Assessment of the Genetic Characteristics of a Generation Born during a Long-Term Socioeconomic Crisis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barban, N.; Jansen, R.; de Vlaming, R.; Vaez, A.; Mandemakers, J.J.; Tropf, F.C.; Shen, X.; Wilson, J.F.; Chasman, D.I.; Nolte, I.M.; et al. Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nat. Genet. 2016, 48, 1462–1472. [Google Scholar] [CrossRef]
- Song, W.; Shi, Y.; Wang, W.; Pan, W.; Qian, W.; Yu, S.; Zhao, M.; Lin, G.N. A selection pressure landscape for 870 human polygenic traits. Nat. Hum. Behav. 2021, 5, 1731–1743. [Google Scholar] [CrossRef] [PubMed]
- Mathieson, I.; Day, F.R.; Barban, N.; Tropf, F.C.; Brazel, D.M.; eQTLGen Consortium; BIOS Consortium; Vaez, A.; van Zuydam, N.; Bitarello, B.D.; et al. Genome-wide analysis identifies genetic effects on reproductive success and ongoing natural selection at the FADS locus. Nat. Hum. Behav. 2023, 7, 790–801. [Google Scholar] [CrossRef] [PubMed]
- Govindaraju, D.R.; Adrienne Cupples, L.; Kannel, W.B.; O’Donnell, C.J.; Atwood, L.D.; D’Agostino, R.B., Sr.; Fox, C.S.; Larson, M.; Levy, D.; Murabito, J.; et al. Genetics of the Framingham Heart Study population. Adv. Genet. 2008, 62, 33–65. [Google Scholar] [CrossRef]
- Wu, Y.; Furuya, S.; Wang, Z.; Nobles, J.E.; Fletcher, J.M.; Lu, Q. GWAS on birth year infant mortality rates provides evidence of recent natural selection. Proc. Natl. Acad. Sci. USA 2022, 119, e2117312119. [Google Scholar] [CrossRef]
- Mathieson, I.; Lazaridis, I.; Rohland, N.; Mallick, S.; Patterson, N.; Roodenberg, S.A.; Harney, E.; Stewardson, K.; Fernandes, D.; Novak, M.; et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 2015, 528, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, M.; Jędrychowska-Dańska, K.; Płoszaj, T.; Witas, P.; Zamerska, A.; Mańkowska-Pliszka, H.; Witas, H.W. Searching for signals of recent natural selection in genes of the innate immune response—Ancient DNA study. Infect. Genet. Evol. 2018, 63, 62–72. [Google Scholar] [CrossRef]
- Klunk, J.; Vilgalys, T.P.; Demeure, C.E.; Cheng, X.; Shiratori, M.; Madej, J.; Beau, R.; Elli, D.; Patin, M.I.; Redfern, R.; et al. Evolution of immune genes is associated with the Black Death. Nature 2022, 611, 312–319. [Google Scholar] [CrossRef]
- Mikhailova, S.V.; Ivanoshchuk, D.E.; Yushkevich, E.A.; Bairqdar, A.; Anisimenko, M.S.; Shcherbakova, L.V.; Denisova, D.V.; Orlov, P.S. Prevalence of Common Alleles of Some Stress Resilience Genes among Adolescents Born in Different Periods Relative to the Socioeconomic Crisis of the 1990s in Russia. Curr. Issues Mol. Biol. 2022, 45, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Federal State Statistics Service Report. Fertility, Mortality, and Population Growth by Regions of the Russian Federation. Available online: https://rosstat.gov.ru/bgd/regl/b11_13/isswww.exe/stg/d1/04-06.htm (accessed on 30 October 2023). (In Russian)
- Borowy, I. Similar but different: Health and economic crisis in 1990s Cuba and Russia. Soc. Sci. Med. 2011, 72, 1489–1498. [Google Scholar] [CrossRef]
- Joseph, D.N.; Whirledge, S. Stress and the HPA Axis: Balancing Homeostasis and Fertility. Int. J. Mol. Sci. 2017, 18, 2224. [Google Scholar] [CrossRef]
- Suvorov, A. Population numbers and reproductive health. Endocrinology 2021, 162, bqab154. [Google Scholar] [CrossRef]
- Hettema, J.M.; Prescott, C.A.; Kendler, K.S. A population-based twin study of generalized anxiety disorder in men and women. J. Nerv. Ment. Dis. 2001, 189, 413–420. [Google Scholar] [CrossRef]
- Sabol, S.Z.; Hu, S.; Hamer, D. A functional polymorphism in the monoamine oxidase A gene promoter. Hum. Genet. 1998, 103, 273–279. [Google Scholar] [CrossRef]
- Deckert, J.; Catalano, M.; Syagailo, Y.V.; Bosi, M.; Okladnova, O.; Di Bella, D.; Nöthen, M.M.; Maffei, P.; Franke, P.; Fritze, J.; et al. Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Hum. Mol. Genet. 1999, 8, 621–624. [Google Scholar] [CrossRef]
- Brummett, B.H.; Boyle, S.H.; Siegler, I.C.; Kuhn, C.M.; Surwit, R.S.; Garrett, M.E.; Collins, A.; Ashley-Koch, A.; Williams, R.B. HPA axis function in male caregivers: Effect of the monoamine oxidase-A gene promoter (MAOA-uVNTR). Biol. Psychol. 2008, 79, 250–255. [Google Scholar] [CrossRef]
- Schlüter, T.; Winz, O.; Henkel, K.; Eggermann, T.; Mohammadkhani-Shali, S.; Dietrich, C.; Heinzel, A.; Decker, M.; Cumming, P.; Zerres, K.; et al. MAOA-VNTR polymorphism modulates context-dependent dopamine release and aggressive behavior in males. Neuroimage 2016, 125, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Plieger, T.; Melchers, M.; Felten, A.; Lieser, T.; Meermann, R.; Reuter, M. Moderator Effects of Life Stress on the Association between MAOA-uVNTR, Depression, and Burnout. Neuropsychobiology 2019, 78, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Ramos, Á.; Moriana, J.A.; García-Torres, F.; Ruiz-Rubio, M. Emotional stability is associated with the MAOA promoter uVNTR polymorphism in women. Brain Behav. 2019, 9, e01376. [Google Scholar] [CrossRef] [PubMed]
- Castro Gonçalves, A.B.; Ferreira Fratelli, C.; Saraiva Siqueira, J.W.; Canongia de Abreu Cardoso Duarte, L.; Ribeiro Barros, A.; Possatti, I.; Lima Dos Santos, M.; de Souza Silva, C.M.; Rodrigues da Silva, I.C. MAOA uVNTR Genetic Variant and Major Depressive Disorder: A Systematic Review. Cells 2022, 11, 3267. [Google Scholar] [CrossRef]
- Hahn, M.K.; Blakely, R.D. Monoamine transporter gene structure and polymorphisms in relation to psychiatric and other complex disorders. Pharm. J. 2002, 2, 217–235. [Google Scholar] [CrossRef]
- Costa, A.; Riedel, M.; Müller, U.; Möller, H.J.; Ettinger, U. Relationship between SLC6A3 genotype and striatal dopamine transporter availability: A meta-analysis of human single photon emission computed tomography studies. Synapse 2011, 65, 998–1005. [Google Scholar] [CrossRef] [PubMed]
- Faraone, S.V.; Spencer, T.J.; Madras, B.K.; Zhang-James, Y.; Biederman, J. Functional effects of dopamine transporter gene genotypes on in vivo dopamine transporter functioning: A meta-analysis. Mol. Psychiatry 2014, 19, 880–889. [Google Scholar] [CrossRef]
- Šerý, O.; Paclt, I.; Drtílková, I.; Theiner, P.; Kopečková, M.; Zvolský, P.; Balcar, V.J. A 40-bp VNTR polymorphism in the 3′-untranslated region of DAT1/SLC6A3 is associated with ADHD but not with alcoholism. Behav. Brain Funct. 2015, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Salatino-Oliveira, A.; Rohde, L.A.; Hutz, M.H. The dopamine transporter role in psychiatric phenotypes. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2018, 177, 211–231. [Google Scholar] [CrossRef] [PubMed]
- Grünblatt, E.; Werling, A.M.; Roth, A.; Romanos, M.; Walitza, S. Association study and a systematic meta-analysis of the VNTR polymorphism in the 3′-UTR of dopamine transporter gene and attention-deficit hyperactivity disorder. J. Neural Transm. 2019, 126, 517–529. [Google Scholar] [CrossRef]
- Reith, M.E.A.; Kortagere, S.; Wiers, C.E.; Sun, H.; Kurian, M.A.; Galli, A.; Volkow, N.D.; Lin, Z. The dopamine transporter gene SLC6A3: Multidisease risks. Mol. Psychiatry 2022, 27, 1031–1046. [Google Scholar] [CrossRef]
- Neville, M.J.; Johnstone, E.C.; Walton, R.T. Identification and characterization of ANKK1: A novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum. Mutat. 2004, 23, 540–545. [Google Scholar] [CrossRef]
- Gluskin, B.S.; Mickey, B.J. Genetic variation and dopamine D2 receptor availability: A systematic review and meta-analysis of human in vivo molecular imaging studies. Transl. Psychiatry 2016, 6, e747. [Google Scholar] [CrossRef]
- Richter, A.; de Boer, L.; Guitart-Masip, M.; Behnisch, G.; Seidenbecher, C.I.; Schott, B.H. Motivational learning biases are differentially modulated by genetic determinants of striatal and prefrontal dopamine function. J. Neural Transm. 2021, 128, 1705–1720. [Google Scholar] [CrossRef] [PubMed]
- Koeneke, A.; Ponce, G.; Troya-Balseca, J.; Palomo, T.; Hoenicka, J. Ankyrin Repeat and Kinase Domain Containing 1 Gene, and Addiction Vulnerability. Int. J. Mol. Sci. 2020, 21, 2516. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hu, L.; Li, X.; Zhang, J.; Chen, B. The DRD2 rs1800497 polymorphism increase the risk of mood disorder: Evidence from an update meta-analysis. J. Affect. Disord. 2014, 158, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.M.; Zhang, J.; Tang, H.; Cao, L.H.; Jiang, T.Y.; Hu, Y.Y. Association between DRD2/ANKK1 rs1800497 C>T polymorphism and post-traumatic stress disorder susceptibility: A multivariate meta-analysis. Front. Neurosci. 2023, 17, 1102573. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, E.X.; Pereira, E.F.; Alkondon, M.; Rogers, S.W. Mammalian nicotinic acetylcholine receptors: From structure to function. Physiol. Rev. 2009, 89, 73–120. [Google Scholar] [CrossRef]
- Roe, B.E.; Tilley, M.R.; Gu, H.H.; Beversdorf, D.Q.; Sadee, W.; Haab, T.C.; Papp, A.C. Financial and psychological risk attitudes associated with two single nucleotide polymorphisms in the nicotine receptor (CHRNA4) gene. PLoS ONE 2009, 4, e6704. [Google Scholar] [CrossRef]
- Chen, C.Y.; Lin, S.H.; Li, P.; Huang, W.L.; Lin, Y.H. The role of the harm avoidance personality in depression and anxiety during the medical internship. Medicine 2015, 94, e389. [Google Scholar] [CrossRef]
- Gobbini, R.P.; Velardo, V.G.; Sokn, C.; Liberman, A.C.; Arzt, E. SUMO regulation of FKBP51 activity and the stress response. J. Cell. Biochem 2023. ahead of print. [Google Scholar] [CrossRef]
- Klengel, T.; Binder, E.B. Allele-specific epigenetic modification: A molecular mechanism for gene-environment interactions in stress-related psychiatric disorders? Epigenomics 2013, 5, 109–112. [Google Scholar] [CrossRef]
- Yeo, S.; Enoch, M.A.; Gorodetsky, E.; Akhtar, L.; Schuebel, K.; Roy, A.; Goldman, D. The influence of FKBP5 genotype on expression of FKBP5 and other glucocorticoid-regulated genes, dependent on trauma exposure. Genes Brain Behav. 2017, 16, 223–232. [Google Scholar] [CrossRef]
- Fuller, K.; Gravlee, C.C.; McCarty, C.; Mitchell, M.M.; Mulligan, C.J. Stressful social environment and financial strain drive depressive symptoms, and reveal the effects of a FKBP5 variant and male sex, in African Americans living in Tallahassee. Am. J. Phys. Anthropol. 2021, 176, 572–583. [Google Scholar] [CrossRef]
- Fan, B.; Ma, J.; Zhang, H.; Liao, Y.; Wang, W.; Zhang, S.; Lu, C.; Guo, L. Association of FKBP5 gene variants with depression susceptibility: A comprehensive meta-analysis. Asia Pac. Psychiatry 2021, 13, e12464. [Google Scholar] [CrossRef]
- Isaksson, J.; Comasco, E.; Åslund, C.; Rehn, M.; Tuvblad, C.; Andershed, H.; Nilsson, K.W. Associations between the FKBP5 haplotype, exposure to violence and anxiety in females. Psychoneuroendocrinology 2016, 72, 196–204. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, X.Z.; Yu, T.; Chen, Z.; Dohl, J.; Li, X.; Benedek, D.M.; Fullerton, C.S.; Wynn, G.; Barrett, J.E.; et al. Genetic association of FKBP5 with PTSD in US service members deployed to Iraq and Afghanistan. J. Psychiatr. Res. 2020, 122, 48–53. [Google Scholar] [CrossRef]
- Reul, J.M.; Holsboer, F. Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr. Opin. Pharmacol. 2002, 2, 23–33. [Google Scholar] [CrossRef]
- Gibbs, J.R.; van der Brug, M.P.; Hernandez, D.G.; Traynor, B.J.; Nalls, M.A.; Lai, S.L.; Arepalli, S.; Dillman, A.; Rafferty, I.P.; Troncoso, J.; et al. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet. 2010, 6, e1000952. [Google Scholar] [CrossRef] [PubMed]
- Weber, H.; Richter, J.; Straube, B.; Lueken, U.; Domschke, K.; Schartner, C.; Klauke, B.; Baumann, C.; Pané-Farré, C.; Jacob, C.P.; et al. Allelic variation in CRHR1 predisposes to panic disorder: Evidence for biased fear processing. Mol. Psychiatry 2016, 21, 813–822. [Google Scholar] [CrossRef]
- Roy, A.; Laas, K.; Kurrikoff, T.; Reif, A.; Veidebaum, T.; Lesch, K.P.; Harro, J. Family environment interacts with CRHR1 rs17689918 to predict mental health and behavioral outcomes. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 86, 45–51. [Google Scholar] [CrossRef]
- Pierzynowska, K.; Gaffke, L.; Żabińska, M.; Cyske, Z.; Rintz, E.; Wiśniewska, K.; Podlacha, M.; Węgrzyn, G. Roles of the Oxytocin Receptor (OXTR) in Human Diseases. Int. J. Mol. Sci. 2023, 24, 3887. [Google Scholar] [CrossRef]
- Chander, R.J.; Mather, K.A.; Cleary, R.; Grainger, S.A.; Thalamuthu, A.; Numbers, K.; Kochan, N.A.; Armstrong, N.; Brodaty, H.; Henry, J.D.; et al. The influence of rs53576 polymorphism in the oxytocin receptor (OXTR) gene on empathy in healthy adults by subtype and ethnicity: A systematic review and meta-analysis. Rev. Neurosci. 2021, 33, 43–57. [Google Scholar] [CrossRef]
- Senese, V.P.; Shinohara, K.; Venuti, P.; Bornstein, M.H.; Rosanio, V.; Nasti, C.; Neoh, M.J.; Maresca, M.; Esposito, G. The Interaction Effect of Parental Rejection and Oxytocin Receptor Gene Polymorphism on Depression: A Cross-Cultural Study in Non-Clinical Samples. Int. J. Environ. Res. Public Health 2022, 19, 5566. [Google Scholar] [CrossRef]
- Mercer, K.B.; Dias, B.; Shafer, D.; Maddox, S.A.; Mulle, J.G.; Hu, P.; Walton, J.; Ressler, K.J. Functional evaluation of a PTSD-associated genetic variant: Estradiol regulation and ADCYAP1R1. Transl. Psychiatry 2016, 6, e978. [Google Scholar] [CrossRef]
- Sundermann, E.E.; Maki, P.M.; Bishop, J.R. A review of estrogen receptor alpha gene (ESR1) polymorphisms, mood, and cognition. Menopause 2010, 17, 874–886. [Google Scholar] [CrossRef]
- Wuchty, S.; Myers, A.J.; Ramirez-Restrepo, M.; Huentelman, M.; Richolt, R.; Gould, F.; Harvey, P.D.; Michopolous, V.; Steven, J.S.; Wingo, A.P.; et al. Integration of peripheral transcriptomics, genomics, and interactomics following trauma identifies causal genes for symptoms of post-traumatic stress and major depression. Mol. Psychiatry 2021, 26, 3077–3092. [Google Scholar] [CrossRef]
- Levey, D.F.; Gelernter, J.; Polimanti, R.; Zhou, H.; Cheng, Z.; Aslan, M.; Quaden, R.; Concato, J.; Radhakrishnan, K.; Bryois, J.; et al. Reproducible Genetic Risk Loci for Anxiety: Results From ~200,000 Participants in the Million Veteran Program. Am. J. Psychiatry 2020, 177, 223–232. [Google Scholar] [CrossRef]
- Meier, S.M.; Trontti, K.; Purves, K.L.; Als, T.D.; Grove, J.; Laine, M.; Pedersen, M.G.; Bybjerg-Grauholm, J.; Bækved-Hansen, M.; Sokolowska, E.; et al. Genetic Variants Associated with Anxiety and Stress-Related Disorders: A Genome-Wide Association Study and Mouse-Model Study. JAMA Psychiatry 2019, 76, 924–932. [Google Scholar] [CrossRef]
- Hillard, C.J.; Beatka, M.; Sarvaideo, J. Endocannabinoid Signaling and the Hypothalamic-Pituitary-Adrenal Axis. Compr. Physiol. 2016, 7, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Lisboa, S.F.; Niraula, A.; Resstel, L.B.; Guimaraes, F.S.; Godbout, J.P.; Sheridan, J.F. Repeated social defeat-induced neuroinflammation, anxiety-like behavior and resistance to fear extinction were attenuated by the cannabinoid receptor agonist WIN55,212-2. Neuropsychopharmacology 2018, 43, 1924–1933. [Google Scholar] [CrossRef]
- Hillard, C.J.; Weinlander, K.M.; Stuhr, K.L. Contributions of endocannabinoid signaling to psychiatric disorders in humans: Genetic and biochemical evidence. Neuroscience 2012, 204, 207–229. [Google Scholar] [CrossRef] [PubMed]
- Peiró, A.M.; García-Gutiérrez, M.S.; Planelles, B.; Femenía, T.; Mingote, C.; Jiménez-Treviño, L.; Martínez-Barrondo, S.; García-Portilla, M.P.; Saiz, P.A.; Bobes, J.; et al. Association of cannabinoid receptor genes (CNR1 and CNR2) polymorphisms and panic disorder. Anxiety Stress. Coping 2020, 33, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, B.; Baron-Cohen, S. Variation in the human cannabinoid receptor CNR1 gene modulates gaze duration for happy faces. Mol. Autism 2011, 2, 10. [Google Scholar] [CrossRef] [PubMed]
- Cahill, S.; Chandola, T.; Hager, R. Genetic Variants Associated with Resilience in Human and Animal Studies. Front. Psychiatry 2022, 13, 840120. [Google Scholar] [CrossRef] [PubMed]
- Mahley, R.W.; Huang, Y. Apolipoprotein e sets the stage: Response to injury triggers neuropathology. Neuron 2012, 76, 871–885. [Google Scholar] [CrossRef]
- Aboud, O.; Mrak, R.E.; Boop, F.A.; Griffin, W.S. Epilepsy: Neuroinflammation, neurodegeneration, and APOE genotype. Acta Neuropathol. Commun. 2013, 1, 41. [Google Scholar] [CrossRef]
- James, L.M.; Engdahl, B.E.; Georgopoulos, A.P. Apolipoprotein E: The resilience gene. Exp. Brain Res. 2017, 235, 1853–1859. [Google Scholar] [CrossRef]
- Mota, N.P.; Han, S.; Harpaz-Rotem, I.; Maruff, P.; Krystal, J.H.; Southwick, S.M.; Gelernter, J.; Pietrzak, R.H. Apolipoprotein E gene polymorphism, trauma burden, and posttraumatic stress symptoms in U.S. military veterans: Results from the National Health and Resilience in Veterans Study. Depress. Anxiety 2018, 35, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Lyons, M.J.; Genderson, M.; Grant, M.D.; Logue, M.; Zink, T.; McKenzie, R.; Franz, C.E.; Panizzon, M.; Lohr, J.B.; Jerskey, B.; et al. Gene-environment interaction of ApoE genotype and combat exposure on PTSD. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2013, 162, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulos, P.; Papanastasiou, A.D.; Εconomou, P.; Beis, P.; Niforas, M.; Dassios, T.G.; Kormpaki, A.; Zarkadis, I.K.; Reichel, M.; Kornhuber, J.; et al. Associations between APOE-, COMT Val108/158Met- and BDNF Val66Met polymorphisms and variations in depressive and anxiety symptoms, sense of coherence and vital exhaustion in the real-life setting of mandatory basic military training. J. Neural Transm. 2021, 128, 105–114. [Google Scholar] [CrossRef]
- Khurana, V.; Goswami, B. Angiotensin converting enzyme (ACE). Clin. Chim. Acta 2022, 524, 113–122. [Google Scholar] [CrossRef]
- Baghai, T.C.; Schule, C.; Zwanzger, P.; Minov, C.; Zill, P.; Ella, R.; Eser, D.; Oezer, S.; Bondy, B.; Rupprecht, R. Hypothalamic-pituitary-adrenocortical axis dysregulation in patients with major depression is influenced by the insertion/deletion polymorphism in the angiotensin I-converting enzyme gene. Neurosci. Lett. 2002, 328, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Yamagata University Genomic Cohort Consortium (YUGCC). Pleiotropic effect of common variants at ABO Glycosyltranferase locus in 9q32 on plasma levels of pancreatic lipase and angiotensin converting enzyme. PLoS ONE 2014, 9, e55903. [Google Scholar] [CrossRef]
- Nylocks, K.M.; Michopoulos, V.; Rothbaum, A.O.; Almli, L.; Gillespie, C.F.; Wingo, A.; Schwartz, A.C.; Habib, L.; Gamwell, K.L.; Marvar, P.J.; et al. An angiotensin-converting enzyme (ACE) polymorphism may mitigate the effects of angiotensin-pathway medications on posttraumatic stress symptoms. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2015, 168B, 307–315. [Google Scholar] [CrossRef]
- Erhardt, A.; Lucae, S.; Kern, N.; Unschuld, P.G.; Ising, M.; Lieb, R.; Uhr, M.; Hohoff, C.; Deckert, J.; Bandelow, B.; et al. Association of polymorphisms in the angiotensin-converting enzyme gene with syndromal panic attacks. Mol. Psychiatry 2008, 13, 242–243. [Google Scholar] [CrossRef] [PubMed]
- Denisova, D.V.; Zavialova, L.G. Long-term trends in selected indicators of physical development of adolescent population in Novosibirsk (population-based study 1989–2009). Bull. Sib. Branch Russ. Acad. Med. Sci. 2011, 31, 84–89. (In Russian) [Google Scholar]
- Sambrook, J.; Russell, D.W. Purification of nucleic acids by extraction with phenol: Chloroform. CSH Protoc. 2006, 2006, pdb.prot4455. [Google Scholar] [CrossRef]
- Hixson, J.E.; Vernier, D.T. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J. Lipid Res. 1990, 31, 545–548. [Google Scholar] [CrossRef]
- Single Nucleotide Polymorphism Database (dbSNP). Available online: https://www.ncbi.nlm.nih.gov/snp/ (accessed on 11 October 2023).
- Genome Aggregation Database (gnomAD). Available online: https://gnomad.broadinstitute.org/ (accessed on 11 October 2023).
- Chung, M.L.; Seib-Pfeifer, L.E.; Elling, C.; Geiser, F.; Forstner, A.J.; Schumacher, J.; Conrad, R. Personality subtypes in adults with social anxiety disorder-novelty seeking makes the difference. BMC Psychiatry 2022, 22, 832. [Google Scholar] [CrossRef]
- Kimbrel, N.A.; Ashley-Koch, A.E.; Qin, X.J.; Lindquist, J.H.; Garrett, M.E.; Dennis, M.F.; Hair, L.P.; Huffman, J.E.; Jacobson, D.A.; Madduri, R.K.; et al. Identification of Novel, Replicable Genetic Risk Loci for Suicidal Thoughts and Behaviors among US Military Veterans. JAMA Psychiatry 2023, 80, 135–145. [Google Scholar] [CrossRef]
- van der Meer, D.; Hoekstra, P.J.; van Donkelaar, M.; Bralten, J.; Oosterlaan, J.; Heslenfeld, D.; Faraone, S.V.; Franke, B.; Buitelaar, J.K.; Hartman, C.A. Predicting attention-deficit/hyperactivity disorder severity from psychosocial stress and stress-response genes: A random forest regression approach. Transl. Psychiatry 2017, 7, e1145. [Google Scholar] [CrossRef]
- Demontis, D.; Walters, R.K.; Martin, J.; Mattheisen, M.; Als, T.D.; Agerbo, E.; Baldursson, G.; Belliveau, R.; Bybjerg-Grauholm, J.; Bækvad-Hansen, M.; et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 2019, 51, 63–75. [Google Scholar] [CrossRef]
- Hugh-Jones, D.; Abdellaoui, A. Human capital mediates natural selection in contemporary humans. Behav. Genet. 2022, 52, 205–234. [Google Scholar] [CrossRef]
- de Vries, L.P.; Demange, P.A.; Baselmans, B.M.L.; Vinkers, C.H.; Pelt, D.H.M.; Bartels, M. Distinguishing happiness and meaning in life from depressive symptoms: A GWAS-by-subtraction study in the UK Biobank. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2023. ahead of print. [Google Scholar] [CrossRef] [PubMed]
Group | rs17689918 CRHR1 | rs4311 ACE | ||||||
GG | AG | AA | n | TT | TC | CC | n | |
1 | 432 | 68 | 9 | 509 § | 45 | 123 | 88 | 256 |
2 | 380 | 94 | 2 | 476 | 67 | 148 | 94 | 309 |
3 | 221 | 59 | 2 | 282 | 55 | 141 | 85 | 281 |
rs1360780 FKBP5 | rs1800497 ANKK1-DRD2 | |||||||
AA | AG | GG | n | GG | GA | AA | n | |
1 | 13 | 113 | 131 | 257 | 234 | 112 | 18 | 364 |
2 | 22 | 129 | 160 | 311 | 419 | 211 | 28 | 658 |
3 | 17 | 109 | 156 | 282 | 127 | 50 | 10 | 187 |
rs6557168 ESR1 | rs53576 OXTR | |||||||
TT | TC | CC | n | GG | AG | AA | n | |
1 | 166 | 95 | 21 | 282 | 120 | 125 | 36 | 281 |
2 | 174 | 150 | 48 | 372 | 114 | 133 | 36 | 283 |
3 | 152 | 99 | 27 | 278 | 121 | 124 | 39 | 284 |
rs12720071 CNR1 | rs806377 CNR1 | |||||||
AA | AG | GG | n | AA | AG | GG | n | |
1 | 280 | 66 | 2 | 348 | 75 | 127 | 79 | 281 |
2 | 416 | 71 | 5 | 492 | 85 | 126 | 69 | 280 |
3 | 238 | 42 | 1 | 281 | 78 | 144 | 59 | 281 |
rs7412 APOE | rs429358 APOE | |||||||
CC | CT | TT | n | TT | TC | CC | n | |
1 | 313 | 50 | 3 | 366 | 274 | 93 | 3 | 370 |
2 | 474 | 83 | 4 | 561 | 398 | 129 | 10 | 537 |
3 | 315 | 58 | 5 | 378 | 368 | 88 | 6 | 462 |
rs4522666 CHRNA4 | ||||||||
AA | AG | GG | n | |||||
1 | 128 | 174 | 44 | 346 | ||||
2 | 258 | 288 | 133 | 679 § | ||||
3 | 136 | 190 | 50 | 376 | ||||
4 | 66 | 85 | 35 | 186 |
APOE | Group 1, n = 362 | Group 2, n = 533 | Group 3, n = 360 |
---|---|---|---|
Number of genotype carriers | |||
ɛ2/ɛ2 | 3 | 4 | 5 |
ɛ2/ɛ3 | 43 | 70 | 38 |
ɛ2/ɛ4 | 6 | 11 | 16 |
ɛ3/ɛ3 | 224 | 320 | 243 |
ɛ3/ɛ4 | 82 | 118 | 54 |
ɛ4/ɛ4 | 4 | 10 | 4 |
Allele frequency | |||
ɛ2 | 0.076 | 0.083 | 0.089 |
ɛ3 | 0.791 | 0.777 | 0.803 |
ɛ4 | 0.133 | 0.140 | 0.108 |
MAOA | Group 1, n = 519 (227/292) | Group 2, n = 662 (280/382) | Group 3, n = 437 (168/269) |
---|---|---|---|
Number of genotype carriers, males | |||
2R | 1 | 0 | 0 |
3R | 93 | 101 | 64 |
3.5R | 1 | 3 | 1 |
4R | 129 | 175 | 101 |
5R | 3 | 1 | 2 |
Number of genotype carriers, females | |||
2R/3R | 0 | 1 | 1 |
2R/4R | 3 | 0 | 0 |
3R/3R | 35 | 66 | 43 |
3R/3.5R | 2 | 1 | 1 |
3R/4R | 133 | 151 | 102 |
3R/5R | 3 | 3 | 0 |
3.5R/4R | 6 | 3 | 1 |
4R/4R | 103 | 150 | 118 |
4R/5R | 7 | 6 | 3 |
5R/5R | 0 | 1 | 0 |
Allele frequency, males | |||
2R | 0.004 | 0 | 0 |
3R | 0.410 | 0.361 | 0.381 |
3.5R | 0.004 | 0.011 | 0.006 |
4R | 0.568 | 0.625 | 0.601 |
5R | 0.013 | 0.004 | 0.012 |
Allele frequency, females | |||
2R | 0.005 | 0.001 | 0.002 |
3R | 0.356 | 0.377 | 0.353 |
3.5R | 0.014 | 0.005 | 0.004 |
4R | 0.608 | 0.602 | 0.636 |
5R | 0 | 0.014 | 0.006 |
SLC6A3 | Group 1, n = 328 | Group 2, n = 660 | Group 3, n = 373 |
---|---|---|---|
Number of genotype carriers | |||
8R/10R | 5 | 3 | 0 |
9R/9R | 19 | 28 | 24 |
9R/10R | 104 | 250 | 139 |
9R/11R | 1 | 0 | 0 |
10R/10R | 199 | 369 | 203 |
10R/11R | 0 | 10 | 7 |
Allele frequency | |||
8R | 0.007 | 0.002 | 0 |
9R | 0.218 | 0.231 | 0.250 |
10R | 0.772 | 0.758 | 0.740 |
11R | 0.002 | 0.008 | 0.009 |
Polymorphic Site, Gene | Allele | Frequency | p Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
GnomAD | 1 | 2 | 3 | 1↔2 | 2↔3 | 1↔3 | 2↔1+3 | |||
3′-UTR VNTR SLC6A3 | 9R | - | 0.218 | 0.231 | 0.250 | 0.531 | 0.334 | 0.165 | 0.856 | |
VNTR in promoter MAOA | male | 2R + 3R | - | 0.414 | 0.361 | 0.381 | 0.233 | 0.687 | 0.534 | 0.335 |
female | 0.361 | 0.378 | 0.355 | 0.532 | 0.414 | 0.852 | 0.381 | |||
rs1800497 ANKK1-DRD2 | A | 0.193 | 0.203 | 0.203 | 0.187 | 1.000 | 0.557 | 0.576 | 0.760 | |
rs4311 ACE | T | 0.469 | 0.416 | 0.456 | 0.447 | 0.185 | 0.770 | 0.324 | 0.335 | |
rs6557168 ESR1 | C | 0.342 | 0.242 | 0.331 | 0.257 | 0.001 | 0.033 | 0.220 | 0.001 *** | |
rs4522666 CHRNA4 | G | 0.360 | 0.379 | 0.408 § (0.410 §) | 0.386 | 0.215 (0.169) | 0.330 (0.266) | 0.861 | 0.176 (0.117) | |
rs53576 OXTR | A | 0.333 | 0.351 | 0.362 | 0.356 | 0.381 | 0.853 | 0.901 | 0.747 | |
rs12720071 CNR1 | G | 0.090 | 0.101 | 0.082 | 0.078 | 0.225 | 0.846 | 0.199 | 0.498 | |
rs806377 CNR1 | A | 0.489 | 0.507 | 0.471 | 0.466 | 0.233 | 0.905 | 0.189 | 0.569 | |
rs1360780 FKBP5 | A | 0.288 | 0.270 | 0.278 | 0.254 | 0.790 | 0.357 | 0.533 | 0.460 | |
rs17689918 CRHR1 | A | 0.196 | 0.084 § | 0.103 | 0.111 | 0.164 | 0.605 | 0.087 | 0.489 | |
APOE ɛ2/3/4 | ɛ2 | 0.077 | 0.076 | 0.083 | 0.089 | 0.596 | 0.730 | 0.390 | 0.942 | |
ɛ4 | 0.149 | 0.133 | 0.140 | 0.108 | 0.675 | 0.051 | 0.170 | 0.165 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhailova, S.V.; Ivanoshchuk, D.E.; Orlov, P.S.; Bairqdar, A.; Anisimenko, M.S.; Denisova, D.V. Assessment of the Genetic Characteristics of a Generation Born during a Long-Term Socioeconomic Crisis. Genes 2023, 14, 2064. https://doi.org/10.3390/genes14112064
Mikhailova SV, Ivanoshchuk DE, Orlov PS, Bairqdar A, Anisimenko MS, Denisova DV. Assessment of the Genetic Characteristics of a Generation Born during a Long-Term Socioeconomic Crisis. Genes. 2023; 14(11):2064. https://doi.org/10.3390/genes14112064
Chicago/Turabian StyleMikhailova, Svetlana V., Dinara E. Ivanoshchuk, Pavel S. Orlov, Ahmad Bairqdar, Maksim S. Anisimenko, and Diana V. Denisova. 2023. "Assessment of the Genetic Characteristics of a Generation Born during a Long-Term Socioeconomic Crisis" Genes 14, no. 11: 2064. https://doi.org/10.3390/genes14112064
APA StyleMikhailova, S. V., Ivanoshchuk, D. E., Orlov, P. S., Bairqdar, A., Anisimenko, M. S., & Denisova, D. V. (2023). Assessment of the Genetic Characteristics of a Generation Born during a Long-Term Socioeconomic Crisis. Genes, 14(11), 2064. https://doi.org/10.3390/genes14112064