliable | No data | |
Glaucoma | 1 | >99% accuracy for deletions < 15 bp in length | >99% accuracy for insertions < 15 bp in length | No data |
2 | No data | No data | No data | |
3 | Deletions > 20 base pairs are not reliable | Insertions or rearrangements > 10 base pairs are not reliable | Copy number variants < 500 base pairs are not reliable | |
4 | Deletions > 10 base pairs are >99% reliable | Insertions or rearrangements > 10 base pairs are >99% reliable | No data | |
Anterior segment dysgenesis | 1 | Deletions > 10 base pairs are >99% reliable | Insertions or rearrangements > 10 base pairs are >99% reliable | No data |
2 | Deletions > 20 base pairs are not reliable | Insertions or rearrangements > 10 base pairs are not reliable | Copy number variants < 500 base pairs are not reliable | |
3 | >99% accuracy for deletions < 15 bp in length | >99% accuracy for insertions < 15 bp in length | No data | |
4 | No data | No data | No data | |
Cataracts | 1 | Deletions > 10 base pairs are >99% reliable | Insertions or rearrangements > 10 base pairs are >99% reliable | No data |
2 | Deletions > 20 base pairs are not reliable | Insertions or rearrangements >10 base pairs are not reliable | Copy number variants < 500 base pairs are not reliable | |
3 | >99% accuracy for deletions < 15 bp in length | >99% accuracy for insertions < 15 bp in length | No data | |
4 | No data | No data | No data | |
5 | No data | No data | No data | |
Nystagmus | 1 | Deletions > 20 base pairs are not reliable | Insertions or rearrangements >10 base pairs are not reliable | Copy number variants < 500 base pairs are not reliable |
2 | Deletions > 10 base pairs are >99% reliable | Insertions or rearrangements > 10 base pairs are >99% reliable | No data | |
3 | No data | No data | No data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Procopio, R.; Pulido, J.S.; Gunton, K.B.; Syed, Z.A.; Lee, D.; Moster, M.L.; Sergott, R.; Neidich, J.A.; Reynolds, M.M. Comparing Gene Panels for Non-Retinal Indications: A Systematic Review. Genes 2023, 14, 738. https://doi.org/10.3390/genes14030738
Procopio R, Pulido JS, Gunton KB, Syed ZA, Lee D, Moster ML, Sergott R, Neidich JA, Reynolds MM. Comparing Gene Panels for Non-Retinal Indications: A Systematic Review. Genes. 2023; 14(3):738. https://doi.org/10.3390/genes14030738
Chicago/Turabian StyleProcopio, Rebecca, Jose S. Pulido, Kammi B. Gunton, Zeba A. Syed, Daniel Lee, Mark L. Moster, Robert Sergott, Julie A. Neidich, and Margaret M. Reynolds. 2023. "Comparing Gene Panels for Non-Retinal Indications: A Systematic Review" Genes 14, no. 3: 738. https://doi.org/10.3390/genes14030738
APA StyleProcopio, R., Pulido, J. S., Gunton, K. B., Syed, Z. A., Lee, D., Moster, M. L., Sergott, R., Neidich, J. A., & Reynolds, M. M. (2023). Comparing Gene Panels for Non-Retinal Indications: A Systematic Review. Genes, 14(3), 738. https://doi.org/10.3390/genes14030738