Special Issue “Parkinson’s Disease: Genetics and Pathogenesis”
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jia, F.; Fellner, A.; Kumar, K.R. Monogenic Parkinson’s Disease: Genotype, Phenotype, Pathophysiology, and Genetic Testing. Genes 2022, 13, 471. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, I.; Martinez-Carrasco, A.; Cornejo-Olivas, M.; Bandres-Ciga, S. Mapping the Diverse and Inclusive Future of Parkinson’s Disease Genetics and Its Widespread Impact. Genes 2021, 12, 1681. [Google Scholar] [CrossRef] [PubMed]
- Global Parkinson’s Genetics Program. GP2: The Global Parkinson’s Genetics Program. Mov. Disord. 2021, 36, 842–851. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Daadi, E.W.; Oh, T.; Daadi, E.S.; Daadi, M.M. Human Induced Pluripotent Stem Cell Phenotyping and Preclinical Modeling of Familial Parkinson’s Disease. Genes 2022, 13, 1937. [Google Scholar] [CrossRef] [PubMed]
- Mangone, G.; Houot, M.; Gaurav, R.; Boluda, S.; Pyatigorskaya, N.; Chalancon, A.; Seilhean, D.; Prigent, A.; Lehéricy, S.; Arnulf, I.; et al. Relationship between Substantia Nigra Neuromelanin Imaging and Dual Alpha-Synuclein Labeling of Labial Minor in Salivary Glands in Isolated Rapid Eye Movement Sleep Behavior Disorder and Parkinson’s Disease. Genes 2022, 13, 1715. [Google Scholar] [CrossRef] [PubMed]
- Usenko, T.; Bezrukova, A.; Basharova, K.; Panteleeva, A.; Nikolaev, M.; Kopytova, A.; Miliukhina, I.; Emelyanov, A.; Zakharova, E.; Pchelina, S. Comparative Transcriptome Analysis in Monocyte-Derived Macrophages of Asymptomatic GBA Mutation Carriers and Patients with GBA-Associated Parkinson’s Disease. Genes 2021, 12, 1545. [Google Scholar] [CrossRef] [PubMed]
- Pantaleo, E.; Monaco, A.; Amoroso, N.; Lombardi, A.; Bellantuono, L.; Urso, D.; Lo Giudice, C.; Picardi, E.; Tafuri, B.; Nigro, S.; et al. Machine Learning Approach to Parkinson’s Disease Blood Transcriptomics. Genes 2022, 13, 727. [Google Scholar] [CrossRef] [PubMed]
- Prasuhn, J.; Brüggemann, N. Gene Therapeutic Approaches for the Treatment of Mitochondrial Dysfunction in Parkinson’s Disease. Genes 2021, 12, 1840. [Google Scholar] [CrossRef] [PubMed]
- Lanore, A.; Lesage, S.; Mariani, L.L.; Menon, P.J.; Ravassard, P.; Cheval, C.; Corti, O.; Brice, A.; Corvol, J.C. Does the Expression and Epigenetics of Genes Involved in Monogenic Forms of Parkinson’s Disease Influence Sporadic Forms? Genes 2022, 13, 479. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.; Nalls, M.A.; Hallgrímsdóttir, I.B.; Hunkapiller, J.; van der Brug, M.; Cai, F.; International Parkinson’s Disease Genomics Consortium; 23andMe Research Team; Kerchner, G.A.; Ayalon, G.; et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat. Genet. 2017, 49, 1511–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, S.; Park, K.W.; Hwang, Y.S.; Lee, S.H.; Ryu, H.S.; Chung, S.J. Microarray Genotyping Identifies New Loci Associated with Dementia in Parkinson’s Disease. Genes 2021, 12, 1975. [Google Scholar] [CrossRef] [PubMed]
- Koch, S.; Laabs, B.H.; Kasten, M.; Vollstedt, E.J.; Becktepe, J.; Brüggemann, N.; Franke, A.; Krämer, U.M.; Kuhlenbäumer, G.; Lieb, W.; et al. Validity and Prognostic Value of a Polygenic Risk Score for Parkinson’s Disease. Genes 2021, 12, 1859. [Google Scholar] [CrossRef] [PubMed]
- Nalls, M.A.; Blauwendraat, C.; Vallerga, C.L.; Heilbron, K.; Bandres-Ciga, S.; Chang, D.; Tan, M.; Kia, D.A.; Noyce, A.J.; Xue, A.; et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet Neurol. 2019, 18, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Kobo, H.; Goldstein, O.; Gana-Weisz, M.; Bar-Shira, A.; Gurevich, T.; Thaler, A.; Mirelman, A.; Giladi, N.; Orr-Urtreger, A. C9orf72-G4C2 Intermediate Repeats and Parkinson’s Disease; A Data-Driven Hypothesis. Genes 2021, 12, 1210. [Google Scholar] [CrossRef] [PubMed]
- Lüth, T.; Laβ, J.; Schaake, S.; Wohlers, I.; Pozojevic, J.; Jamora, R.D.G.; Rosales, R.L.; Brüggemann, N.; Saranza, G.; Diesta, C.C.E.; et al. Elucidating Hexanucleotide Repeat Number and Methylation within the X-Linked Dystonia-Parkinsonism (XDP)-Related SVA Retrotransposon in TAF1 with Nanopore Sequencing. Genes 2022, 13, 126. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lesage, S.; Trinh, J. Special Issue “Parkinson’s Disease: Genetics and Pathogenesis”. Genes 2023, 14, 737. https://doi.org/10.3390/genes14030737
Lesage S, Trinh J. Special Issue “Parkinson’s Disease: Genetics and Pathogenesis”. Genes. 2023; 14(3):737. https://doi.org/10.3390/genes14030737
Chicago/Turabian StyleLesage, Suzanne, and Joanne Trinh. 2023. "Special Issue “Parkinson’s Disease: Genetics and Pathogenesis”" Genes 14, no. 3: 737. https://doi.org/10.3390/genes14030737
APA StyleLesage, S., & Trinh, J. (2023). Special Issue “Parkinson’s Disease: Genetics and Pathogenesis”. Genes, 14(3), 737. https://doi.org/10.3390/genes14030737