Navigating the Complex Landscape of Fibrodysplasia Ossificans Progressiva: From Current Paradigms to Therapeutic Frontiers
Abstract
:1. Introduction
2. A Brief Overview of the Disease FOP
3. The Complex Molecular Tapestry of FOP
4. Clinical Presentation, Diagnosis, and Management of FOP
5. Animal Models of FOP
6. Experimental and Prospective Therapeutic Approaches for FOP
6.1. Genetic Therapeutics for FOP
6.1.1. CRISPR-Cas Gene Editing Therapies
6.1.2. RNA-Based Therapies
6.1.3. Gene Therapies
6.1.4. Future Prospects for Genetic Approaches for FOP
6.2. Enzymatic and Transcriptional Target Modulators
6.2.1. Targeting BMP Signaling: Antagonists and Allosteric Modulators
6.2.2. Dual-Targeting via mTOR Pathway Inhibition
6.2.3. Neutralizing Hyperactivated Activin A Signaling via Antibody Modulation
6.2.4. Other Approaches: GSK-3β Inhibition and PPARγ Activation
6.2.5. Challenges and Future Directions
6.3. Stem Cell Therapies for FOP
6.3.1. Mesenchymal Stem Cells (MSCs)
6.3.2. Induced Pluripotent Stem Cells (iPSCs)
6.3.3. Challenges and Future Directions
6.4. Immunotherapy
6.4.1. Targeting Specific Antigens Using Monoclonal Antibodies
6.4.2. Modulating Immune Responses Using Immune Checkpoint Inhibitors
6.4.3. Cellular Infiltrates
6.4.4. Prospective Immunotherapeutic Strategies for FOP
6.5. Repurposed Drugs for FOP: A Glimpse of Promise
7. Impediments and Innovations for Clinical Trials for FOP
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaplan, F.S.; Glaser, D.L.; Shore, E.M.; Deirmengian, G.K.; Gupta, R.; Delai, P.; Morhart, R.; Smith, R.; Le Merrer, M.; Rogers, J.G.; et al. The Phenotype of Fibrodysplasia Ossificans Progressiva. Clin. Rev. Bone Miner. Metab. 2005, 3, 183–188. [Google Scholar] [CrossRef]
- Kaplan, F.S.; Chakkalakal, S.A.; Shore, E.M. Fibrodysplasia Ossificans Progressiva: Mechanisms and Models of Skeletal Metamorphosis. Dis. Model. Mech. 2012, 5, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, F.S.; Shen, Q.; Lounev, V.; Seemann, P.; Groppe, J.; Katagiri, T.; Pignolo, R.J.; Shore, E.M. Skeletal Metamorphosis in Fibrodysplasia Ossificans Progressiva (FOP). J. Bone Miner. Metab. 2008, 26, 521–530. [Google Scholar] [CrossRef]
- Liljesthröm, M.; Pignolo, R.; Kaplan, F. Epidemiology of the Global Fibrodysplasia Ossificans Progressiva (FOP) Community. J. Rare Dis. Res. Treat. 2020, 5, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, S.; Muragundi, P.M.; Choughule, S.; Piruka, A. A Literature Review of HRQoL and Prevalence of Fibrodysplasia Ossificans Progressiva. J. Appl. Pharm. Sci. 2022, 13, 53–59. [Google Scholar] [CrossRef]
- Baujat, G.; Choquet, R.; Bouée, S.; Jeanbat, V.; Courouve, L.; Ruel, A.; Michot, C.; Le Quan Sang, K.H.; Lapidus, D.; Messiaen, C.; et al. Prevalence of Fibrodysplasia Ossificans Progressiva (FOP) in France: An Estimate Based on a Record Linkage of Two National Databases. Orphanet J. Rare Dis. 2017, 12, 123. [Google Scholar] [CrossRef] [PubMed]
- Shore, E.M.; Xu, M.; Feldman, G.J.; Fenstermacher, D.A.; Cho, T.-J.; Choi, I.H.; Connor, J.M.; Delai, P.; Glaser, D.L.; LeMerrer, M.; et al. A Recurrent Mutation in the BMP Type I Receptor ACVR1 Causes Inherited and Sporadic Fibrodysplasia Ossificans Progressiva. Nat. Genet. 2006, 38, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Shafritz, A.B.; Shore, E.M.; Gannon, F.H.; Zasloff, M.A.; Taub, R.; Muenke, M.; Kaplan, F.S. Overexpression of an Osteogenic Morphogen in Fibrodysplasia Ossificans Progressiva. N. Engl. J. Med. 1996, 335, 555–561. [Google Scholar] [CrossRef]
- Ahn, J.; Serrano De La Peña, L.; Shore, E.M.; Kaplan, F.S. Paresis of a Bone Morphogenetic Protein-Antagonist Response in a Genetic Disorder of Heterotopic Skeletogenesis. J. Bone Jt. Surg. Am. 2003, 85, 667–674. [Google Scholar] [CrossRef]
- Serrano De La Peña, L.; Billings, P.C.; Fiori, J.L.; Ahn, J.; Kaplan, F.S.; Shore, E.M. Fibrodysplasia Ossificans Progressiva (FOP), a Disorder of Ectopic Osteogenesis, Misregulates Cell Surface Expression and Trafficking of BMPRIA. J. Bone Miner. Res. 2005, 20, 1168–1176. [Google Scholar] [CrossRef]
- Fiori, J.L.; Billings, P.C.; Serrano De La Peña, L.; Kaplan, F.S.; Shore, E.M. Dysregulation of the BMP-P38 MAPK Signaling Pathway in Cells from Patients with Fibrodysplasia Ossificans Progressiva (FOP). J. Bone Miner. Res. 2006, 21, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Billings, P.C.; Fiori, J.L.; Bentwood, J.L.; O’Connell, M.P.; Jiao, X.; Nussbaum, B.; Caron, R.J.; Shore, E.M.; Kaplan, F.S. Dysregulated BMP Signaling and Enhanced Osteogenic Differentiation of Connective Tissue Progenitor Cells from Patients with Fibrodysplasia Ossificans Progressiva (FOP). J. Bone Miner. Res. 2008, 23, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Shore, E.M.; Kaplan, F.S. BMP Signaling in Fibrodysplasia Ossificans Progressiva, a Rare Genetic Disorder of Heterotopic Ossification. In Bone Morphogenetic Proteins: Systems Biology Regulators; Springer International Publishing: Cham, Switzerland, 2017; pp. 327–343. [Google Scholar]
- Kaplan, F.S.; Xu, M.; Seemann, P.; Connor, J.M.; Glaser, D.L.; Carroll, L.; Delai, P.; Fastnacht-Urban, E.; Forman, S.J.; Gillessen-Kaesbach, G.; et al. Classic and Atypical Fibrodysplasia Ossificans Progressiva (FOP) Phenotypes Are Caused by Mutations in the Bone Morphogenetic Protein (BMP) Type I Receptor ACVR1. Hum. Mutat. 2009, 30, 379–390. [Google Scholar] [CrossRef]
- Connor, J.; Evans, D. Fibrodysplasia Ossificans Progressiva. The Clinical Features and Natural History of 34 Patients. J. Bone Jt. Surg. Br. 1982, 64-B, 76–83. [Google Scholar] [CrossRef]
- Cohen, R.; Hahn, G.; Tabas, J.; Peeper, J.; Levitz, C.; Sando, A.; Sando, N.; Zasloff, M.; Kaplan, F. The Natural History of Heterotopic Ossification in Patients Who Have Fibrodysplasia Ossificans Progressiva. J. Bone Jt. Surg. Am. 1993, 75, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, F.S.; Le Merrer, M.; Glaser, D.L.; Pignolo, R.J.; Goldsby, R.E.; Kitterman, J.A.; Groppe, J.; Shore, E.M. Fibrodysplasia Ossificans Progressiva. Best Pract. Res. Clin. Rheumatol. 2008, 22, 191–205. [Google Scholar] [CrossRef]
- Rocke, D.M.; Zasloff, M.; Peeper, J.; Cohen, R.B.; Kaplan, F.S. Age- and Joint-Specific Risk of Initial Heterotopic Ossification in Patients Who Have Fibrodysplasia Ossificans Progressiva. Clin. Orthop. Relat. Res. 1994, 301, 243–248. [Google Scholar] [CrossRef]
- Petrie, K.A.; Lee, W.H.; Bullock, A.N.; Pointon, J.J.; Smith, R.; Russell, R.G.G.; Brown, M.A.; Wordsworth, B.P.; Triffitt, J.T. Novel Mutations in ACVR1 Result in Atypical Features in Two Fibrodysplasia Ossificans Progressiva Patients. PLoS ONE 2009, 4, e5005. [Google Scholar] [CrossRef]
- Shah, Z.A.; Rausch, S.; Arif, U.; El Yafawi, B. Fibrodysplasia Ossificans Progressiva (Stone Man Syndrome): A Case Report. J. Med. Case Rep. 2019, 13, 364. [Google Scholar] [CrossRef]
- Verma, A.K.; Aga, P.; Singh, S.K.; Singh, R. The Stone Man Disease: Fibrodysplasia Ossificans Progressiva: Imaging Revisited. Case Rep. 2012, 2012, bcr2012006422. [Google Scholar] [CrossRef]
- Lin, S.; Svoboda, K.K.H.; Feng, J.Q.; Jiang, X. The Biological Function of Type I Receptors of Bone Morphogenetic Protein in Bone. Bone Res. 2016, 4, 16005. [Google Scholar] [CrossRef] [PubMed]
- Rauner, M.; Seefried, L.; Shore, E. Genetics and Future Therapy Prospects of Fibrodysplasia Ossificans Progressiva. Med. Genet. 2020, 31, 391–396. [Google Scholar] [CrossRef]
- Shaikh, U.; Khan, A.; Kumari, P.; Ishfaq, A.; Ekhator, C.; Yousuf, P.; Halappa Nagaraj, R.; Raza, H.; Ur Rehman, U.; Zaman, M.U.; et al. Novel Therapeutic Targets for Fibrodysplasia Ossificans Progressiva: Emerging Strategies and Future Directions. Cureus 2023, 15, e42614. [Google Scholar] [CrossRef]
- Kitoh, H. Clinical Aspects and Current Therapeutic Approaches for FOP. Biomedicines 2020, 8, 325. [Google Scholar] [CrossRef] [PubMed]
- Wentworth, K.L.; Masharani, U.; Hsiao, E.C. Therapeutic Advances for Blocking Heterotopic Ossification in Fibrodysplasia Ossificans Progressiva. Br. J. Clin. Pharmacol. 2019, 85, 1180–1187. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA) FDA Approves First Treatment for Fibrodysplasia Ossificans Progressiva. Available online: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-first-treatment-fibrodysplasia-ossificans-progressiva (accessed on 18 September 2023).
- Hoy, S.M. Palovarotene: First Approval. Drugs 2022, 82, 711–716. [Google Scholar] [CrossRef]
- Goldman, A.B. Heritable Diseases of Connective Tissue, Epiphyseal Dysplasias, and Related Conditions. In Diagnosis of Bone and Joint Disorders; Resnick, D., Ed.; Saunders: Philadelphia, PA, USA, 2002; pp. 4409–4415. [Google Scholar]
- De Araújo Júnior, C.R.; Carvalho, T.N.; Costa, M.A.B.; Lobo, L.V.; Fonseca, C.R.; Teixeira, K.-I.-S.S. Fibrodisplasia Ossificante Progressiva: Relato de Caso e Achados Radiográficos. Radiol. Bras. 2005, 38, 69–73. [Google Scholar] [CrossRef]
- Antol, R. The Differential; The University of Arizona College of Medicine: Phoenix, AZ, USA, 2015. [Google Scholar]
- Qi, Z.; Luan, J.; Zhou, X.; Cui, Y.; Han, J. Fibrodysplasia Ossificans Progressiva: Basic Understanding and Experimental Models. Intractable Rare Dis. Res. 2017, 6, 242–248. [Google Scholar] [CrossRef]
- Pignolo, R.J.; Bedford-Gay, C.; Liljesthröm, M.; Durbin-Johnson, B.P.; Shore, E.M.; Rocke, D.M.; Kaplan, F.S. The Natural History of Flare-Ups in Fibrodysplasia Ossificans Progressiva (FOP): A Comprehensive Global Assessment. J. Bone Miner. Res. 2016, 31, 650–656. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, K.; Song, L.; Pang, J.; Ma, H.; Shore, E.M.; Kaplan, F.S.; Wang, P. The Phenotype and Genotype of Fibrodysplasia Ossificans Progressiva in China: A Report of 72 Cases. Bone 2013, 57, 386–391. [Google Scholar] [CrossRef]
- Morales-Piga, A.; Bachiller-Corral, J.; Trujillo-Tiebas, M.J.; Villaverde-Hueso, A.; Gamir-Gamir, M.L.; Alonso-Ferreira, V.; Vázquez-Díaz, M.; Posada de la Paz, M.; Ayuso-García, C. Fibrodysplasia Ossificans Progressiva in Spain: Epidemiological, Clinical, and Genetic Aspects. Bone 2012, 51, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, Y.; Kitoh, H.; Nakashima, Y.; Toguchida, J.; Haga, N. Longitudinal Study of the Activities of Daily Living and Quality of Life in Japanese Patients with Fibrodysplasia Ossificans Progressiva. Disabil. Rehabil. 2019, 41, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, F.S.; Zasloff, M.A.; Kitterman, J.A.; Shore, E.M.; Hong, C.C.; Rocke, D.M. Early Mortality and Cardiorespiratory Failure in Patients with Fibrodysplasia Ossificans Progressiva. J. Bone Jt. Surg. Am. 2010, 92, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Kitterman, J.A.; Kantanie, S.; Rocke, D.M.; Kaplan, F.S. Iatrogenic Harm Caused by Diagnostic Errors in Fibrodysplasia Ossificans Progressiva. Pediatrics 2005, 116, e654–e661. [Google Scholar] [CrossRef]
- De Ruiter, R.D.; Smilde, B.J.; Pals, G.; Bravenboer, N.; Knaus, P.; Schoenmaker, T.; Botman, E.; Sánchez-Duffhues, G.; Pacifici, M.; Pignolo, R.J.; et al. Fibrodysplasia Ossificans Progressiva: What Have We Achieved and Where Are We Now? Follow-up to the 2015 Lorentz Workshop. Front. Endocrinol. 2021, 12, 732728. [Google Scholar] [CrossRef]
- Miao, J.; Zhang, C.; Wu, S.; Peng, Z.; Tania, M. Genetic Abnormalities in Fibrodysplasia Ossificans Progressiva. Genes Genet. Syst. 2012, 87, 213–219. [Google Scholar] [CrossRef]
- Whyte, M.P.; Wenkert, D.; Demertzis, J.L.; Dicarlo, E.F.; Westenberg, E.; Mumm, S. Fibrodysplasia Ossificans Progressiva: Middle-Age Onset of Heterotopic Ossification from a Unique Missense Mutation (c.974G > C, p.G325A) in ACVR1. J. Bone Miner. Res. 2012, 27, 729–737. [Google Scholar] [CrossRef]
- Ratbi, I.; Borcciadi, R.; Regragui, A.; Ravazzolo, R.; Sefiani, A. Rarely Occurring Mutation of ACVR1 Gene in Moroccan Patient with Fibrodysplasia Ossificans Progressiva. Clin. Rheumatol. 2010, 29, 119–121. [Google Scholar] [CrossRef]
- Furuya, H.; Ikezoe, K.; Wang, L.; Ohyagi, Y.; Motomura, K.; Fujii, N.; Kira, J.I.; Fukumaki, Y. A Unique Case of Fihrodysplasia Ossificans Progressiva with an ACVR1 Mutation, G356D, Other than the Common Mutation (R206H). Am. J. Med. Genet. Part A 2008, 146, 459–463. [Google Scholar] [CrossRef]
- Bocciardi, R.; Bordo, D.; Di Duca, M.; Di Rocco, M.; Ravazzolo, R. Mutational Analysis of the ACVR1 Gene in Italian Patients Affected with Fibrodysplasia Ossificans Progressiva: Confirmations and Advancements. Eur. J. Hum. Genet. 2009, 17, 311–318. [Google Scholar] [CrossRef]
- Connor, J.M.; Skirton, H.; Lunt, P.W. A Three Generation Family with Fibrodysplasia Ossificans Progressiva. J. Med. Genet. 1993, 30, 687–689. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.A.; Joziasse, I.C.; Chocron, S.; van Dinther, M.; Guryev, V.; Verhoeven, M.C.; Rehmann, H.; van der Smagt, J.J.; Doevendans, P.A.; Cuppen, E.; et al. Dominant-Negative ALK2 Allele Associates With Congenital Heart Defects. Circulation 2009, 119, 3062–3069. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.R.; Mackay, A.; Truffaux, N.; Butterfield, Y.S.; Morozova, O.; Philippe, C.; Castel, D.; Grasso, C.S.; Vinci, M.; Carvalho, D.; et al. Recurrent Activating ACVR1 Mutations in Diffuse Intrinsic Pontine Glioma. Nat. Genet. 2014, 46, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Loder, S.J.; Brownley, C.; Eboda, O.; Peterson, J.R.; Hayano, S.; Wu, B.; Zhao, B.; Kaartinen, V.; Wong, V.C.; et al. BMP Signaling Mediated by Constitutively Active Activin Type 1 Receptor (ACVR1) Results in Ectopic Bone Formation Localized to Distal Extremity Joints. Dev. Biol. 2015, 400, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Tuffery-Giraud, S.; Béroud, C.; Leturcq, F.; Yaou, R.B.; Hamroun, D.; Michel-Calemard, L.; Moizard, M.P.; Bernard, R.; Cossée, M.; Boisseau, P.; et al. Genotype-Phenotype Analysis in 2,405 Patients with a Dystrophinopathy Using the UMD-DMD Database: A Model of Nationwide Knowledgebase. Hum. Mutat. 2009, 30, 934–945. [Google Scholar] [CrossRef] [PubMed]
- Groppe, J.C.; Shore, E.M.; Kaplan, F.S. Functional Modeling of the ACVR1 (R206H) Mutation in FOP. Clin. Orthop. Relat. Res. 2007, 462, 87–92. [Google Scholar] [CrossRef]
- Shen, Q.; Little, S.C.; Xu, M.; Haupt, J.; Ast, C.; Katagiri, T.; Mundlos, S.; Seemann, P.; Kaplan, F.S.; Mullins, M.C.; et al. The Fibrodysplasia Ossificans Progressiva R206H ACVR1 Mutation Activates BMP-Independent Chondrogenesis and Zebrafish Embryo Ventralization. J. Clin. Investig. 2009, 119, 3462–3471. [Google Scholar] [CrossRef]
- Fukuda, T.; Kohda, M.; Kanomata, K.; Nojima, J.; Nakamura, A.; Kamizono, J.; Noguchi, Y.; Iwakiri, K.; Kondo, T.; Kurose, J.; et al. Constitutively Activated ALK2 and Increased SMAD1/5 Cooperatively Induce Bone Morphogenetic Protein Signaling in Fibrodysplasia Ossificans Progressiva. J. Biol. Chem. 2009, 284, 7149–7156. [Google Scholar] [CrossRef]
- Van Dinther, M.; Visser, N.; De Gorter, D.J.J.; Doorn, J.; Goumans, M.J.; De Boer, J.; Ten Dijke, P. ALK2 R206H Mutation Linked to Fibrodysplasia Ossificans Progressiva Confers Constitutive Activity to the BMP Type I Receptor and Sensitizes Mesenchymal Cells to BMP-Induced Osteoblast Differentiation and Bone Formation. J. Bone Miner. Res. 2010, 25, 1208–1215. [Google Scholar] [CrossRef]
- Song, G.A.; Kim, H.J.; Woo, K.M.; Baek, J.H.; Kim, G.S.; Choi, J.Y.; Ryoo, H.M. Molecular Consequences of the ACVR1R206H Mutation of Fibrodysplasia Ossificans Progressiva. J. Biol. Chem. 2010, 285, 22542–22553. [Google Scholar] [CrossRef]
- Kaliya-Perumal, A.-K.; Carney, T.J.; Ingham, P.W. Fibrodysplasia Ossificans Progressiva: Current Concepts from Bench to Bedside. Dis. Model. Mech. 2020, 13, dmm046441. [Google Scholar] [CrossRef]
- Barruet, E.; Morales, B.M.; Cain, C.J.; Ton, A.N.; Wentworth, K.L.; Chan, T.V.; Moody, T.A.; Haks, M.C.; Ottenhoff, T.H.M.; Hellman, J.; et al. NF-ΚB/MAPK Activation Underlies ACVR1-Mediated Inflammation in Human Heterotopic Ossification. JCI Insight 2018, 3, e122958. [Google Scholar] [CrossRef] [PubMed]
- Hatsell, S.J.; Idone, V.; Wolken, D.M.A.; Huang, L.; Kim, H.J.; Wang, L.; Wen, X.; Nannuru, K.C.; Jimenez, J.; Xie, L.; et al. ACVR1 R206H Receptor Mutation Causes Fibrodysplasia Ossificans Progressiva by Imparting Responsiveness to Activin A. Sci. Transl. Med. 2015, 7, 303ra137. [Google Scholar] [CrossRef] [PubMed]
- Hino, K.; Ikeya, M.; Horigome, K.; Matsumoto, Y.; Ebise, H.; Nishio, M.; Sekiguchi, K.; Shibata, M.; Nagata, S.; Matsuda, S.; et al. Neofunction of ACVR1 in Fibrodysplasia Ossificans Progressiva. Proc. Natl. Acad. Sci. USA 2015, 112, 15438–15443. [Google Scholar] [CrossRef] [PubMed]
- Lees-Shepard, J.B.; Yamamoto, M.; Biswas, A.A.; Stoessel, S.J.; Nicholas, S.-A.E.; Cogswell, C.A.; Devarakonda, P.M.; Schneider, M.J.; Cummins, S.M.; Legendre, N.P.; et al. Activin-Dependent Signaling in Fibro/Adipogenic Progenitors Causes Fibrodysplasia Ossificans Progressiva. Nat. Commun. 2018, 9, 471. [Google Scholar] [CrossRef]
- Aykul, S.; Huang, L.; Wang, L.; Das, N.M.; Reisman, S.; Ray, Y.; Zhang, Q.; Rothman, N.; Nannuru, K.C.; Kamat, V.; et al. Anti-ACVR1 Antibodies Exacerbate Heterotopic Ossification in Fibrodysplasia Ossificans Progressiva (FOP) by Activating FOP-Mutant ACVR1. J. Clin. Investig. 2022, 132, e153792. [Google Scholar] [CrossRef]
- Yang, Y.-S.; Kim, J.-M.; Xie, J.; Chaugule, S.; Lin, C.; Ma, H.; Hsiao, E.; Hong, J.; Chun, H.; Shore, E.M.; et al. Suppression of Heterotopic Ossification in Fibrodysplasia Ossificans Progressiva Using AAV Gene Delivery. Nat. Commun. 2022, 13, 6175. [Google Scholar] [CrossRef]
- Yang, Y.-S.; Lin, C.; Ma, H.; Xie, J.; Kaplan, F.S.; Gao, G.; Shim, J.-H. AAV-Mediated Targeting of the Activin A-ACVR1R206H Signaling in Fibrodysplasia Ossificans Progressiva. Biomolecules 2023, 13, 1364. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, R.; Nguyen, Q.; Roshmi, R.R.; Touznik, A.; Yokota, T. Allele-Selective LNA Gapmers for the Treatment of Fibrodysplasia Ossificans Progressiva Knock Down the Pathogenic ACVR1R206H Transcript and Inhibit Osteogenic Differentiation. Nucleic Acid Ther. 2022, 32, 185–193. [Google Scholar] [CrossRef]
- Takahashi, M.; Katagiri, T.; Furuya, H.; Hohjoh, H. Disease-Causing Allele-Specific Silencing against the ALK2 Mutants, R206H and G356D, in Fibrodysplasia Ossificans Progressiva. Gene Ther. 2012, 19, 781–785. [Google Scholar] [CrossRef]
- Kaplan, J.; Kaplan, F.S.; Shore, E.M. Restoration of Normal BMP Signaling Levels and Osteogenic Differentiation in FOP Mesenchymal Progenitor Cells by Mutant Allele-Specific Targeting. Gene Ther. 2012, 19, 786–790. [Google Scholar] [CrossRef] [PubMed]
- De Brasi, D.; Orlando, F.; Gaeta, V.; De Liso, M.; Acquaviva, F.; Martemucci, L.; Mastrominico, A.; Di Rocco, M. Fibrodysplasia Ossificans Progressiva: A Challenging Diagnosis. Genes 2021, 12, 1187. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, F.S.; Xu, M.; Glaser, D.L.; Collins, F.; Connor, M.; Kitterman, J.; Sillence, D.; Zackai, E.; Ravitsky, V.; Zasloff, M.; et al. Early Diagnosis of Fibrodysplasia Ossificans Progressiva. Pediatrics 2008, 121, e1295–e1300. [Google Scholar] [CrossRef]
- Maftei, C.; Rypens, F.; Thiffault, I.; Dubé, J.; Laberge, A.-M.; Lemyre, E. Fibrodysplasia Ossificans Progressiva: Bilateral Hallux Valgus on Ultrasound a Clue for the First Prenatal Diagnosis for This Condition-Clinical Report and Review of the Literature. Prenat. Diagn. 2015, 35, 305–307. [Google Scholar] [CrossRef]
- Severino, M.; Bertamino, M.; Tortora, D.; Morana, G.; Uccella, S.; Bocciardi, R.; Ravazzolo, R.; Rossi, A.; Di Rocco, M. Novel Asymptomatic CNS Findings in Patients with ACVR1/ALK2 Mutations Causing Fibrodysplasia Ossificans Progressiva. J. Med. Genet. 2016, 53, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, A.A.; Kaplan, F.S.; Tracy, M.R.; O’Brien, M.L.; Dormans, J.P.; Shore, E.M.; Harland, R.M.; Kusumi, K. Developmental Anomalies of the Cervical Spine in Patients with Fibrodysplasia Ossificans Progressiva Are Distinctly Different from Those in Patients with Klippel-Feil Syndrome: Clues from the BMP Signaling Pathway. Spine 2005, 30, 1379–1385. [Google Scholar] [CrossRef]
- Zaghloul, K.A.; Heuer, G.G.; Guttenberg, M.D.; Shore, E.M.; Kaplan, F.S.; Storm, P.B. Lumbar Puncture and Surgical Intervention in a Child with Undiagnosed Fibrodysplasia Ossificans Progressiva. J. Neurosurg. Pediatr. 2008, 1, 91–94. [Google Scholar] [CrossRef]
- Pignolo, R.J.; Shore, E.M.; Kaplan, F.S. Fibrodysplasia Ossificans Progressiva: Clinical and Genetic Aspects. Orphanet J. Rare Dis. 2011, 6, 80. [Google Scholar] [CrossRef]
- Schäper, C.; Noga, O.; Koch, B.; Ewert, R.; Felix, S.B.; Gläser, S.; Kunkel, G.; Gustavus, B. Anti-Inflammatory Properties of Montelukast, a Leukotriene Receptor Antagonist in Patients with Asthma and Nasal Polyposis. J. Investig. Allergol. Clin. Immunol. 2011, 21, 51–58. [Google Scholar]
- Convente, M.R.; Chakkalakal, S.A.; Yang, E.J.; Caron, R.J.; Zhang, D.; Kambayashi, T.; Kaplan, F.S.; Shore, E.M. Depletion of Mast Cells and Macrophages Impairs Heterotopic Ossification in an Acvr1R206H Mouse Model of Fibrodysplasia Ossificans Progressiva. J. Bone Miner. Res. 2018, 33, 269–282. [Google Scholar] [CrossRef]
- Werner, C.M.L.; Zimmermann, S.M.; Würgler-Hauri, C.C.; Lane, J.M.; Wanner, G.A.; Simmen, H.P. Use of Imatinib in the Prevention of Heterotopic Ossification. HSS J. 2013, 9, 166–170. [Google Scholar] [CrossRef]
- Brantus, J.F.; Meunier, P.J. Effects of Intravenous Etidronate and Oral Corticosteroids in Fibrodysplasia Ossificans Progressiva. Clin. Orthop. Relat. Res. 1998, 346, 117–120. [Google Scholar] [CrossRef]
- Pennanen, N.; Lapinjoki, S.; Urtti, A.; Mönkkönen, J. Effect of Liposomal and Free Bisphosphonates on the IL-1β, IL-6 and TNFα Secretion from RAW 264 Cells in Vitro. Pharm. Res. An Off. J. Am. Assoc. Pharm. Sci. 1995, 12, 916–922. [Google Scholar] [CrossRef]
- Pabst, A.M.; Ziebart, T.; Ackermann, M.; Konerding, M.A.; Walter, C. Bisphosphonates’ Antiangiogenic Potency in the Development of Bisphosphonate-Associated Osteonecrosis of the Jaws: Influence on Microvessel Sprouting in an in Vivo 3D Matrigel Assay. Clin. Oral Investig. 2014, 18, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Wiklander, O.P.B.; Brennan, M.Á.; Lötvall, J.; Breakefield, X.O.; EL Andaloussi, S. Advances in Therapeutic Applications of Extracellular Vesicles. Sci. Transl. Med. 2019, 11, eaav8521. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, F.S.; Al Mukaddam, M.; Baujat, G.; Brown, M.; Cali, A.; Cho, T.-J.; Crowe, C.; De Cunto, C.L.; Delai, P.; Diecidue, R.J.; et al. The Medical Management of Fibrodysplasia Ossificans Progressiva: Current Treatment Considerations (Update: May 2022). Proc Intl Clin Council FOP. 2022, 2, 1–127. Available online: http://dmrocke.ucdavis.edu/papers/FOPRx_Guidelines_090603_FINAL.doc (accessed on 15 November 2023).
- Simmons, D.L.; Botting, R.M.; Hla, T. Cyclooxygenase Isozymes: The Biology of Prostaglandin Synthesis and Inhibition. Pharmacol. Rev. 2004, 56, 387–437. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Kingman, J.; Sundberg, J.P.; Levine, M.A.; Uitto, J. Dual Effects of Bisphosphonates on Ectopic Skin and Vascular Soft Tissue Mineralization versus Bone Microarchitecture in a Mouse Model of Generalized Arterial Calcification of Infancy. J. Investig. Dermatol. 2016, 136, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Shaw, N.J. Bisphosphonate Treatment of Bone Disease. Arch. Dis. Child. 2005, 90, 494–499. [Google Scholar] [CrossRef]
- Francis, M.D.; Valent, D.J. Historical Perspectives on the Clinical Development of Bisphosphonates in the Treatment of Bone Diseases. J. Musculoskelet. Neuronal Interact. 2007, 7, 2–8. [Google Scholar]
- Ganesan, K.; Goyal, A.; Roane, D. Bisphosphonate. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2023. [Google Scholar]
- Pignolo, R.J.; Baujat, G.; Hsiao, E.C.; Keen, R.; Wilson, A.; Packman, J.; Strahs, A.L.; Grogan, D.R.; Kaplan, F.S. Palovarotene for Fibrodysplasia Ossificans Progressiva (FOP): Results of a Randomized, Placebo-Controlled, Double-Blind Phase 2 Trial. J. Bone Miner. Res. 2022, 37, 1891–1902. [Google Scholar] [CrossRef] [PubMed]
- Shimono, K.; Tung, W.; Macolino, C.; Chi, A.H.-T.; Didizian, J.H.; Mundy, C.; Chandraratna, R.A.; Mishina, Y.; Enomoto-Iwamoto, M.; Pacifici, M.; et al. Potent Inhibition of Heterotopic Ossification by Nuclear Retinoic Acid Receptor-γ Agonists. Nat. Med. 2011, 17, 454–460. [Google Scholar] [CrossRef]
- Chakkalakal, S.A.; Uchibe, K.; Convente, M.R.; Zhang, D.; Economides, A.N.; Kaplan, F.S.; Pacifici, M.; Iwamoto, M.; Shore, E.M. Palovarotene Inhibits Heterotopic Ossification and Maintains Limb Mobility and Growth in Mice With the Human ACVR1 R206H Fibrodysplasia Ossificans Progressiva (FOP) Mutation. J. Bone Miner. Res. 2016, 31, 1666–1675. [Google Scholar] [CrossRef] [PubMed]
- Pignolo, R.J.; Hsiao, E.C.; Al Mukaddam, M.; Baujat, G.; Berglund, S.K.; Brown, M.A.; Cheung, A.M.; De Cunto, C.; Delai, P.; Haga, N.; et al. Reduction of New Heterotopic Ossification (HO) in the Open-Label, Phase 3 MOVE Trial of Palovarotene for Fibrodysplasia Ossificans Progressiva (FOP). J. Bone Miner. Res. 2023, 38, 381–394. [Google Scholar] [CrossRef]
- Ipsen Biopharmaceuticals, I. Ipsen Initiates Partial Clinical Hold for Palovarotene IND120181 and IND135403 Studies. Available online: https://www.ipsen.com/websites/Ipsen_Online/wp-content/uploads/2019/12/06064333/Palovarotene_FDA_Partial_Clinical_Hold-News_Release_061219.pdf (accessed on 27 October 2023).
- Ipsen Biopharmaceuticals. SOHONOS (Palovarotene) Capsules, for Oral Use—Full Prescribing Information; Ipsen Biopharmaceuticals, Inc.: Cambridge, MA, USA, 2023. [Google Scholar]
- Eekhoff, E.M.W.; de Ruiter, R.D.; Smilde, B.J.; Schoenmaker, T.; de Vries, T.J.; Netelenbos, C.; Hsiao, E.C.; Scott, C.; Haga, N.; Grunwald, Z.; et al. Gene Therapy for Fibrodysplasia Ossificans Progressiva: Feasibility and Obstacles. Hum. Gene Ther. 2022, 33, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.; Scott, G.; Komatsu, Y.; Araya, R.; Kawano, M.; Ray, M.K.; Yamada, M.; Mishina, Y. Generation of a Mouse with Conditionally Activated Signaling through the BMP Receptor, ALK2. Genesis 2006, 44, 159–167. [Google Scholar] [CrossRef]
- Yu, P.B.; Deng, D.Y.; Lai, C.S.; Hong, C.C.; Cuny, G.D.; Bouxsein, M.L.; Hong, D.W.; McManus, P.M.; Katagiri, T.; Sachidanandan, C.; et al. BMP Type I Receptor Inhibition Reduces Heterotopic Ossification. Nat. Med. 2008, 14, 1363–1369. [Google Scholar] [CrossRef]
- Haupt, J.; Deichsel, A.; Stange, K.; Ast, C.; Bocciardi, R.; Ravazzolo, R.; Di Rocco, M.; Ferrari, P.; Landi, A.; Kaplan, F.S.; et al. ACVR1 p.Q207E Causes Classic Fibrodysplasia Ossificans Progressiva and Is Functionally Distinct from the Engineered Constitutively Active ACVR1 p.Q207D Variant. Hum. Mol. Genet. 2014, 23, 5364–5377. [Google Scholar] [CrossRef]
- Wieser, R.; Wrana, J.L.; Massagué, J. GS Domain Mutations That Constitutively Activate TβR-I, the Downstream Signaling Component in the TGF-β Receptor Complex. EMBO J. 1995, 14, 2199–2208. [Google Scholar] [CrossRef]
- Bagarova, J.; Vonner, A.J.; Armstrong, K.A.; Börgermann, J.; Lai, C.S.C.; Deng, D.Y.; Beppu, H.; Alfano, I.; Filippakopoulos, P.; Morrell, N.W.; et al. Constitutively Active ALK2 Receptor Mutants Require Type II Receptor Cooperation. Mol. Cell. Biol. 2013, 33, 2413–2424. [Google Scholar] [CrossRef]
- LaBonty, M.; Yelick, P.C. Animal Models of Fibrodysplasia Ossificans Progressiva. Dev. Dyn. 2018, 247, 279–288. [Google Scholar] [CrossRef]
- Chakkalakal, S.A.; Zhang, D.; Culbert, A.L.; Convente, M.R.; Caron, R.J.; Wright, A.C.; Maidment, A.D.A.; Kaplan, F.S.; Shore, E.M. An Acvr1 R206H Knock-in Mouse Has Fibrodysplasia Ossificans Progressiva. J. Bone Miner. Res. 2012, 27, 1746–1756. [Google Scholar] [CrossRef]
- Hino, K.; Horigome, K.; Nishio, M.; Komura, S.; Nagata, S.; Zhao, C.; Jin, Y.; Kawakami, K.; Yamada, Y.; Ohta, A.; et al. Activin-A Enhances MTOR Signaling to Promote Aberrant Chondrogenesis in Fibrodysplasia Ossificans Progressiva. J. Clin. Investig. 2017, 127, 3339–3352. [Google Scholar] [CrossRef]
- Beard, C.; Hochedlinger, K.; Plath, K.; Wutz, A.; Jaenisch, R. Efficient Method to Generate Single-Copy Transgenic Mice by Site-Specific Integration in Embryonic Stem Cells. Genesis 2006, 44, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Kan, L.; Peng, C.Y.; McGuire, T.L.; Kessler, J.A. Glast-Expressing Progenitor Cells Contribute to Heterotopic Ossification. Bone 2013, 53, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Lounev, V.Y.; Ramachandran, R.; Wosczyna, M.N.; Yamamoto, M.; Maidment, A.D.A.; Shore, E.M.; Glaser, D.L.; Goldhamer, D.J.; Kaplan, F.S. Identification of Progenitor Cells That Contribute to Heterotopic Skeletogenesis. J. Bone Jt. Surg. Am. 2009, 91, 652–663. [Google Scholar] [CrossRef] [PubMed]
- Suda, R.K.; Billings, P.C.; Egan, K.P.; Kim, J.H.; McCarrick-Walmsley, R.; Glaser, D.L.; Porter, D.L.; Shore, E.M.; Pignolo, R.J. Circulating Osteogenic Precursor Cells in Heterotopic Bone Formation. Stem Cells 2009, 27, 2209–2219. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Loder, S.J.; Cholok, D.; Peterson, J.; Li, J.; Breuler, C.; Cameron Brownley, R.; Hsin Sung, H.; Chung, M.T.; Kamiya, N.; et al. Scleraxis-Lineage Cells Contribute to Ectopic Bone Formation in Muscle and Tendon. Stem Cells 2017, 35, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Bauer, H.; Lele, Z.; Rauch, G.J.; Geisler, R.; Hammerschmidt, M. The Type I Serine/Threonine Kinase Receptor Alk8/Lost-a-Fin Is Required for Bmp2b/7 Signal Transduction during Dorsoventral Patterning of the Zebrafish Embryo. Development 2001, 128, 849–858. [Google Scholar] [CrossRef]
- Payne, T.L.; Postlethwait, J.H.; Yelick, P.C. Functional Characterization and Genetic Mapping of Alk8. Mech. Dev. 2001, 100, 275–289. [Google Scholar] [CrossRef]
- Yelick, P.C.; Abduljabbar, T.S.; Stashenko, P. ZALK-8, A Novel Type I Serine/Threonine Kinase Receptor, Is Expressed throughout Early Zebrafish Development. Dev. Dyn. 1998, 211, 352–361. [Google Scholar] [CrossRef]
- LaBonty, M.; Pray, N.; Yelick, P.C. A Zebrafish Model of Human Fibrodysplasia Ossificans Progressiva. Zebrafish 2017, 14, 293–304. [Google Scholar] [CrossRef]
- Le, V.; Anderson, E.; Akiyama, T.; Wharton, K.A. Drosophila Models of FOP Provide Mechanistic Insight. Bone 2018, 109, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Ventura, F.; Williams, E.; Ikeya, M.; Bullock, A.N.; ten Dijke, P.; Goumans, M.-J.; Sanchez-Duffhues, G. Challenges and Opportunities for Drug Repositioning in Fibrodysplasia Ossificans Progressiva. Biomedicines 2021, 9, 213. [Google Scholar] [CrossRef] [PubMed]
- Moineau, S.; Barrangou, R.; Boyaval, P.; Deveau, H.; Romero, D.A.; Horvath, P.; Richards, M.; Fremaux, C. CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science 2007, 315, 1709–1712. [Google Scholar]
- Makarova, K.S.; Wolf, Y.I.; Iranzo, J.; Shmakov, S.A.; Alkhnbashi, O.S.; Brouns, S.J.J.; Charpentier, E.; Cheng, D.; Haft, D.H.; Horvath, P.; et al. Evolutionary Classification of CRISPR–Cas Systems: A Burst of Class 2 and Derived Variants. Nat. Rev. Microbiol. 2020, 18, 67–83. [Google Scholar] [CrossRef]
- Jia, C.; Huai, C.; Ding, J.; Hu, L.; Su, B.; Chen, H.; Lu, D. New Applications of CRISPR/Cas9 System on Mutant DNA Detection. Gene 2018, 641, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Kawamata, M.; Suzuki, H.I.; Kimura, R.; Suzuki, A. Optimization of Cas9 Activity through the Addition of Cytosine Extensions to Single-Guide RNAs. Nat. Biomed. Eng. 2023, 7, 672–691. [Google Scholar] [CrossRef]
- Mengstie, M.A.; Wondimu, B.Z. Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biol. Targets Ther. 2021, 15, 353–361. [Google Scholar] [CrossRef]
- Lino, C.A.; Harper, J.C.; Carney, J.P.; Timlin, J.A. Delivering CRISPR: A Review of the Challenges and Approaches. Drug Deliv. 2018, 25, 1234–1257. [Google Scholar] [CrossRef]
- Anwar, S.; Mir, F.; Yokota, T. Enhancing the Effectiveness of Oligonucleotide Therapeutics Using Cell-Penetrating Peptide Conjugation, Chemical Modification, and Carrier-Based Delivery Strategies. Pharmaceutics 2023, 15, 1130. [Google Scholar] [CrossRef] [PubMed]
- Lowery, J.W.; Rosen, V. Silencing the FOP Gene. Gene Ther. 2012, 19, 701–702. [Google Scholar] [CrossRef]
- Li, C.; Samulski, R.J. Engineering Adeno-Associated Virus Vectors for Gene Therapy. Nat. Rev. Genet. 2020, 21, 255–272. [Google Scholar] [CrossRef] [PubMed]
- Cullis, P.R.; Hope, M.J. Lipid Nanoparticle Systems for Enabling Gene Therapies. Mol. Ther. 2017, 25, 1467–1475. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Wang, H.; Hao, J. Recent Progress in Drug Development for Fibrodysplasia Ossificans Progressiva. Mol. Cell. Biochem. 2022, 477, 2327–2334. [Google Scholar] [CrossRef]
- Pang, J.; Zuo, Y.; Chen, Y.; Song, L.; Zhu, Q.; Yu, J.; Shan, C.; Cai, Z.; Hao, J.; Kaplan, F.S.; et al. ACVR1-Fc Suppresses BMP Signaling and Chondro-Osseous Differentiation in an in Vitro Model of Fibrodysplasia Ossificans Progressiva. Bone 2016, 92, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, T.; Tsukamoto, S.; Kuratani, M. Heterotopic Bone Induction via BMP Signaling: Potential Therapeutic Targets for Fibrodysplasia Ossificans Progressiva. Bone 2018, 109, 241–250. [Google Scholar] [CrossRef]
- Yamamoto, R.; Matsushita, M.; Kitoh, H.; Masuda, A.; Ito, M.; Katagiri, T.; Kawai, T.; Ishiguro, N.; Ohno, K. Clinically Applicable Antianginal Agents Suppress Osteoblastic Transformation of Myogenic Cells and Heterotopic Ossifications in Mice. J. Bone Miner. Metab. 2013, 31, 26–33. [Google Scholar] [CrossRef]
- Sanvitale, C.E.; Kerr, G.; Chaikuad, A.; Ramel, M.C.; Mohedas, A.H.; Reichert, S.; Wang, Y.; Triffitt, J.T.; Cuny, G.D.; Yu, P.B.; et al. A New Class of Small Molecule Inhibitor of BMP Signaling. PLoS ONE 2013, 8, e62721. [Google Scholar] [CrossRef]
- Cappato, S.; Giacopelli, F.; Ravazzolo, R.; Bocciardi, R. The Horizon of a Therapy for Rare Genetic Diseases: A “Druggable” Future for Fibrodysplasia Ossificans Progressiva. Int. J. Mol. Sci. 2018, 19, 989. [Google Scholar] [CrossRef]
- Valer, J.A.; Sánchez-de-Diego, C.; Gámez, B.; Mishina, Y.; Rosa, J.L.; Ventura, F. Inhibition of Phosphatidylinositol 3-kinase α (PI 3Kα) Prevents Heterotopic Ossification. EMBO Mol. Med. 2019, 11, e10567. [Google Scholar] [CrossRef] [PubMed]
- Vanhoutte, F.; Liang, S.; Ruddy, M.; Zhao, A.; Drewery, T.; Wang, Y.; DelGizzi, R.; Forleo-Neto, E.; Rajadhyaksha, M.; Herman, G.; et al. Pharmacokinetics and Pharmacodynamics of Garetosmab (Anti-Activin A): Results From a First-in-Human Phase 1 Study. J. Clin. Pharmacol. 2020, 60, 1424–1431. [Google Scholar] [CrossRef]
- Wang, H.; Shore, E.M.; Pignolo, R.J.; Kaplan, F.S. Activin A Amplifies Dysregulated BMP Signaling and Induces Chondro-Osseous Differentiation of Primary Connective Tissue Progenitor Cells in Patients with Fibrodysplasia Ossificans Progressiva (FOP). Bone 2018, 109, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.-Z.; Lee, J.H. Mesenchymal Stem Cell Therapy for Bone Regeneration. Clin. Orthop. Surg. 2018, 10, 271. [Google Scholar] [CrossRef] [PubMed]
- Barruet, E.; Hsiao, E.C. Application of Human Induced Pluripotent Stem Cells to Model Fibrodysplasia Ossificans Progressiva. Bone 2018, 109, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Hamasaki, M.; Hashizume, Y.; Yamada, Y.; Katayama, T.; Hohjoh, H.; Fusaki, N.; Nakashima, Y.; Furuya, H.; Haga, N.; Takami, Y.; et al. Pathogenic Mutation of ALK2 Inhibits Induced Pluripotent Stem Cell Reprogramming and Maintenance: Mechanisms of Reprogramming and Strategy for Drug Identification. Stem Cells 2012, 30, 2437–2449. [Google Scholar] [CrossRef]
- Kim, B.Y.; Jeong, S.K.; Lee, S.Y.; Lee, S.M.; Gweon, E.J.; Ahn, H.; Kim, J.; Chung, S.K. Concurrent Progress of Reprogramming and Gene Correction to Overcome Therapeutic Limitation of Mutant ALK2-IPSC. Exp. Mol. Med. 2016, 48, e237. [Google Scholar] [CrossRef]
- Ghasemi, M.; Roshandel, E.; Mohammadian, M.; Farhadihosseinabadi, B.; Akbarzadehlaleh, P.; Shamsasenjan, K. Mesenchymal Stromal Cell-Derived Secretome-Based Therapy for Neurodegenerative Diseases: Overview of Clinical Trials. Stem Cell Res. Ther. 2023, 14, 122. [Google Scholar] [CrossRef]
- Baranovskii, D.S.; Klabukov, I.D.; Arguchinskaya, N.V.; Yakimova, A.O.; Kisel, A.A.; Yatsenko, E.M.; Ivanov, S.A.; Shegay, P.V.; Kaprin, A.D. Adverse Events, Side Effects and Complications in Mesenchymal Stromal Cell-Based Therapies. Stem Cell Investig. 2022, 9, 7. [Google Scholar] [CrossRef]
- Brennan, T.A.; Lindborg, C.M.; Bergbauer, C.R.; Wang, H.; Kaplan, F.S.; Pignolo, R.J. Mast Cell Inhibition as a Therapeutic Approach in Fibrodysplasia Ossificans Progressiva (FOP). Bone 2018, 109, 259–266. [Google Scholar] [CrossRef]
- Kan, C.; Yang, J.; Na, D.; Xu, Y.; Yang, B.; Zhao, H.; Lu, H.; Li, Y.; Zhang, K.; McGuire, T.L.; et al. Inhibition of Immune Checkpoints Prevents Injury-Induced Heterotopic Ossification. Bone Res. 2019, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Nikishina, I.P.; Arsenyeva, S.V.; Matkava, V.G.; Arefieva, A.N.; Kaleda, M.I.; Smirnov, A.V.; Blank, L.M.; Kostik, M.M. Successful Experience of Tofacitinib Treatment in Patients with Fibrodysplasia Ossificans Progressiva. Pediatr. Rheumatol. 2023, 21, 92. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, X.; Zhou, D.; Zhou, W.; Dai, F.; Lin, H. Macrophages in Heterotopic Ossification: From Mechanisms to Therapy. NPJ Regen. Med. 2021, 6, 70. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Shay, C.; Abousaud, M.; Tang, C.; Li, Y.; Qin, Z.; Saba, N.F.; Teng, Y. Patterns of Toxicity Burden for FDA-Approved Immune Checkpoint Inhibitors in the United States. J. Exp. Clin. Cancer Res. 2023, 42, 4. [Google Scholar] [CrossRef] [PubMed]
- Schneider, B.J.; Naidoo, J.; Santomasso, B.D.; Lacchetti, C.; Adkins, S.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 4073–4126. [Google Scholar] [CrossRef]
- Dhir, N.; Jain, A.; Mahendru, D.; Prakash, A.; Medhi, B. Drug Repurposing and Orphan Disease Therapeutics. In Drug Repurposing—Hypothesis, Molecular Aspects and Therapeutic Applications; IntechOpen: London, UK, 2020. [Google Scholar]
- Jourdan, J.-P.; Bureau, R.; Rochais, C.; Dallemagne, P. Drug Repositioning: A Brief Overview. J. Pharm. Pharmacol. 2020, 72, 1145–1151. [Google Scholar] [CrossRef]
- Williams, E.; Bagarova, J.; Kerr, G.; Xia, D.-D.; Place, E.S.; Dey, D.; Shen, Y.; Bocobo, G.A.; Mohedas, A.H.; Huang, X.; et al. Saracatinib Is an Efficacious Clinical Candidate for Fibrodysplasia Ossificans Progressiva. JCI Insight 2021, 6, e95042. [Google Scholar] [CrossRef]
- Pignolo, R.J.; Kaplan, F.S. Druggable Targets, Clinical Trial Design and Proposed Pharmacological Management in Fibrodysplasia Ossificans Progressiva. Expert Opin. Orphan Drugs 2020, 8, 101–109. [Google Scholar] [CrossRef]
- Pignolo, R.J.; Bedford-Gay, C.; Cali, A.; Davis, M.; Delai, P.L.R.; Gonzales, K.; Hixson, C.; Kent, A.; Newport, H.; Robert, M.; et al. Current Challenges and Opportunities in the Care of Patients with Fibrodysplasia Ossificans Progressiva (FOP): An International, Multi-Stakeholder Perspective. Orphanet J. Rare Dis. 2022, 17, 168. [Google Scholar] [CrossRef]
- Kaplan, F.S.; Pignolo, R.J.; Shore, E.M. From Mysteries to Medicines: Drug Development for Fibrodysplasia Ossificans Progressiva. Expert Opin. Orphan Drugs 2013, 1, 637–649. [Google Scholar] [CrossRef]
- Ryan, E.G.; Bruce, J.; Metcalfe, A.J.; Stallard, N.; Lamb, S.E.; Viele, K.; Young, D.; Gates, S. Using Bayesian Adaptive Designs to Improve Phase III Trials: A Respiratory Care Example. BMC Med. Res. Methodol. 2019, 19, 99. [Google Scholar] [CrossRef] [PubMed]
- Pallmann, P.; Bedding, A.W.; Choodari-Oskooei, B.; Dimairo, M.; Flight, L.; Hampson, L.V.; Holmes, J.; Mander, A.P.; Odondi, L.; Sydes, M.R.; et al. Adaptive Designs in Clinical Trials: Why Use Them, and How to Run and Report Them. BMC Med. 2018, 16, 29. [Google Scholar] [CrossRef] [PubMed]
- Kidwell, K.M.; Roychoudhury, S.; Wendelberger, B.; Scott, J.; Moroz, T.; Yin, S.; Majumder, M.; Zhong, J.; Huml, R.A.; Miller, V. Application of Bayesian Methods to Accelerate Rare Disease Drug Development: Scopes and Hurdles. Orphanet J. Rare Dis. 2022, 17, 186. [Google Scholar] [CrossRef] [PubMed]
- Fouarge, E.; Monseur, A.; Boulanger, B.; Annoussamy, M.; Seferian, A.M.; De Lucia, S.; Lilien, C.; Thielemans, L.; Paradis, K.; Cowling, B.S.; et al. Hierarchical Bayesian Modelling of Disease Progression to Inform Clinical Trial Design in Centronuclear Myopathy. Orphanet J. Rare Dis. 2021, 16, 3. [Google Scholar] [CrossRef]
- Muehlemann, N.; Zhou, T.; Mukherjee, R.; Hossain, M.I.; Roychoudhury, S.; Russek-Cohen, E. A Tutorial on Modern Bayesian Methods in Clinical Trials. Ther. Innov. Regul. Sci. 2023, 57, 402–416. [Google Scholar] [CrossRef]
- Golchi, S. Estimating Design Operating Characteristics in Bayesian Adaptive Clinical Trials. Can. J. Stat. 2022, 50, 417–436. [Google Scholar] [CrossRef]
Therapeutic Strategy | Objective | Molecular Target | Anticipated Outcome |
---|---|---|---|
Gene editing | Rectification of mutations in the ACVR1 Gene using strategies like CRISPR-Cas9 | DNA | Exclusive expression of the corrected ACVR1/ALK2 protein |
Gene addition | Introduction of healthy, functional ACVR1 gene copies | DNA, mRNA | Competition between newly added functional ACVR1/ALK2 and existing mutant forms |
Gene silencing | Full inactivation or allele-specific suppression of ACVR1 | mRNA | Full inactivation may lead to unintended physiological ramifications; allele-specific suppression selectively diminishes the expression of the mutant ACVR1 gene |
Gene replacement | Synchronizing gene addition and gene silencing | mRNA | Allele-specific suppression reduces mutant ACVR1 expression, while the addition of functional ACVR1 compensates for the deficiency in functional ACVR1/ALK2 |
ClinicalTrials.gov Identifier | Study Title/ Sponsoring Entity | Intervention | Participants | Primary Outcome |
---|---|---|---|---|
NCT05394116 | OPTIMA: a study to assess the safety, tolerability, and efficacy of garetosmab versus placebo administered intravenously (IV) in adult participants with fibrodysplasia ossificans progressiva (FOP) by Regeneron Pharmaceuticals | Garetosmab (REGN2477) | Adults, both sexes | Quantification of newly developed HO lesions via adjudicated CT scans; the occurrence and gradation of special-interest treatment-emergent adverse events (AESIs) |
NCT05039515 | FALKON: study to assess the effectiveness and safety of two dosage regimens of oral fidrisertib (IPN60130) for the treatment of fibrodysplasia ossificans progressiva (FOP)/ Clementia Pharmaceuticals Inc. | Fidrisertib (IPN60130) | Ages 5 and above, both sexes | Yearly alteration in HO volume, measured through low-dose WBCT (head excluded); incidence of adverse events/serious adverse events (AEs/SAEs); baseline deviation in critical laboratory parameters (hematology, biochemistry, urinalysis); baseline changes in physical examinations; alterations in vital signs and ECG readings from baseline |
NCT04307953 | STOPFOP: saracatinib trial to prevent FOP by Amsterdam UMC | Saracatinib (AZD0530) | Ages 18 to 65, both sexes | Objective variance in heterotopic bone volume, assessed via low-dose whole-body CT, across both study arms during the initial 6-month RCT period |
NCT05090891 | PROGRESS: To assess the efficacy, safety, and tolerability of INCB000928 in participants with fibrodysplasia ossificans progressive by Incyte Corporation | Zilurgisertib (INCB000928) | Ages 12 to 99, both sexes | Comprehensive assessment of new HO volume |
NCT05027802 | PIVOINE: a rollover study to further evaluate the safety and efficacy of palovarotene capsules in male and female participants aged ≥14 years old with fibrodysplasia ossificans progressiva (FOP) who have completed the relevant parent studies by Ipsen Biopharmaceuticles | Palovarotene | Ages 14 and above, both sexes | Incidence and categorical elucidation of all serious and non-serious treatment-emergent adverse events (TEAEs), irrespective of their causal relation to the study intervention |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar, S.; Yokota, T. Navigating the Complex Landscape of Fibrodysplasia Ossificans Progressiva: From Current Paradigms to Therapeutic Frontiers. Genes 2023, 14, 2162. https://doi.org/10.3390/genes14122162
Anwar S, Yokota T. Navigating the Complex Landscape of Fibrodysplasia Ossificans Progressiva: From Current Paradigms to Therapeutic Frontiers. Genes. 2023; 14(12):2162. https://doi.org/10.3390/genes14122162
Chicago/Turabian StyleAnwar, Saeed, and Toshifumi Yokota. 2023. "Navigating the Complex Landscape of Fibrodysplasia Ossificans Progressiva: From Current Paradigms to Therapeutic Frontiers" Genes 14, no. 12: 2162. https://doi.org/10.3390/genes14122162