Genetic Diversity and New Sequence Types of Escherichia coli Coharboring β-Lactamases and PMQR Genes Isolated from Domestic Dogs in Central Panama
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Isolation
2.2. Antibiotic Susceptibility Test
2.3. Molecular Typing Analyses and Molecular Identification of blaESBL/AmpC
2.4. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pitout, J.D.D. Extraintestinal pathogenic Escherichia coli: A combination of virulence with antibiotic resistance. Front. Microbiol. 2012, 3, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2021. WHO: Geneva, Switzerland. Licence: CC BY-NC-SA 3.0 IGO. 2021. Available online: https://apps.who.int/iris/rest/bitstreams/1350455/retrieve (accessed on 1 February 2022).
- Critically Important Antimicrobials for Human Medicine: Categorization for the Development of Risk Management Strategies to Contain Antimicrobial Resistance Due to Non-Human Antimicrobial Use: Report of the Second WHO Expert Meeting, Copenhagen, 29–31 May 2007. Available online: https://apps.who.int/iris/bitstream/handle/10665/43765/9789241595742_eng.pdf (accessed on 1 February 2022).
- Galarce, N.; Arriagada, G.; Sánchez, F.; Venegas, V.; Cornejo, J.; Lapierre, L. Antimicrobial use in companion animals: Assessing veterinarians’ prescription patterns through the first national survey in Chile. Animals 2021, 11, 348. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A. Animal reservoirs for extended spectrum beta-lactamase producers. Clin. Microbiol. Infect. 2008, 14 (Suppl. S1), 117–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zogg, A.L.; Zurfluh, K.; Schmitt, S.; Nüesch-Inderbinen, M.; Stephan, R. Antimicrobial resistance, multilocus sequence types and virulence profiles of ESBL producing and non-ESBL producing uropathogenic Escherichia coli isolated from cats and dogs in Switzerland. Vet. Microbiol. 2018, 216, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Palmeira, J.D.; Haenni, M.; Metayer, V.; Madec, J.-Y.; Ferreira, H.M.N. Epidemic spread of IncI1/pST113 plasmid carrying the extended-spectrum beta-lactamase (ESBL) blaCTX-M-8 gene in Escherichia coli of Brazilian cattle. Vet. Microbiol. 2020, 243, 108629. [Google Scholar] [CrossRef]
- Ljungquist, O.; Ljungquist, D.; Myrenås, M.; Rydén, C.; Finn, M.; Bengtsson, B. Evidence of household transfer of ESBL-/pAmpC-producing Enterobacteriaceae between humans and dogs—A pilot study. Infect. Ecol. Epidemiol. 2016, 6, 31514. [Google Scholar] [CrossRef]
- Grönthal, T.; Österblad, M.; Eklund, M.; Jalava, J.; Nykäsenoja, S.; Pekkanen, K.; Rantala, M. Sharing more than friendship—Transmission of NDM-5 ST167 and CTX-M-9 ST69 Escherichia coli between dogs and humans in a family, Finland, 2015. Euro Surveill. 2018, 23, 1700497. [Google Scholar] [CrossRef] [Green Version]
- The Tripartite Workplan on Antimicrobial Resistance 2019–2020: Final Draft. Available online: https://web.oie.int//downld/WG/AMR/AMR-Tripartite-Workplan-updated-08-April-2019.pdf (accessed on 1 February 2022).
- Calero Cáceres, W.R.; Núñez Arcos, E.J. Determinación de la presencia de genes de resistencia a antibióticos emergentes en aislados de Escherichia coli en caninos de la ciudad de Ambato. Bachelor’s Thesis, Universidad Técnica de Ambato, Ambato, Ecuador, 2018. Available online: https://repositorio.uta.edu.ec:8443/jspui/handle/123456789/28393 (accessed on 1 February 2022).
- Mughini-Gras, L.; Dorado-García, A.; van Duijkeren, E.; van den Bunt, G.; Dierikx, C.M.; Bonten, M.J.M.; Bootsma, M.C.J.L.; Schimitt, H.; Hald, T.; Evers, E.; et al. ESBL Author Consortium. Attributable sources of community-acquired carriage of Escherichia coli containing β-lactam antibiotic resistance genes: A population-based modelling study. Lancet Planet Health 2019, 3, e357–e369. [Google Scholar] [CrossRef] [Green Version]
- Bastidas-Caldes, C.; Romero-Alvarez, D.; Valdez-Vélez, V.; Morales, R.D.; Montalvo-Hernande, A.; Gomes-Dias, C.; Calvopiña, M. Extended-spectrum beta-lactamases producing Escherichia coli in South America: A systematic review with a One Health Perspective. Infect. Drug Resist. 2022, 15, 5759. [Google Scholar] [CrossRef]
- Pan-American Health Organization. Magnitud y Tendencias de la Resistencia a los Antimicrobianos en América Latina. ReLAVRA 2014, 2015, 2016. Available online: https://www.paho.org/es/file/81258/download?token=apblM4AC (accessed on 18 December 2022).
- González-Zorn, B.; Escudero, J.A. Ecology of antimicrobial resistance: Humans, animals, food and environment. Int. Microbiol. 2012, 15, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Gracia, R.C.; Cortés-Cortés, G.; Lozano-Zarain, P.; Bello, F.; Martínez-Laguna, Y.; Torres, C. Faecal Escherichia coli isolates from healthy dogs harbour CTX-M-15 and CMY-2 β-lactamases. Vet. J. 2015, 203, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Karkaba, A.; Grinberg, A.; Benschop, J.; Pleydell, E. Characterisation of extended-spectrum β-lactamase and AmpC β-lactamase-producing Enterobacteriaceae isolated from companion animals in New Zealand. N. Z. Vet. J. 2017, 65, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Caxito, M.; Benavides, J.A.; Munita, J.M.; Rivas, L.; Garcia, P.; Listoni, F.J.P.; Moreno-Sitt, A.I.; Paes, A.C. Risk factors associated with faecal carriage of extended-spectrum cephalosporin-resistant Escherichia coli among dogs in Southeast Brazil. Prev. Vet. Med. 2021, 190, 105316. [Google Scholar] [CrossRef] [PubMed]
- Benavides, J.A.; Salgado-Caxito, M.; Opazo-Capurro, A.; González Muñoz, P.; Piñeiro, A.; Otto Medina, M.; Rivas, L.; Munita, J.; Millán, J. ESBL-producing Escherichia coli carrying CTX-M genes circulating among livestock, dogs, and wild mammals in small-scale farms of central Chile. Antibiotics 2021, 10, 510. [Google Scholar] [CrossRef]
- Hong, J.S.; Song, W.; Park, H.-M.; Oh, J.-Y.; Chae, J.-C.; Jeong, S.; Jeong, S.H. Molecular characterization of fecal extended-spectrum β-lactamase- and AmpC β-lactamase-producing Escherichia coli from healthy companion animals and cohabiting humans in South Korea. Front. Microbiol. 2020, 11, 674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caroff, N.; Espaze, E.; Bérard, I.; Richet, H.; Reynaud, A. Mutations in the ampC promoter of Escherichia coli isolates resistant to oxyiminocephalosporins without extended spectrum beta-lactamase production. FEMS Microbiol. Lett. 1999, 173, 459–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulvey, M.R.; Bryce, E.; Boyd, D.A.; Ofner-Agostini, M.; Land, A.M.; Simor, A.E.; Paton, S. Molecular characterization of cefoxitin-resistant Escherichia coli from Canadian hospitals. Antimicrob. Agents Chemother. 2005, 49, 358–365. [Google Scholar] [CrossRef] [Green Version]
- Roscetto, E.; Varriale, C.; Galdiero, U.; Esposito, C.; Catania, M.R. Extended-spectrum beta-lactamase-producing and carbapenem-resistant Enterobacterales in companion and animal-assisted interventions dogs. Int. J. Environ. Res. Public Health 2021, 18, 12952. [Google Scholar] [CrossRef] [PubMed]
- Tolun, V.; Küçükbasmaci, O.; Törümküney-Akbulut, D.; Catal, C.; Anğ-Küçüker, M.; Anğ, O. Relationship between ciprofloxacin resistance and extended-spectrum beta-lactamase production in Escherichia coli and Klebsiella pneumoniae strains. Clin. Microbiol. Infect. 2004, 10, 72–75. [Google Scholar] [CrossRef] [Green Version]
- Corkill, J.E.; Anson, J.J.; Hart, C.A. High prevalence of the plasmid-mediated quinolone resistance determinant qnrA in multidrug-resistant Enterobacteriaceae from blood cultures in Liverpool, UK. J. Antimicrob. Chemother. 2005, 56, 1115–1117. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Caxito, M.; Benavides, J.A.; Adell, A.D.; Paes, A.C.; Moreno-Switt, A.I. Global prevalence and molecular characterization of extended-spectrum β-lactamase producing-Escherichia coli in dogs and cats—A scoping review and meta-analysis. One Health 2021, 12, 100236. [Google Scholar] [CrossRef] [PubMed]
- Valat, C.; Drapeau, A.; Beurlet, S.; Bachy, V.; Boulouis, H.-J.; Pin, R.; Cazeau, G.; Madec, J.-Y.; Haenni, M. Pathogenic Escherichia coli in dogs reveals the predominance of ST372 and the human-associated st73 extra-intestinal lineages. Front. Microbiol. 2020, 11, 580. [Google Scholar] [CrossRef]
- Falgenhauer, L.; Imirzalioglu, C.; Ghosh, H.; Gwozdzinski, K.; Schmiedel, J.; Gentil, K.; Bauefeind, R.; Kampfer, P.; Seifert, H.; Brenner Michael, G.; et al. Circulation of clonal populations of fluoroquinolone-resistant CTX-M-15-producing Escherichia coli ST410 in humans and animals in Germany. Int. J. Antimicrob. Agents 2016, 47, 457–465. [Google Scholar] [CrossRef]
- Ewers, C.; Bethe, A.; Stamm, I.; Grobbel, M.; Kopp, P.A.; Guerra, B.; Stubbe, M.; Doi, Y.; Zong, Z.; Kola, A.; et al. CTX-M-15-D-ST648 Escherichia coli from companion animals and horses: Another pandemic clone combining multiresistance and extraintestinal virulence? J. Antimicrob. Chemother. 2014, 69, 1224–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melo, L.C.; Boisson, M.N.G.; Saras, E.; Médaille, C.; Boulouis, H.-J.; Madec, J.-Y.; Haenni, M. OXA-48-producing ST372 Escherichia coli in a French dog. J. Antimicrob. Chemother. 2017, 72, 1256–1258. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, A.C.; Barbosa, A.V.; Arais, L.R.; Ribeiro, P.F.; Carneiro, V.C.; Cerqueira, A.M.F. Resistance patterns, ESBL genes, and genetic relatedness of Escherichia coli from dogs and owners. Braz. J. Microbiol. 2016, 47, 150–158. [Google Scholar] [CrossRef] [Green Version]
- LeCuyer, T.E.; Byrne, B.A.; Daniels, J.B.; Diaz-Campos, D.V.; Hammac, G.K.; Miller, C.B.; Besser, T.E.; Davis, M.A. Population structure and antimicrobial resistance of canine uropathogenic Escherichia coli. J. Clin. Microbiol. 2018, 56, e00788-18. [Google Scholar] [CrossRef] [Green Version]
- Rumi, M.V.; Mas, J.; Elena, A.; Cerdeira, L.; Muñoz, M.E.; Lincopan, N.; Gentilini, E.R.; Di Conza, J.; Gutkind, G. Co-occurrence of clinically relevant β-lactamases and MCR-1 encoding genes in Escherichia coli from companion animals in Argentina. Vet. Microbiol. 2019, 230, 228–234. [Google Scholar] [CrossRef]
- Sánchez, M.D.P.; Gutiérrez, N.P.; Padilla, M.Y.; Suárez, L.L. Resistencia antimicrobiana de bacterias aisladas de clínicas veterinarias de la ciudad de Ibagué, Colombia. Univ Salud. 2015, 17, 18–31. [Google Scholar]
- Marchetti, L.; Buldain, D.; Gortari Castillo, L.; Buchamer, A.; Chirino-Trejo, M.; Mestorino, N. Pet and stray dogs as reservoirs of antimicrobial-resistant Escherichia coli. Int. J. Microbiol. 2021, 2021, 6664557. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; CLSI: Wayne, PA, USA, 2020; Available online: https://clsi.org/media/3481/m100ed30_sample.pdf (accessed on 1 October 2022).
- Jaureguy, F.; Landraud, L.; Passet, V.; Diancourt, L.; Frapy, E.; Guigon, G.; Carbonnelle, E.; Lortholary, O.; Clermont, O.; Denamur, E.; et al. Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains. BMC Genom. 2008, 9, 560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jolley, K.A.; Maiden, M.C.J. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinform. 2010, 11, 595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulvey, M.R.; Soule, G.; Boyd, D.; Demczuk, W.; Ahmed, R.; Multi-provincial Salmonella Typhimurium Case Control Study Group. Characterization of the first extended-spectrum beta-lactamase-producing Salmonella isolate identified in Canada. J. Clin. Microbiol. 2003, 41, 460–462. [Google Scholar] [CrossRef] [Green Version]
- Olesen, I.; Hasman, H.; Møller Aarestrup, F. Prevalence of β-lactamases among ampicillin-resistant Escherichia coli and Salmonella isolated from food animals in Denmark. Microb. Drug. Resist. 2004, 10, 334–340. [Google Scholar] [CrossRef]
- Dierikx, C.M.; van Duijkeren, E.; Schoormans, A.H.W.; van Essen-Zandbergen, A.; Veldman, K.; Kant, A.; Huijsdens, X.W.; van der Zwaluw, K.; Wagenaar, J.A.; Mevius, D.J. Occurrence and characteristics of extended-spectrum-β-lactamase- and AmpC-producing clinical isolates derived from companion animals and horses. J. Antimicrob. Chemother. 2012, 67, 1368–1374. [Google Scholar] [CrossRef]
- Haenni, M.; Saras, E.; Métayer, V.; Médaille, C.; Madec, J.-Y. High prevalence of blaCTX-M-1/IncI1/ST3 and blaCMY-2/IncI1/ST2 plasmids in healthy urban dogs in France. Antimicrob. Agents Chemother. 2014, 58, 5358–5362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramadan, H.; Gupta, S.K.; Sharma, P.; Ahmed, M.; Hiott, L.M.; Barrett, J.B.; Woodley, T.A.; Frye, J.G.; Jackson, C.R. Circulation of emerging NDM-5-producing Escherichia coli among humans and dogs in Egypt. Zoonoses Public Health 2020, 67, 324–329. [Google Scholar] [CrossRef]
- Dolejska, M.; Duskova, E.; Rybarikova, J.; Janoszowska, D.; Roubalova, E.; Dibdakova, K.; Maceckova, G.; Kohoutova, L.; Literak, I.; Smola, J.; et al. Plasmids carrying blaCTX-M-1 and qnr genes in Escherichia coli isolates from an equine clinic and a horseback riding centre. J. Antimicrob. Chemother. 2011, 66, 757–764. [Google Scholar] [CrossRef] [Green Version]
- Villegas, M.V.; Blanco, M.G.; Sifuentes-Osornio, J.; Rossi, F. Increasing prevalence of extended-spectrum-beta-lactamase among Gram-negative bacilli in Latin America—2008 update from the Study for Monitoring Antimicrobial Resistance Trends (SMART). Braz. J. Infect. Dis. 2011, 15, 34–39. [Google Scholar] [PubMed]
- Chen, J.-W.; Huang, H.H.; Chang, S.-M.; Scaria, J.; Chiu, Y.-L.; Chen, C.-M.; Ko, W.-C.; Wang, J.-L. Antibiotic-resistant Escherichia coli and sequence type 131 in fecal colonization in dogs in Taiwan. Microorganisms 2020, 8, 1439. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, V.M.; Pinchbeck, G.L.; Nuttall, T.; McEwan, N.; Dawson, S.; Williams, N.J. Antimicrobial resistance risk factors and characterisation of faecal E. coli isolated from healthy Labrador retrievers in the United Kingdom. Prev. Vet. Med. 2015, 119, 31–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agabou, A.; Pantel, A.; Ouchenane, Z.; Lezzar, N.; Khemissi, S.; Satta, D.; Sotto, A.; Lavigne, J.-P. First description of OXA-48-producing Escherichia coli and the pandemic clone ST131 from patients hospitalised at a military hospital in Algeria. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1641–1646. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Samudio, V.; Pecchio, M.; Pimentel-Peralta, G.; Quintero, Y.; Herrera, M.; Landires, I. Molecular epidemiology of Escherichia coli clinical isolates from Central Panama. Antibiotics 2021, 10, 899. [Google Scholar] [CrossRef] [PubMed]
- Umeda, K.; Hase, A.; Fukuda, A.; Matsuo, M.; Horimoto, T.; Ogasawara, J. Prevalence and mechanisms of fluoroquinolone-resistant Escherichia coli among sheltered companion animals. Access Microbiol. 2020, 2, acmi000077. [Google Scholar] [CrossRef] [PubMed]
- De Jong, A.; Muggeo, A.; El Garch, F.; Moyaert, H.; de Champs, C.; Guillard, T. Characterization of quinolone resistance mechanisms in Enterobacteriaceae isolated from companion animals in Europe (ComPath II study). Vet. Microbiol. 2018, 216, 159–167. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; Li, Y.; Hao, C. High Prevalence of β-lactamase and plasmid-mediated quinolone resistance genes in extended-spectrum cephalosporin-resistant Escherichia coli from dogs in Shaanxi, China. Front. Microbiol. 2016, 7, 1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ejaz, H.; Younas, S.; Abosalif, K.O.A.; Junaid, K.; Alzahrani, B.; Alsrhani, A.; Abdalla, A.E.; Ullah, M.I.; Qamar, M.U.; Hamam, S.S.M. Molecular analysis of blaSHV, blaTEM, and blaCTX-M in extended-spectrum β-lactamase producing Enterobacteriaceae recovered from fecal specimens of animals. PLoS ONE 2021, 16, e0245126. [Google Scholar] [CrossRef]
- Harada, K.; Nakai, Y.; Kataoka, Y. Mechanisms of resistance to cephalosporin and emergence of O25b-ST131 clone harboring CTX-M-27 β-lactamase in extraintestinal pathogenic Escherichia coli from dogs and cats in Japan. Microbiol. Immunol. 2012, 56, 480–485. [Google Scholar] [CrossRef]
Target | Primer Sequence (5′–3′) | Annealing Temperature (°C) | Product Size (bps) | Reference |
---|---|---|---|---|
CTX-M-F CTX-M-R | ATGTGCAGYACCAGTAARGTKATGGC TGGGTRAARTARGTSACCAGAAYSAGCGG | 55 | 592 | [40] |
TEM-F TEM-R | GCGGAACCCCTATTTG ACCAATGCTTAATCAGTGAG | 55 | 964 | [41] |
SHV-F SHV-R | TTATCTCCCTGTTAGCCACC GATTTGCTGATTTCGCTCGG | 55 | 796 | [42] |
CMY-F CMY-R | ATGATGAAAAATCGTTATGCTGC GCTTTTCAAGAATGCGCCAGG | 58 | 1138 | [42] |
AmpC1-71-F AmpC2120-R | AATGGGTTTTCTACGGTCTG GGGCAGCAAATGTGGAGCAA | 55 | 191 | [42] |
qnrA-F qnrA-R | ATTTCTCACGCCAGGATTTG GATCGGCAAAGGTTAGGTCA | 55 | 516 | [42] |
qnrB-F qnrB-R | GATCGTGAAAGCCAGAAAGG ACGATGCCTGGTAGTTGTCC | 55 | 469 | [42] |
qnrS-F qnrS-R | ACGACATTCGTCAACTGCAA TAAATTGGCACCCTGTAGGC | 55 | 417 | [42] |
Isolate | Phenotypic Resistance Profile | Prior Antibiotics | Sequence Typing |
---|---|---|---|
HE01 | AMP, CIP, CPL, IPM, SXT, TET | CEX, DOX, SFZ | 535 |
HE02 | AMP, CTX, IPM, KAN, TET | None | 88 |
HE03 | KAN, SXT | None | 996 |
HE04 | AMC, AMP, CIP, CPL, FOX, IPM, GEN | CEX, DOX, ENR | 399 |
HE05 | CPL, CTX, IPM, KAN | None | NA |
HE06 | — | DOX | 129 |
HE07 | — | DOX | NA |
HE08 | AMC, CPL | CEX, DOX, ENR | NA |
HE09 | AMP, SXT, TET | SPM | 3 |
HE10 | TET | DOX | 473 |
HE11 | TET | CEX, DOX | NA |
HE12 | AMC, AMP, ATM, CAZ, CTX, FOX | CEX, DOX | 829 |
HE13 | KAN, SXT, TET | None | 910 |
HE14 | TET | CEX, DOX, ENR | NA |
HE15 | — | CEX | NA |
HE16 | AMP | CEX | 960 |
HE17 | CIP, NAL, TET | None | 526 |
HE18 | AMC, FOX | None | 425 |
HE19 | — | None | NA |
HE20 | TET | None | NA |
LS01 | ATM, GEN, TET | ENR | 910 |
LS02 | CPL | None | 399 |
LS03 | NAL, TET | None | 425 |
LS04 | NAL, STS | DOX | 399 |
LS05 | TET | None | 425 |
LS06 | TET | None | NA |
LS07 | AMC, AMP, CIP, GEN, KAN, NAL, SXT, TET | DOX | 1017 a |
LS08 | — | DOX | 1016 a |
LS09 | AMC, AMP, ATM, CAZ, CTX, FEP | None | 1016 a |
LS10 | AMP, CIP, TET | None | NA |
LS11 | GEN | None | 960 |
LS12 | — | DOX | NA |
LS13 | KAN | DOX | NA |
LS14 | TET | None | 910 |
LS15 | — | None | NA |
LS16 | CIP, KAN, NAL | None | 1015 a |
LS17 | AMP, CIP, CTX, GEN, KAN | None | 1015 a |
LS18 | AMP, CIP, NAL, TET | None | 1017 a |
LS19 | — | None | NA |
LS20 | AMP, KAN, SXT, TET | None | NA |
Isolate | Sequence Typing | Mutations in the AmpC Promoter | β-Lactamases and PMQR | β-Lactam Resistance Pattern | Non-β-Lactam Resistance Pattern |
---|---|---|---|---|---|
HE01 | 535 | — | TEM, qnrB, qnrS | AMP, IPM | CIP, CPL, NAL, SXT, TET |
HE02 | 88 | −35, −18, −1, +58 (Type 1) a | TEM | AMP, CTX, IMP | KAN, TET |
HE04 | 399 | −18, −1, +58 (Type 2) a | — | AMC, AMP, FOX, IMP | CIP, CPL, GEN |
HE05 | NA | — | — | CTX, IPM | CPL, KAN |
HE12 | 829 | −28 (Type 3) a | — | AMC, AMP, ATM, CAZ, CTX, FOX | — |
HE16 | 960 | — | — | AMP | — |
HE17 | 526 | — | — | — | CIP, NAL, TET |
HE18 | 425 | +58 (Type 4) a | — | AMC, FOX | — |
LS02 | 399 | — | — | — | CPL |
LS03 | 425 | — | — | — | NAL, TET |
LS04 | 399 | — | — | — | NAL, STS |
LS07 | 1017 b | −18, −1, +58 (Type 2) a | TEM, qnrS | AMC, AMP | CIP, GEN, KAN, NAL, SXT, TET |
LS09 | 1016 b | +58 (Type 4) a | TEM | AMC, AMP, ATM, CAZ, CTX, FEP | — |
LS16 | 1015 b | — | — | — | CIP, KAN, NAL |
LS17 | 1015 b | −18, −1, +58 (Type 2) a | — | AMP, CTX | CIP, GEN, KAN |
LS18 | 1017 b | −18, −1, +58 (Type 2) a | TEM, qnrB | AMP | CIP, NAL, TET |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez-Samudio, V.; Pimentel-Peralta, G.; De La Cruz, A.; Landires, I. Genetic Diversity and New Sequence Types of Escherichia coli Coharboring β-Lactamases and PMQR Genes Isolated from Domestic Dogs in Central Panama. Genes 2023, 14, 73. https://doi.org/10.3390/genes14010073
Núñez-Samudio V, Pimentel-Peralta G, De La Cruz A, Landires I. Genetic Diversity and New Sequence Types of Escherichia coli Coharboring β-Lactamases and PMQR Genes Isolated from Domestic Dogs in Central Panama. Genes. 2023; 14(1):73. https://doi.org/10.3390/genes14010073
Chicago/Turabian StyleNúñez-Samudio, Virginia, Gumercindo Pimentel-Peralta, Alexis De La Cruz, and Iván Landires. 2023. "Genetic Diversity and New Sequence Types of Escherichia coli Coharboring β-Lactamases and PMQR Genes Isolated from Domestic Dogs in Central Panama" Genes 14, no. 1: 73. https://doi.org/10.3390/genes14010073
APA StyleNúñez-Samudio, V., Pimentel-Peralta, G., De La Cruz, A., & Landires, I. (2023). Genetic Diversity and New Sequence Types of Escherichia coli Coharboring β-Lactamases and PMQR Genes Isolated from Domestic Dogs in Central Panama. Genes, 14(1), 73. https://doi.org/10.3390/genes14010073