Genetic Diversity and New Sequence Types of Escherichia coli Coharboring β-Lactamases and PMQR Genes Isolated from Domestic Dogs in Central Panama
Abstract
1. Introduction
2. Materials and Methods
2.1. Strain Isolation
2.2. Antibiotic Susceptibility Test
2.3. Molecular Typing Analyses and Molecular Identification of blaESBL/AmpC
2.4. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pitout, J.D.D. Extraintestinal pathogenic Escherichia coli: A combination of virulence with antibiotic resistance. Front. Microbiol. 2012, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2021. WHO: Geneva, Switzerland. Licence: CC BY-NC-SA 3.0 IGO. 2021. Available online: https://apps.who.int/iris/rest/bitstreams/1350455/retrieve (accessed on 1 February 2022).
- Critically Important Antimicrobials for Human Medicine: Categorization for the Development of Risk Management Strategies to Contain Antimicrobial Resistance Due to Non-Human Antimicrobial Use: Report of the Second WHO Expert Meeting, Copenhagen, 29–31 May 2007. Available online: https://apps.who.int/iris/bitstream/handle/10665/43765/9789241595742_eng.pdf (accessed on 1 February 2022).
- Galarce, N.; Arriagada, G.; Sánchez, F.; Venegas, V.; Cornejo, J.; Lapierre, L. Antimicrobial use in companion animals: Assessing veterinarians’ prescription patterns through the first national survey in Chile. Animals 2021, 11, 348. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A. Animal reservoirs for extended spectrum beta-lactamase producers. Clin. Microbiol. Infect. 2008, 14 (Suppl. S1), 117–123. [Google Scholar] [CrossRef] [PubMed]
- Zogg, A.L.; Zurfluh, K.; Schmitt, S.; Nüesch-Inderbinen, M.; Stephan, R. Antimicrobial resistance, multilocus sequence types and virulence profiles of ESBL producing and non-ESBL producing uropathogenic Escherichia coli isolated from cats and dogs in Switzerland. Vet. Microbiol. 2018, 216, 79–84. [Google Scholar] [CrossRef]
- Palmeira, J.D.; Haenni, M.; Metayer, V.; Madec, J.-Y.; Ferreira, H.M.N. Epidemic spread of IncI1/pST113 plasmid carrying the extended-spectrum beta-lactamase (ESBL) blaCTX-M-8 gene in Escherichia coli of Brazilian cattle. Vet. Microbiol. 2020, 243, 108629. [Google Scholar] [CrossRef]
- Ljungquist, O.; Ljungquist, D.; Myrenås, M.; Rydén, C.; Finn, M.; Bengtsson, B. Evidence of household transfer of ESBL-/pAmpC-producing Enterobacteriaceae between humans and dogs—A pilot study. Infect. Ecol. Epidemiol. 2016, 6, 31514. [Google Scholar] [CrossRef]
- Grönthal, T.; Österblad, M.; Eklund, M.; Jalava, J.; Nykäsenoja, S.; Pekkanen, K.; Rantala, M. Sharing more than friendship—Transmission of NDM-5 ST167 and CTX-M-9 ST69 Escherichia coli between dogs and humans in a family, Finland, 2015. Euro Surveill. 2018, 23, 1700497. [Google Scholar] [CrossRef]
- The Tripartite Workplan on Antimicrobial Resistance 2019–2020: Final Draft. Available online: https://web.oie.int//downld/WG/AMR/AMR-Tripartite-Workplan-updated-08-April-2019.pdf (accessed on 1 February 2022).
- Calero Cáceres, W.R.; Núñez Arcos, E.J. Determinación de la presencia de genes de resistencia a antibióticos emergentes en aislados de Escherichia coli en caninos de la ciudad de Ambato. Bachelor’s Thesis, Universidad Técnica de Ambato, Ambato, Ecuador, 2018. Available online: https://repositorio.uta.edu.ec:8443/jspui/handle/123456789/28393 (accessed on 1 February 2022).
- Mughini-Gras, L.; Dorado-García, A.; van Duijkeren, E.; van den Bunt, G.; Dierikx, C.M.; Bonten, M.J.M.; Bootsma, M.C.J.L.; Schimitt, H.; Hald, T.; Evers, E.; et al. ESBL Author Consortium. Attributable sources of community-acquired carriage of Escherichia coli containing β-lactam antibiotic resistance genes: A population-based modelling study. Lancet Planet Health 2019, 3, e357–e369. [Google Scholar] [CrossRef]
- Bastidas-Caldes, C.; Romero-Alvarez, D.; Valdez-Vélez, V.; Morales, R.D.; Montalvo-Hernande, A.; Gomes-Dias, C.; Calvopiña, M. Extended-spectrum beta-lactamases producing Escherichia coli in South America: A systematic review with a One Health Perspective. Infect. Drug Resist. 2022, 15, 5759. [Google Scholar] [CrossRef]
- Pan-American Health Organization. Magnitud y Tendencias de la Resistencia a los Antimicrobianos en América Latina. ReLAVRA 2014, 2015, 2016. Available online: https://www.paho.org/es/file/81258/download?token=apblM4AC (accessed on 18 December 2022).
- González-Zorn, B.; Escudero, J.A. Ecology of antimicrobial resistance: Humans, animals, food and environment. Int. Microbiol. 2012, 15, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Gracia, R.C.; Cortés-Cortés, G.; Lozano-Zarain, P.; Bello, F.; Martínez-Laguna, Y.; Torres, C. Faecal Escherichia coli isolates from healthy dogs harbour CTX-M-15 and CMY-2 β-lactamases. Vet. J. 2015, 203, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Karkaba, A.; Grinberg, A.; Benschop, J.; Pleydell, E. Characterisation of extended-spectrum β-lactamase and AmpC β-lactamase-producing Enterobacteriaceae isolated from companion animals in New Zealand. N. Z. Vet. J. 2017, 65, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Caxito, M.; Benavides, J.A.; Munita, J.M.; Rivas, L.; Garcia, P.; Listoni, F.J.P.; Moreno-Sitt, A.I.; Paes, A.C. Risk factors associated with faecal carriage of extended-spectrum cephalosporin-resistant Escherichia coli among dogs in Southeast Brazil. Prev. Vet. Med. 2021, 190, 105316. [Google Scholar] [CrossRef] [PubMed]
- Benavides, J.A.; Salgado-Caxito, M.; Opazo-Capurro, A.; González Muñoz, P.; Piñeiro, A.; Otto Medina, M.; Rivas, L.; Munita, J.; Millán, J. ESBL-producing Escherichia coli carrying CTX-M genes circulating among livestock, dogs, and wild mammals in small-scale farms of central Chile. Antibiotics 2021, 10, 510. [Google Scholar] [CrossRef]
- Hong, J.S.; Song, W.; Park, H.-M.; Oh, J.-Y.; Chae, J.-C.; Jeong, S.; Jeong, S.H. Molecular characterization of fecal extended-spectrum β-lactamase- and AmpC β-lactamase-producing Escherichia coli from healthy companion animals and cohabiting humans in South Korea. Front. Microbiol. 2020, 11, 674. [Google Scholar] [CrossRef] [PubMed]
- Caroff, N.; Espaze, E.; Bérard, I.; Richet, H.; Reynaud, A. Mutations in the ampC promoter of Escherichia coli isolates resistant to oxyiminocephalosporins without extended spectrum beta-lactamase production. FEMS Microbiol. Lett. 1999, 173, 459–465. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mulvey, M.R.; Bryce, E.; Boyd, D.A.; Ofner-Agostini, M.; Land, A.M.; Simor, A.E.; Paton, S. Molecular characterization of cefoxitin-resistant Escherichia coli from Canadian hospitals. Antimicrob. Agents Chemother. 2005, 49, 358–365. [Google Scholar] [CrossRef]
- Roscetto, E.; Varriale, C.; Galdiero, U.; Esposito, C.; Catania, M.R. Extended-spectrum beta-lactamase-producing and carbapenem-resistant Enterobacterales in companion and animal-assisted interventions dogs. Int. J. Environ. Res. Public Health 2021, 18, 12952. [Google Scholar] [CrossRef] [PubMed]
- Tolun, V.; Küçükbasmaci, O.; Törümküney-Akbulut, D.; Catal, C.; Anğ-Küçüker, M.; Anğ, O. Relationship between ciprofloxacin resistance and extended-spectrum beta-lactamase production in Escherichia coli and Klebsiella pneumoniae strains. Clin. Microbiol. Infect. 2004, 10, 72–75. [Google Scholar] [CrossRef]
- Corkill, J.E.; Anson, J.J.; Hart, C.A. High prevalence of the plasmid-mediated quinolone resistance determinant qnrA in multidrug-resistant Enterobacteriaceae from blood cultures in Liverpool, UK. J. Antimicrob. Chemother. 2005, 56, 1115–1117. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Caxito, M.; Benavides, J.A.; Adell, A.D.; Paes, A.C.; Moreno-Switt, A.I. Global prevalence and molecular characterization of extended-spectrum β-lactamase producing-Escherichia coli in dogs and cats—A scoping review and meta-analysis. One Health 2021, 12, 100236. [Google Scholar] [CrossRef] [PubMed]
- Valat, C.; Drapeau, A.; Beurlet, S.; Bachy, V.; Boulouis, H.-J.; Pin, R.; Cazeau, G.; Madec, J.-Y.; Haenni, M. Pathogenic Escherichia coli in dogs reveals the predominance of ST372 and the human-associated st73 extra-intestinal lineages. Front. Microbiol. 2020, 11, 580. [Google Scholar] [CrossRef]
- Falgenhauer, L.; Imirzalioglu, C.; Ghosh, H.; Gwozdzinski, K.; Schmiedel, J.; Gentil, K.; Bauefeind, R.; Kampfer, P.; Seifert, H.; Brenner Michael, G.; et al. Circulation of clonal populations of fluoroquinolone-resistant CTX-M-15-producing Escherichia coli ST410 in humans and animals in Germany. Int. J. Antimicrob. Agents 2016, 47, 457–465. [Google Scholar] [CrossRef]
- Ewers, C.; Bethe, A.; Stamm, I.; Grobbel, M.; Kopp, P.A.; Guerra, B.; Stubbe, M.; Doi, Y.; Zong, Z.; Kola, A.; et al. CTX-M-15-D-ST648 Escherichia coli from companion animals and horses: Another pandemic clone combining multiresistance and extraintestinal virulence? J. Antimicrob. Chemother. 2014, 69, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Melo, L.C.; Boisson, M.N.G.; Saras, E.; Médaille, C.; Boulouis, H.-J.; Madec, J.-Y.; Haenni, M. OXA-48-producing ST372 Escherichia coli in a French dog. J. Antimicrob. Chemother. 2017, 72, 1256–1258. [Google Scholar] [CrossRef][Green Version]
- Carvalho, A.C.; Barbosa, A.V.; Arais, L.R.; Ribeiro, P.F.; Carneiro, V.C.; Cerqueira, A.M.F. Resistance patterns, ESBL genes, and genetic relatedness of Escherichia coli from dogs and owners. Braz. J. Microbiol. 2016, 47, 150–158. [Google Scholar] [CrossRef]
- LeCuyer, T.E.; Byrne, B.A.; Daniels, J.B.; Diaz-Campos, D.V.; Hammac, G.K.; Miller, C.B.; Besser, T.E.; Davis, M.A. Population structure and antimicrobial resistance of canine uropathogenic Escherichia coli. J. Clin. Microbiol. 2018, 56, e00788-18. [Google Scholar] [CrossRef]
- Rumi, M.V.; Mas, J.; Elena, A.; Cerdeira, L.; Muñoz, M.E.; Lincopan, N.; Gentilini, E.R.; Di Conza, J.; Gutkind, G. Co-occurrence of clinically relevant β-lactamases and MCR-1 encoding genes in Escherichia coli from companion animals in Argentina. Vet. Microbiol. 2019, 230, 228–234. [Google Scholar] [CrossRef]
- Sánchez, M.D.P.; Gutiérrez, N.P.; Padilla, M.Y.; Suárez, L.L. Resistencia antimicrobiana de bacterias aisladas de clínicas veterinarias de la ciudad de Ibagué, Colombia. Univ Salud. 2015, 17, 18–31. [Google Scholar]
- Marchetti, L.; Buldain, D.; Gortari Castillo, L.; Buchamer, A.; Chirino-Trejo, M.; Mestorino, N. Pet and stray dogs as reservoirs of antimicrobial-resistant Escherichia coli. Int. J. Microbiol. 2021, 2021, 6664557. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; CLSI: Wayne, PA, USA, 2020; Available online: https://clsi.org/media/3481/m100ed30_sample.pdf (accessed on 1 October 2022).
- Jaureguy, F.; Landraud, L.; Passet, V.; Diancourt, L.; Frapy, E.; Guigon, G.; Carbonnelle, E.; Lortholary, O.; Clermont, O.; Denamur, E.; et al. Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains. BMC Genom. 2008, 9, 560. [Google Scholar] [CrossRef] [PubMed]
- Jolley, K.A.; Maiden, M.C.J. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinform. 2010, 11, 595. [Google Scholar] [CrossRef] [PubMed]
- Mulvey, M.R.; Soule, G.; Boyd, D.; Demczuk, W.; Ahmed, R.; Multi-provincial Salmonella Typhimurium Case Control Study Group. Characterization of the first extended-spectrum beta-lactamase-producing Salmonella isolate identified in Canada. J. Clin. Microbiol. 2003, 41, 460–462. [Google Scholar] [CrossRef]
- Olesen, I.; Hasman, H.; Møller Aarestrup, F. Prevalence of β-lactamases among ampicillin-resistant Escherichia coli and Salmonella isolated from food animals in Denmark. Microb. Drug. Resist. 2004, 10, 334–340. [Google Scholar] [CrossRef]
- Dierikx, C.M.; van Duijkeren, E.; Schoormans, A.H.W.; van Essen-Zandbergen, A.; Veldman, K.; Kant, A.; Huijsdens, X.W.; van der Zwaluw, K.; Wagenaar, J.A.; Mevius, D.J. Occurrence and characteristics of extended-spectrum-β-lactamase- and AmpC-producing clinical isolates derived from companion animals and horses. J. Antimicrob. Chemother. 2012, 67, 1368–1374. [Google Scholar] [CrossRef]
- Haenni, M.; Saras, E.; Métayer, V.; Médaille, C.; Madec, J.-Y. High prevalence of blaCTX-M-1/IncI1/ST3 and blaCMY-2/IncI1/ST2 plasmids in healthy urban dogs in France. Antimicrob. Agents Chemother. 2014, 58, 5358–5362. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, H.; Gupta, S.K.; Sharma, P.; Ahmed, M.; Hiott, L.M.; Barrett, J.B.; Woodley, T.A.; Frye, J.G.; Jackson, C.R. Circulation of emerging NDM-5-producing Escherichia coli among humans and dogs in Egypt. Zoonoses Public Health 2020, 67, 324–329. [Google Scholar] [CrossRef]
- Dolejska, M.; Duskova, E.; Rybarikova, J.; Janoszowska, D.; Roubalova, E.; Dibdakova, K.; Maceckova, G.; Kohoutova, L.; Literak, I.; Smola, J.; et al. Plasmids carrying blaCTX-M-1 and qnr genes in Escherichia coli isolates from an equine clinic and a horseback riding centre. J. Antimicrob. Chemother. 2011, 66, 757–764. [Google Scholar] [CrossRef]
- Villegas, M.V.; Blanco, M.G.; Sifuentes-Osornio, J.; Rossi, F. Increasing prevalence of extended-spectrum-beta-lactamase among Gram-negative bacilli in Latin America—2008 update from the Study for Monitoring Antimicrobial Resistance Trends (SMART). Braz. J. Infect. Dis. 2011, 15, 34–39. [Google Scholar] [PubMed]
- Chen, J.-W.; Huang, H.H.; Chang, S.-M.; Scaria, J.; Chiu, Y.-L.; Chen, C.-M.; Ko, W.-C.; Wang, J.-L. Antibiotic-resistant Escherichia coli and sequence type 131 in fecal colonization in dogs in Taiwan. Microorganisms 2020, 8, 1439. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, V.M.; Pinchbeck, G.L.; Nuttall, T.; McEwan, N.; Dawson, S.; Williams, N.J. Antimicrobial resistance risk factors and characterisation of faecal E. coli isolated from healthy Labrador retrievers in the United Kingdom. Prev. Vet. Med. 2015, 119, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Agabou, A.; Pantel, A.; Ouchenane, Z.; Lezzar, N.; Khemissi, S.; Satta, D.; Sotto, A.; Lavigne, J.-P. First description of OXA-48-producing Escherichia coli and the pandemic clone ST131 from patients hospitalised at a military hospital in Algeria. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1641–1646. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Samudio, V.; Pecchio, M.; Pimentel-Peralta, G.; Quintero, Y.; Herrera, M.; Landires, I. Molecular epidemiology of Escherichia coli clinical isolates from Central Panama. Antibiotics 2021, 10, 899. [Google Scholar] [CrossRef] [PubMed]
- Umeda, K.; Hase, A.; Fukuda, A.; Matsuo, M.; Horimoto, T.; Ogasawara, J. Prevalence and mechanisms of fluoroquinolone-resistant Escherichia coli among sheltered companion animals. Access Microbiol. 2020, 2, acmi000077. [Google Scholar] [CrossRef] [PubMed]
- De Jong, A.; Muggeo, A.; El Garch, F.; Moyaert, H.; de Champs, C.; Guillard, T. Characterization of quinolone resistance mechanisms in Enterobacteriaceae isolated from companion animals in Europe (ComPath II study). Vet. Microbiol. 2018, 216, 159–167. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; Li, Y.; Hao, C. High Prevalence of β-lactamase and plasmid-mediated quinolone resistance genes in extended-spectrum cephalosporin-resistant Escherichia coli from dogs in Shaanxi, China. Front. Microbiol. 2016, 7, 1843. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, H.; Younas, S.; Abosalif, K.O.A.; Junaid, K.; Alzahrani, B.; Alsrhani, A.; Abdalla, A.E.; Ullah, M.I.; Qamar, M.U.; Hamam, S.S.M. Molecular analysis of blaSHV, blaTEM, and blaCTX-M in extended-spectrum β-lactamase producing Enterobacteriaceae recovered from fecal specimens of animals. PLoS ONE 2021, 16, e0245126. [Google Scholar] [CrossRef]
- Harada, K.; Nakai, Y.; Kataoka, Y. Mechanisms of resistance to cephalosporin and emergence of O25b-ST131 clone harboring CTX-M-27 β-lactamase in extraintestinal pathogenic Escherichia coli from dogs and cats in Japan. Microbiol. Immunol. 2012, 56, 480–485. [Google Scholar] [CrossRef]
Target | Primer Sequence (5′–3′) | Annealing Temperature (°C) | Product Size (bps) | Reference |
---|---|---|---|---|
CTX-M-F CTX-M-R | ATGTGCAGYACCAGTAARGTKATGGC TGGGTRAARTARGTSACCAGAAYSAGCGG | 55 | 592 | [40] |
TEM-F TEM-R | GCGGAACCCCTATTTG ACCAATGCTTAATCAGTGAG | 55 | 964 | [41] |
SHV-F SHV-R | TTATCTCCCTGTTAGCCACC GATTTGCTGATTTCGCTCGG | 55 | 796 | [42] |
CMY-F CMY-R | ATGATGAAAAATCGTTATGCTGC GCTTTTCAAGAATGCGCCAGG | 58 | 1138 | [42] |
AmpC1-71-F AmpC2120-R | AATGGGTTTTCTACGGTCTG GGGCAGCAAATGTGGAGCAA | 55 | 191 | [42] |
qnrA-F qnrA-R | ATTTCTCACGCCAGGATTTG GATCGGCAAAGGTTAGGTCA | 55 | 516 | [42] |
qnrB-F qnrB-R | GATCGTGAAAGCCAGAAAGG ACGATGCCTGGTAGTTGTCC | 55 | 469 | [42] |
qnrS-F qnrS-R | ACGACATTCGTCAACTGCAA TAAATTGGCACCCTGTAGGC | 55 | 417 | [42] |
Isolate | Phenotypic Resistance Profile | Prior Antibiotics | Sequence Typing |
---|---|---|---|
HE01 | AMP, CIP, CPL, IPM, SXT, TET | CEX, DOX, SFZ | 535 |
HE02 | AMP, CTX, IPM, KAN, TET | None | 88 |
HE03 | KAN, SXT | None | 996 |
HE04 | AMC, AMP, CIP, CPL, FOX, IPM, GEN | CEX, DOX, ENR | 399 |
HE05 | CPL, CTX, IPM, KAN | None | NA |
HE06 | — | DOX | 129 |
HE07 | — | DOX | NA |
HE08 | AMC, CPL | CEX, DOX, ENR | NA |
HE09 | AMP, SXT, TET | SPM | 3 |
HE10 | TET | DOX | 473 |
HE11 | TET | CEX, DOX | NA |
HE12 | AMC, AMP, ATM, CAZ, CTX, FOX | CEX, DOX | 829 |
HE13 | KAN, SXT, TET | None | 910 |
HE14 | TET | CEX, DOX, ENR | NA |
HE15 | — | CEX | NA |
HE16 | AMP | CEX | 960 |
HE17 | CIP, NAL, TET | None | 526 |
HE18 | AMC, FOX | None | 425 |
HE19 | — | None | NA |
HE20 | TET | None | NA |
LS01 | ATM, GEN, TET | ENR | 910 |
LS02 | CPL | None | 399 |
LS03 | NAL, TET | None | 425 |
LS04 | NAL, STS | DOX | 399 |
LS05 | TET | None | 425 |
LS06 | TET | None | NA |
LS07 | AMC, AMP, CIP, GEN, KAN, NAL, SXT, TET | DOX | 1017 a |
LS08 | — | DOX | 1016 a |
LS09 | AMC, AMP, ATM, CAZ, CTX, FEP | None | 1016 a |
LS10 | AMP, CIP, TET | None | NA |
LS11 | GEN | None | 960 |
LS12 | — | DOX | NA |
LS13 | KAN | DOX | NA |
LS14 | TET | None | 910 |
LS15 | — | None | NA |
LS16 | CIP, KAN, NAL | None | 1015 a |
LS17 | AMP, CIP, CTX, GEN, KAN | None | 1015 a |
LS18 | AMP, CIP, NAL, TET | None | 1017 a |
LS19 | — | None | NA |
LS20 | AMP, KAN, SXT, TET | None | NA |
Isolate | Sequence Typing | Mutations in the AmpC Promoter | β-Lactamases and PMQR | β-Lactam Resistance Pattern | Non-β-Lactam Resistance Pattern |
---|---|---|---|---|---|
HE01 | 535 | — | TEM, qnrB, qnrS | AMP, IPM | CIP, CPL, NAL, SXT, TET |
HE02 | 88 | −35, −18, −1, +58 (Type 1) a | TEM | AMP, CTX, IMP | KAN, TET |
HE04 | 399 | −18, −1, +58 (Type 2) a | — | AMC, AMP, FOX, IMP | CIP, CPL, GEN |
HE05 | NA | — | — | CTX, IPM | CPL, KAN |
HE12 | 829 | −28 (Type 3) a | — | AMC, AMP, ATM, CAZ, CTX, FOX | — |
HE16 | 960 | — | — | AMP | — |
HE17 | 526 | — | — | — | CIP, NAL, TET |
HE18 | 425 | +58 (Type 4) a | — | AMC, FOX | — |
LS02 | 399 | — | — | — | CPL |
LS03 | 425 | — | — | — | NAL, TET |
LS04 | 399 | — | — | — | NAL, STS |
LS07 | 1017 b | −18, −1, +58 (Type 2) a | TEM, qnrS | AMC, AMP | CIP, GEN, KAN, NAL, SXT, TET |
LS09 | 1016 b | +58 (Type 4) a | TEM | AMC, AMP, ATM, CAZ, CTX, FEP | — |
LS16 | 1015 b | — | — | — | CIP, KAN, NAL |
LS17 | 1015 b | −18, −1, +58 (Type 2) a | — | AMP, CTX | CIP, GEN, KAN |
LS18 | 1017 b | −18, −1, +58 (Type 2) a | TEM, qnrB | AMP | CIP, NAL, TET |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez-Samudio, V.; Pimentel-Peralta, G.; De La Cruz, A.; Landires, I. Genetic Diversity and New Sequence Types of Escherichia coli Coharboring β-Lactamases and PMQR Genes Isolated from Domestic Dogs in Central Panama. Genes 2023, 14, 73. https://doi.org/10.3390/genes14010073
Núñez-Samudio V, Pimentel-Peralta G, De La Cruz A, Landires I. Genetic Diversity and New Sequence Types of Escherichia coli Coharboring β-Lactamases and PMQR Genes Isolated from Domestic Dogs in Central Panama. Genes. 2023; 14(1):73. https://doi.org/10.3390/genes14010073
Chicago/Turabian StyleNúñez-Samudio, Virginia, Gumercindo Pimentel-Peralta, Alexis De La Cruz, and Iván Landires. 2023. "Genetic Diversity and New Sequence Types of Escherichia coli Coharboring β-Lactamases and PMQR Genes Isolated from Domestic Dogs in Central Panama" Genes 14, no. 1: 73. https://doi.org/10.3390/genes14010073
APA StyleNúñez-Samudio, V., Pimentel-Peralta, G., De La Cruz, A., & Landires, I. (2023). Genetic Diversity and New Sequence Types of Escherichia coli Coharboring β-Lactamases and PMQR Genes Isolated from Domestic Dogs in Central Panama. Genes, 14(1), 73. https://doi.org/10.3390/genes14010073