Genomic Insights and Functional Analysis Reveal Plant Growth Promotion Traits of Paenibacillus mucilaginosus G78
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of IAA Production and Phosphate Solubilization
2.2. Biofilm Formation Assays
2.3. Growth-Promoting Assay
2.4. Antagonistic Activity
2.5. Antibiotic Susceptibility Tests
2.6. Genome Sequencing and Analysis
2.7. Comparative Genomic and Phylogenetic Analysis
3. Results
3.1. Assessment of Plant Growth-Promoting Traits
3.2. Genomic Features
3.3. Phylogenetic Tree and Comparative Genomic Analysis
3.4. Secondary Metabolites Production and Antimicrobial Resistance Genes
3.5. EPS Synthesis Genes
3.6. Biofilm Formation Genes
3.7. Plant Growth-Promoting Ability Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Majeed, A.; Muhammad, Z.; Ahmad, H. Plant growth promoting bacteria: Role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Rep. 2018, 37, 1599–1609. [Google Scholar] [CrossRef] [PubMed]
- Van Kernebeek, H.R.J.; Oosting, S.J.; Van Ittersum, M.K.; Bikker, P.; De Boer, I.J.M. Saving land to feed a growing population: Consequences for consumption of crop and livestock products. Int. J. Life Cycle Assess. 2015, 21, 677–687. [Google Scholar] [CrossRef]
- Muller, A.; Schader, C.; El-Hage Scialabba, N.; Brüggemann, J.; Isensee, A.; Erb, K.-H.; Smith, P.; Klocke, P.; Leiber, F.; Stolze, M.; et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 2017, 8, 1290. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, W.; Yadav, R.; Li, K. Plant growth promoting bacteria in agriculture: Two sides of a coin. Appl. Soil Ecol. 2019, 138, 10–18. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Grady, E.N.; MacDonald, J.; Liu, L.; Richman, A.; Yuan, Z.-C. Current knowledge and perspectives of Paenibacillus: A review. Microb. Cell Factories 2016, 15, 203. [Google Scholar] [CrossRef]
- Avakyan, Z.; Pivovarova, T.; Karavaiko, G. Properties of a new species, Bacillus mucilaginosus. Microbiology 1986, 55, 369–374. [Google Scholar]
- Hu, X.-F.; Li, S.-X.; Wu, J.-G.; Wang, J.-F.; Fang, Q.-L.; Chen, J.-S. Transfer of Bacillus mucilaginosus and Bacillus edaphicus to the genus Paenibacillus as Paenibacillus mucilaginosus comb. nov. and Paenibacillus edaphicus comb. nov. Int. J. Syst. Evol. Microbiol. 2010, 60, 8–14. [Google Scholar] [CrossRef]
- Hu, X.; Chen, J.; Guo, J. Two phosphate- and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J. Microbiol. Biotechnol. 2006, 22, 983–990. [Google Scholar] [CrossRef]
- Wu, J.G.; Wang, J.F.; Zhang, X.H.; Zhang, S.S.; Hu, X.F.; Chen, J.S. A gyrB-targeted PCR for rapid identification of Paenibacillus mucilaginosus. Appl. Microbiol. Biotechnol. 2010, 87, 739–747. [Google Scholar] [CrossRef]
- Tang, J.; Qi, S.; Li, Z.; An, Q.; Xie, M.; Yang, B.; Wang, Y. Production, purification and application of polysaccharide-based bioflocculant by Paenibacillus mucilaginosus. Carbohydr. Polym. 2014, 113, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.-W.; Tseng, S.-C.; Wang, S.-L. Production and characterization of antioxidant properties of exopolysaccharide(s) from Peanibacillus mucilaginosus TKU032. Mar. Drugs 2016, 14, 40. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Xu, S.; Deng, C.; Li, H.; Yang, Q.; Xu, Z.; Chen, J. Preparation and partial structural characterization of the exopolysaccharide from Bacillus mucilaginosus SM-01. Carbohydr. Polym. 2016, 146, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Goswami, D.; Parmar, S.; Vaghela, H.; Dhandhukia, P.; Thakker, J.N.; Moral, M.T. Describing Paenibacillus mucilaginosus strain N3 as an efficient plant growth promoting rhizobacteria (PGPR). Cogent Food Agric. 2015, 1, 1000714. [Google Scholar] [CrossRef]
- Wang, P.; Wu, S.-H.; Wen, M.-X.; Wang, Y.; Wu, Q.-S. Effects of combined inoculation with Rhizophagus intraradices and Paenibacillus mucilaginosus on plant growth, root morphology, and physiological status of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings under different levels of phosphorus. Sci. Hortic. 2016, 205, 97–105. [Google Scholar] [CrossRef]
- Attar, A. Effects of Azorhizophilus paspali and Paenibacillus mucilaginosus as biofertilizer and determination of nutritional efficiency by sensors. Arab. J. Sci. Eng. 2018, 43, 3477–3484. [Google Scholar] [CrossRef]
- Mercl, F.; Tejnecký, V.; Ságová-Marečková, M.; Dietel, K.; Kopecký, J.; Břendová, K.; Kulhánek, M.; Košnář, Z.; Száková, J.; Tlustoš, P. Co-application of wood ash and Paenibacillus mucilaginosus to soil: The effect on maize nutritional status, root exudation and composition of soil solution. Plant Soil 2018, 428, 105–122. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Yang, X.-Z.; Li, Z.; An, X.-H.; Ma, R.-P.; Li, Y.-Q.; Cheng, C.-G. Efficiency of potassium-solubilizing Paenibacillus mucilaginosus for the growth of apple seedling. J. Integr. Agric. 2020, 19, 2458–2469. [Google Scholar] [CrossRef]
- Koryagin, Y.; Kulikova, E.; Efremova, S.; Sukhova, N. The influence of microbiological fertilisers on the productivity and quality of winter wheat. Plant Soil Environ. 2020, 66, 564–568. [Google Scholar] [CrossRef]
- Kchouk, M.; Gibrat, J.F.; Elloumi, M. Generations of sequencing technologies: From first to next generation. Biol. Med. 2017, 9, 395. [Google Scholar] [CrossRef]
- Paterson, J.; Jahanshah, G.; Li, Y.; Wang, Q.; Mehnaz, S.; Gross, H. The contribution of genome mining strategies to the understanding of active principles of PGPR strains. FEMS Microbiol. Ecol. 2017, 93, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, M.; Wang, Z.; Li, L.; Jiang, X.; Guan, D.; Cao, F.; Chen, H.; Wang, X.; Shen, D.; Du, B.; et al. Complete genome sequence of Paenibacillus mucilaginosus 3016, a bacterium functional as microbial fertilizer. J. Bacteriol. 2012, 194, 2777–2778. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.J.; Wang, J.F.; Hu, X.F. Genome sequence of growth-improving Paenibacillus mucilaginosus strain KNP414. Genome Announc. 2013, 1, e00881-13. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Sun, Y.F.; Lian, B.; Chen, T.M. Complete genome sequence and comparative genome analysis of the Paenibacillus mucilaginosus K02. Microb. Pathog. 2016, 93, 194–203. [Google Scholar] [CrossRef]
- Xie, B.; Xu, K.; Zhao, H.X.; Chen, S.F. Isolation of transposon mutants from Azospirillum brasilense Yu62 and characterization of genes involved in indole-3-acetic acid biosynthesis. FEMS Microbiol. Lett. 2005, 248, 57–63. [Google Scholar] [CrossRef]
- Xie, J.; Shi, H.; Du, Z.; Wang, T.; Liu, X.; Chen, S. Comparative genomic and functional analysis reveal conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species. Sci. Rep. 2016, 6, 21329. [Google Scholar] [CrossRef]
- Shang, L.; Yan, Y.; Zhan, Y.; Ke, X.; Shao, Y.; Liu, Y.; Yang, H.; Wang, S.; Dai, S.; Lu, J.; et al. A regulatory network involving Rpo, Gac and Rsm for nitrogen-fixing biofilm formation by Pseudomonas stutzeri. NPJ Biofilms Microbiomes 2021, 7, 54. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Calif. Agric. Ext. Publ. 1938, 347, 35–37. [Google Scholar] [CrossRef]
- Deng, J.; Kong, S.; Wang, F.; Liu, Y.; Jiao, J.; Lu, Y.; Zhang, F.; Wu, J.; Wang, L.; Li, X. Identification of a new Bacillus sonorensis strain KLBC GS-3 as a biocontrol agent for postharvest green mould in grapefruit. Biol. Control. 2020, 151, 104393. [Google Scholar] [CrossRef]
- Syal, K.; Mo, M.; Yu, H.; Iriya, R.; Jing, W.; Guodong, S.; Wang, S.; Grys, T.E.; Haydel, S.E.; Tao, N. Current and emerging techniques for antibiotic susceptibility tests. Theranostics 2017, 7, 1795–1805. [Google Scholar] [CrossRef]
- Yan, X.; Fratamico, P.M.; Bono, J.L.; Baranzoni, G.M.; Chen, C.Y. Genome sequencing and comparative genomics provides insights on the evolutionary dynamics and pathogenic potential of different H-serotypes of Shiga toxin-producing Escherichia coli O104. BMC Microbiol. 2015, 15, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Wu, J.; Yang, J.; Sun, S.; Xiao, J.; Yu, J. PGAP: Pan-genomes analysis pipeline. Bioinformatics 2012, 28, 416–418. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinform. 2003, 1, 2.3.1–2.3.2. [Google Scholar] [CrossRef]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2020, 17, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef]
- Whitfield, G.B.; Marmont, L.S.; Bundalovic-Torma, C.; Razvi, E.; Roach, E.J.; Khursigara, C.M.; Parkinson, J.; Howell, P.L. Discovery and characterization of a Gram-positive Pel polysaccharide biosynthetic gene cluster. PLoS Pathog. 2020, 16, e1008281. [Google Scholar] [CrossRef]
- Duca, D.; Lorv, J.; Patten, C.L.; Rose, D.; Glick, B.R. Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek 2014, 106, 85–125. [Google Scholar] [CrossRef]
- Mann, S.; Chen, Y.P. Bacterial genomic G + C composition-eliciting environmental adaptation. Genomics 2010, 95, 7–15. [Google Scholar] [CrossRef]
- Zhalnina, K.; Louie, K.B.; Hao, Z.; Mansoori, N.; da Rocha, U.N.; Shi, S.; Cho, H.; Karaoz, U.; Loque, D.; Bowen, B.P.; et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 2018, 3, 470–480. [Google Scholar] [CrossRef]
- Huang, W.C.; Hu, Y.; Zhang, G.; Li, M. Comparative genomic analysis reveals metabolic diversity of different Paenibacillus groups. Appl. Microbiol. Biotechnol. 2020, 104, 10133–10143. [Google Scholar] [CrossRef]
- Keswani, C.; Singh, H.B.; Garcia-Estrada, C.; Caradus, J.; He, Y.W.; Mezaache-Aichour, S.; Glare, T.R.; Borriss, R.; Sansinenea, E. Antimicrobial secondary metabolites from agriculturally important bacteria as next-generation pesticides. Appl. Microbiol. Biotechnol. 2020, 104, 1013–1034. [Google Scholar] [CrossRef] [PubMed]
- Tholl, D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Biol. 2006, 9, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Kuzuyama, T.; Komatsu, M.; Shin-Ya, K.; Omura, S.; Cane, D.E.; Ikeda, H. Terpene synthases are widely distributed in bacteria. Proc. Natl. Acad. Sci. USA 2015, 112, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Loaces, I.; Ferrando, L.; Scavino, A.F. Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb. Ecol. 2011, 61, 606–618. [Google Scholar] [CrossRef]
- Koppisch, A.T.; Browder, C.C.; Moe, A.L.; Shelley, J.T.; Kinkel, B.A.; Hersman, L.E.; Iyer, S.; Ruggiero, C.E. Petrobactin is the primary siderophore synthesized by Bacillus anthracis str. Sterne under conditions of iron starvation. Biometals 2005, 18, 577–585. [Google Scholar] [CrossRef]
- Lee, J.Y.; Janes, B.K.; Passalacqua, K.D.; Pfleger, B.F.; Bergman, N.H.; Liu, H.; Hakansson, K.; Somu, R.V.; Aldrich, C.C.; Cendrowski, S.; et al. Biosynthetic analysis of the petrobactin siderophore pathway from Bacillus anthracis. J. Bacteriol. 2007, 189, 1698–1710. [Google Scholar] [CrossRef]
- Hofstead, S.J.; Matson, J.A. Kedarcidin, a new chromoprotein antitumor antibiotic II. isolation, purification and physico-chemical properties. J. Antibiot. 1992, 45, 1250–1254. [Google Scholar] [CrossRef]
- Lohman, J.R.; Huang, S.; Horsman, G.P.; Dilfer, P.E.; Huang, T.; Chen, Y.; Wendt-Pienkowski, E.; Shen, B. Cloning and sequencing of the kedarcidin biosynthetic gene cluster from Streptoalloteichus sp. ATCC 53650 revealing new insights into biosynthesis of the enediyne family of antitumor antibiotics. Mol. Biosyst. 2013, 9, 478–491. [Google Scholar] [CrossRef]
- Olishevska, S.; Nickzad, A.; Deziel, E. Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Appl. Microbiol. Biotechnol. 2019, 103, 1189–1215. [Google Scholar] [CrossRef]
- Piel, J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat. Prod. Rep. 2010, 27, 996–1047. [Google Scholar] [CrossRef]
- Nyanikova, G.G.; Kuprina, E.E.; Pestova, O.V.; Vodolazhskaya, S.V. Immobilization of Bacillus mucilaginosus a producer of exopolysaccharides, on chitin. Appl. Biochem. Microbiol. 2002, 38, 259–262. [Google Scholar] [CrossRef]
- Mishra, A.; Jha, B. Microbial Exopolysaccharides. In The Prokaryotes; Springer: Berlin/Heidelberg, Germany, 2013; pp. 179–192. [Google Scholar] [CrossRef]
- Xu, H.; Li, J.; Wang, L.; Fu, R.; Cheng, R.; Wang, S.; Zhang, J. Purification and characterization of a highly viscous polysaccharide produced by Paenibacillus strain. Eur. Polym. J. 2018, 101, 314–323. [Google Scholar] [CrossRef]
- Danhorn, T.; Fuqua, C. Biofilm formation by plant-associated bacteria. Annu. Rev. Microbiol. 2007, 61, 401–422. [Google Scholar] [CrossRef] [PubMed]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.R. Microcolony and biofilm formation as a survival strategy for bacteria. J. Theor. Biol. 2008, 251, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Ikram, S.; Heikal, A.; Finke, S.; Hofgaard, A.; Rehman, Y.; Sabri, A.N.; Økstad, O.A. Bacillus cereus biofilm formation on central venous catheters of hospitalised cardiac patients. Biofouling 2019, 35, 204–216. [Google Scholar] [CrossRef]
- Sornchuer, P.; Saninjuk, K.; Prathaphan, P.; Tiengtip, R.; Wattanaphansak, S. Antimicrobial susceptibility Profile and Whole-Genome Analysis of a Strong Biofilm-Forming Bacillus Sp. B87 Strain Isolated from Food. Microorganisms 2022, 10, 252. [Google Scholar] [CrossRef]
- Whitfield, G.B.; Marmont, L.S.; Ostaszewski, A.; Rich, J.D.; Whitney, J.C.; Parsek, M.R.; Harrison, J.J.; Howell, P.L. Pel Polysaccharide Biosynthesis Requires an Inner Membrane Complex Comprised of PelD, PelE, PelF, and PelG. J. Bacteriol. 2020, 202, e00684-19. [Google Scholar] [CrossRef]
- Colvin, K.M.; Gordon, V.D.; Murakami, K.; Borlee, B.R.; Wozniak, D.J.; Wong, G.C.; Parsek, M.R. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog. 2011, 7, e1001264. [Google Scholar] [CrossRef]
- Xiao, L.; Hao, J.; Wang, W.; Lian, B.; Shang, G.; Yang, Y.; Liu, C.; Wang, S. The up-regulation of carbonic anhydrase genes of Bacillus mucilaginosus under soluble Ca2+ deficiency and the heterologously expressed enzyme promotes calcite dissolution. Geomicrobiol. J. 2014, 31, 632–641. [Google Scholar] [CrossRef]
- Li, X.; Wu, Z.; Li, W.; Yan, R.; Li, L.; Li, J.; Li, Y.; Li, M. Growth promoting effect of a transgenic Bacillus mucilaginosus on tobacco planting. Appl. Microbiol. Biotechnol. 2007, 74, 1120–1125. [Google Scholar] [CrossRef] [PubMed]
- Lambrecht, M.; Okon, Y.; Broek, A.V.; Vanderleyden, J. Indole-3-acetic acid a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol. 2000, 8, 298–300. [Google Scholar] [CrossRef] [PubMed]
- Taghavi, S.; Garafola, C.; Monchy, S.; Newman, L.; Hoffman, A.; Weyens, N.; Barac, T.; Vangronsveld, J.; van der Lelie, D. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl. Environ. Microbiol. 2009, 75, 748–757. [Google Scholar] [CrossRef] [PubMed]
- Facella, P.; Daddiego, L.; Giuliano, G.; Perrotta, G. Gibberellin and auxin influence the diurnal transcription pattern of photoreceptor genes via CRY1a in tomato. PLoS ONE 2012, 7, e30121. [Google Scholar] [CrossRef]
- Figueredo, E.F.; Cruz, T.A.D.; Almeida, J.R.; Batista, B.D.; Marcon, J.; Andrade, P.A.M.; Hayashibara, C.A.A.; Rosa, M.S.; Azevedo, J.L.; Quecine, M.C. The key role of indole-3-acetic acid biosynthesis by Bacillus thuringiensis RZ2MS9 in promoting maize growth revealed by the ipdC gene knockout mediated by the CRISPR-Cas9 system. Microbiol. Res. 2022, 266, 127218. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; Ver Loren van Themaat, E.; Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef]
- Rodríguez, H.; Fraga, R.; Gonzalez, T.; Bashan, Y. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 2006, 287, 15–21. [Google Scholar] [CrossRef]
- Metcalf, W.W.; Wanner, B.L. Evidence for a fourteen-gene, phnC to phnP locus for phosphonate metabolism in Escherichia coli. Gene 1993, 129, 27–32. [Google Scholar] [CrossRef]
- Metcalf, W.W.; Wanner, B.L. Mutational analysis of an Eschenichia coli fourteen-gene operon for phosphonate degradation, using TnphoA’ elements. J. Bacteriol. 1993, 175, 3430–3442. [Google Scholar] [CrossRef]
- Hove-Jensen, B.; Zechel, D.L.; Jochimsen, B. Utilization of glyphosate as phosphate source: Biochemistry and genetics of bacterial carbon-phosphorus lyase. Microbiol. Mol. Biol. Rev. 2014, 78, 176–197. [Google Scholar] [CrossRef] [Green Version]
- de Werra, P.; Pechy-Tarr, M.; Keel, C.; Maurhofer, M. Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Appl. Environ. Microbiol. 2009, 75, 4162–4174. [Google Scholar] [CrossRef] [PubMed]
- Oteino, N.; Lally, R.D.; Kiwanuka, S.; Lloyd, A.; Ryan, D.; Germaine, K.J.; Dowling, D.N. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front. Microbiol. 2015, 6, 745. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Kobayashi, Y.; Hulett, F.M. The pst operon of Bacillus subtilis has a phosphate-regulated promoter and is involved in phosphate transport but not in regulation of the pho regulon. J. Bacteriol. 1997, 179, 2534–2539. [Google Scholar] [CrossRef] [PubMed]
- Rao, N.N.; Torriani, A. Molecular aspects of phosphate transport in Escherichia coli. Mol. Microbiol. 1990, 4, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Groisman, E.A. The pleiotropic two-component regulatory system PhoP-PhoQ. J. Bacteriol. 2001, 183, 1835–1842. [Google Scholar] [CrossRef] [Green Version]
Soluble P for Inorganic Phosphate (mg/L) | Soluble P for Organic Phosphate (mg/L) | IAA Production (mg/L) | Biofilm Biomass (OD560) | |
---|---|---|---|---|
G78 | 13.6 ± 3.1 | 0.48 ± 0.01 | 10.9 ± 0.2 | 0.32 ± 0.02 |
Root Length * (cm Plant−1) | Root FW ** (g Plant−1) | Shoot Length ** (cm Plant−1) | Shoot FW ** (g Plant−1) | |
---|---|---|---|---|
Control | 435.3 ± 58.8 a | 0.22 ± 0.03 a | 16.1 ± 0.8 a | 0.90 ± 0.06 a |
G78 | 1001.2 ± 131.5 b | 0.78 ± 0.07 b | 23.2 ± 1.3 b | 1.71 ± 0.15 b |
Cluster ID | Type | Similar Cluster | Similarity (%) | MIBiG Accession |
---|---|---|---|---|
1 | NRPS | zwittermicin A | 7 | BGC0001059 |
2 | NRPS | - | - | - |
3 | NRPS | - | - | - |
4 | terpene | - | - | - |
5 | T3PKS | - | - | - |
6 | NRPS | - | - | - |
7 | transAT-PKS | difficidin | 20 | BGC0000176 |
8 | LAP | - | - | - |
9 | siderophore | petrobactin | 83 | BGC0000942 |
10 | bacteriocin | - | - | - |
11 | NRPS | locillomycin | 42 | BGC0001005 |
12 | terpene | carotenoid | 33 | BGC0000645 |
13 | NRPS | stigmatellin | 15 | BGC0000153 |
14 | NRPS | - | - | - |
15 | ladderane | kedarcidin | 1 | BGC0000081 |
16 | NRPS | - | - | - |
17 | NRPS | cyclomarin D | 8 | BGC0000333 |
18 | NRPS | paenibacterin | 60 | BGC0000400 |
19 | NRPS | - | - | - |
20 | NRPS | - | - | - |
21 | NRPS | tridecaptin | 60 | BGC0000449 |
22 | NRPS | cystothiazole A | 11 | BGC0000982 |
23 | NRPS | - | - | - |
24 | NRPS | - | - | - |
25 | NRPS | - | - | - |
26 | NRPS-like | icosalide A/icosalide B | 100 | BGC0001833 |
Antibiotics (μg/mL) | 0 | 1 | 5 | 10 | 50 | 100 | 150 |
---|---|---|---|---|---|---|---|
Ampicillin | + | + | + | + | + | + | - |
Bacitracin | + | + | + | + | + | + | + |
Polymyxin | + | + | + | + | - | - | - |
Chloramphenicol | + | + | - | - | - | - | - |
Vancomycin | + | - | - | - | - | - | - |
Tetracycline | + | - | - | - | - | - | - |
Streptomycin | + | - | - | - | - | - | - |
Antibiotic | ARO Name | ARO Description |
---|---|---|
ampicillin | ampH β-lactamase | ampC-like β-lactamase and penicillin-binding protein |
ampC1 β-lactamase | β-lactamase | |
ampC β-lactamase | β-lactamase | |
ampC1 β-lactamase | β-lactamase | |
LRA-2 | β-lactamase | |
BcI | β-lactamase I | |
SMB-1 | hydrolyze a variety of β-lactams | |
BUT-1 | cephalosporinase and penicillinase | |
bacitracin | ||
bcrA | ABC transporter that confers bacitracin resistance | |
bacA | recycles undecaprenyl pyrophosphate that confers bacitracin resistance | |
bcrB | ABC transporter that confers bacitracin resistance | |
bacA | recycles undecaprenyl pyrophosphate that confers bacitracin resistance | |
polymyxin | ||
arnA | modifies lipid A with 4-amino-4-deoxy-L-arabinose (Ara4N) that confers antimicrobial peptides resistance | |
ugd | synthesis and transfer of 4-amino-4-deoxy-L-arabinose (Ara4N) to Lipid A that confers antimicrobial peptides resistance | |
rosA | efflux pump/potassium antiporter system that confers resistance to cationic antimicrobial peptides | |
PmrF | required for the synthesis and transfer of 4-amino-4-deoxy-L-arabinose (Ara4N) to Lipid A, which confers antimicrobial peptides resistance | |
chloramphenicol | ||
fexA | chloramphenicol exporter | |
cmlv | chloramphenicol phoshotransferase | |
cmrA | chloramphenicol exporter | |
cmlR | chloramphenicol resistance determinant (putative transmembrane protein) |
Predicted Gene Products | Length [aa] | Predicted Function | NR Description |
---|---|---|---|
65 | helix-turn-helix transcriptional regulator | Cro/C1-type HTH DNA-binding domain | |
147 | Hypothetical protein | ||
254 | polysaccharide biosynthesis protein | Tyrosine-protein phosphatase YwqE | |
246 | Polysaccharide biosynthesis protein | Chain length determinant protein | |
226 | Polysaccharide biosynthesis protein | Tyrosine-protein kinase YwqD | |
galU | 297 | Nucleotidyl transferase | UTP--glucose-1-phosphate uridylyltransferase GalU |
fcl | 318 | Epimerase | GDP-L-fucose synthase |
gmd | 331 | Epimerase | GDP-mannose 4,6-dehydratase |
519 | Flippase | oligosaccharide flippase family protein | |
378 | Glycosyltransferase | Glycosyltransferase family 4 protein | |
379 | Glycosyltransferase | Glycosyltransferase group 1 | |
407 | Hypothetical protein | ||
393 | Galactose transferase | α-galactose transferase | |
wcaF | 187 | acetyltransferase | colanic acid biosynthesis acetyltransferase WcaF |
412 | glycosyltransferase | glycosyltransferase family 4 protein | |
247 | Polysaccharide biosynthesis protein | Chain length determinant protein | |
galU | 297 | Nucleotidyl transferase | UTP--glucose-1-phosphate uridylyl-transferase GalU |
232 | sugar transferase | Galactosyl transferase | |
420 | glycosyltransferase | glycosyltransferase | |
452 | O-Antigen ligase | O-antigen ligase family protein | |
413 | glycosyltransferase | glycosyltransferase family 4 protein | |
351 | glycosyltransferase | GDP-mannose: glycolipid 4-β-D-mannosyltransferase | |
ugd | 443 | Epimerase | UDP-glucose/GDP-mannose dehydrogenase family protein |
manC | 460 | Nucleotidyl transferase | Mannose-6-phosphate isomerase |
299 | glycosyltransferase | glycosyltransferase family 2 protein | |
463 | Flippase | oligosaccharide flippase family protein | |
325 | Polysaccharide pyruvyl transferase | polysaccharide pyruvyl transferase family protein | |
181 | acetyltransferase | O-acetyltransferase | |
500 | acetyltransferase | membrane-bound O-acyltransferase | |
296 | Hypothetical protein | Hypothetical protein | |
321 | Actin-binding protein | Actin-binding protein | |
528 | right-handed parallel β-helix repeat-containing protein | ||
558 | right-handed parallel β-helix repeat-containing protein | ||
362 | pyruvyl transferase | polysaccharide pyruvyl transferase family protein | |
490 | flippase | oligosaccharide flippase family protein |
KEGG Orthology | Genes | Protein Product |
---|---|---|
metabolic pathway regulators | ||
K10914 | crp | CRP/FNR family transcriptional regulator, cyclic AMP receptor protein |
K03092 | rpoN | RNA polymerase sigma-54 factor |
K03666 | hfq | host factor-I protein |
K02398 | flgM | negative regulator of flagellin synthesis FlgM |
K03563 | csrA | carbon storage regulator |
K02405 | fliA | RNA polymerase sigma factor for flagellar operon FliA |
diguanylate or adenylate cyclase | ||
K21023 | mucR | diguanylate cyclase |
K01768 | adenylate cyclase | |
K21019 | sadC | diguanylate cyclase |
Matrix protein-encoding genes | ||
K13280 | sipW | Signal peptidase I |
Putaitve matrix polysaccharide synthesis genes | ||
K00640 | cysE | serine O-acetyltransferase |
K00975 | glgC | glucose-1-phosphate adenylyl-transferase |
K02777 | crr | sugar PTS system EIIA component |
K05946 | tagA | N-acetylglucosaminyl, diphosphoundecaprenol, N-acetyl-β-D-mannosaminyl-transferase |
K00688 | glgP | glycogen phosphorylase |
K01657 | trpE | anthranilate synthase |
K01791 | wecB | UDP-N-acetylglucosamine 2-epimerase |
K00703 | glgA | starch synthase (glycosyl-transferring) |
K21006 | pelA | Glycoside-hydrolase family protein |
K21009 | pelD | NAD-dependent epimerase dehydratase |
K21010 | pelE | Polysaccharide biosynthesis protein PelE |
K21011 | pelF | Glycosyl transferase |
K21012 | pelG | Putative exopolysaccharide Exporter |
eDNA synthesis genes | ||
K01939 | purA | Adenylosuccinate synthase |
K01923 | purC | Phosphoribosyl, aminoimidazole, succinocarboxamide synthase |
K23269 | purL | Phosphoribosyl, formylglycinamidine synthase subunit PurL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Poinsot, V.; Li, W.; Lu, Y.; Liu, C.; Li, Y.; Xie, K.; Sun, L.; Shi, C.; Peng, H.; et al. Genomic Insights and Functional Analysis Reveal Plant Growth Promotion Traits of Paenibacillus mucilaginosus G78. Genes 2023, 14, 392. https://doi.org/10.3390/genes14020392
Wang D, Poinsot V, Li W, Lu Y, Liu C, Li Y, Xie K, Sun L, Shi C, Peng H, et al. Genomic Insights and Functional Analysis Reveal Plant Growth Promotion Traits of Paenibacillus mucilaginosus G78. Genes. 2023; 14(2):392. https://doi.org/10.3390/genes14020392
Chicago/Turabian StyleWang, Dan, Verena Poinsot, Wangxi Li, Yusheng Lu, Chong Liu, Yaying Li, Kaizhi Xie, Lili Sun, Chaohong Shi, Huanlong Peng, and et al. 2023. "Genomic Insights and Functional Analysis Reveal Plant Growth Promotion Traits of Paenibacillus mucilaginosus G78" Genes 14, no. 2: 392. https://doi.org/10.3390/genes14020392
APA StyleWang, D., Poinsot, V., Li, W., Lu, Y., Liu, C., Li, Y., Xie, K., Sun, L., Shi, C., Peng, H., Li, W., Zhou, C., & Gu, W. (2023). Genomic Insights and Functional Analysis Reveal Plant Growth Promotion Traits of Paenibacillus mucilaginosus G78. Genes, 14(2), 392. https://doi.org/10.3390/genes14020392