Polymorphisms in ACE1, TMPRSS2, IFIH1, IFNAR2, and TYK2 Genes Are Associated with Worse Clinical Outcomes in COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. SARS-CoV-2 Diagnostic Test
2.3. Genotyping
2.4. Statistical Analyses
3. Results
3.1. Sample Description
3.2. Genotype and Allele Frequencies
3.3. Analyses after Stratification by Sex
3.4. Analyses after Stratification by Ethnicity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, G.; Ye, L.; Pan, K.; Chen, Y.; Xing, D.; Yan, K.; Chen, Z.; Ding, N.; Li, W.; Huang, H.; et al. New Insights of Emerging SARS-CoV-2: Epidemiology, Etiology, Clinical Features, Clinical Treatment, and Prevention. Front. Cell. Dev. Biol. 2020, 8, 410. [Google Scholar] [CrossRef] [PubMed]
- Baj, J.; Karakuła-Juchnowicz, H.; Teresiński, G.; Buszewicz, G.; Ciesielka, M.; Sitarz, R.; Forma, A.; Karakuła, K.; Flieger, W.; Portincasa, P.; et al. COVID-19: Specific and Non-Specific Clinical Manifestations and Symptoms: The Current State of Knowledge. J. Clin. Med. 2020, 9, 1753. [Google Scholar] [CrossRef] [PubMed]
- Fricke-Galindo, I.; Falfan-Valencia, R. Genetics Insight for COVID-19 Susceptibility and Severity: A Review. Front. Immunol. 2021, 12, 622176. [Google Scholar] [CrossRef] [PubMed]
- Pairo-Castineira, E.; Clohisey, S.; Klaric, L.; Bretherick, A.D.; Rawlik, K.; Pasko, D.; Walker, S.; Parkinson, N.; Fourman, M.H.; Russell, C.D.; et al. Genetic mechanisms of critical illness in COVID-19. Nature 2021, 591, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, G.; Qiao, C.; Hu, Y.; Yuen, K.W.; et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell 2020, 181, 894–904.e9. [Google Scholar] [CrossRef]
- Delanghe, J.R.; Speeckaert, M.M.; De Buyzere, M.L. The host’s angiotensin-converting enzyme polymorphism may explain epidemiological findings in COVID-19 infections. Clin. Chim. Acta. 2020, 505, 192–193. [Google Scholar] [CrossRef]
- Grolmusz, V.K.; Bozsik, A.; Papp, J.; Patocs, A. Germline Genetic Variants of Viral Entry and Innate Immunity May Influence Susceptibility to SARS-CoV-2 Infection: Toward a Polygenic Risk Score for Risk Stratification. Front. Immunol. 2021, 12, 653489. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, X.; Toh, G.A.; Gong, Q.; Wang, J.; Han, Z.; Wu, B.; Zhong, F.; Chai, J. Structural and biochemical mechanisms of NLRP1 inhibition by DPP9. Nature 2021, 592, 773–777. [Google Scholar] [CrossRef]
- Geiss-Friedlander, R.; Parmentier, N.; Moller, U.; Urlaub, H.; Van den Eynde, B.J.; Melchior, F. The cytoplasmic peptidase DPP9 is rate-limiting for degradation of proline-containing peptides. J. Biol. Chem. 2009, 284, 27211–27219. [Google Scholar] [CrossRef]
- Pellenz, F.M.; Dieter, C.; Lemos, N.E.; Bauer, A.C.; Souza, B.M.; Crispim, D. Association of TYK2 polymorphisms with autoimmune diseases: A comprehensive and updated systematic review with meta-analysis. Genet. Mol. Biol. 2021, 44, e20200425. [Google Scholar] [CrossRef] [PubMed]
- Strobl, B.; Stoiber, D.; Sexl, V.; Mueller, M. Tyrosine kinase 2 (TYK2) in cytokine signalling and host immunity. Front. Biosci. 2011, 16, 3214–3232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Little, J.; Higgins, J.P.; Ioannidis, J.P.; Moher, D.; Gagnon, F.; von Elm, E.; Khoury, M.J.; Cohen, B.; Davey-Smith, G.; Grimshaw, J.; et al. STrengthening the REporting of Genetic Association Studies (STREGA)--an extension of the STROBE statement. Genet. Epidemiol. 2009, 33, 581–598. [Google Scholar] [CrossRef] [PubMed]
- Camargo, J.L.; Garcia, A.B.M.; Vianna, F.S.L.; Nehm, J.H.; Reis, L.B.; Botton, M.R.; Prolla, P.A.; Matte, U. Biobanco COVID-19: Amostras Biológicas Diretoria de Pesquisa / HCPA. 2020. Available online: https://doi.org/10.22491/hcpa-biobanco-amostras (accessed on 15 September 2022).
- Hajjar, L.A.; Costa, I.B.S.D.S.; Rizk, S.I.; Biselli, B.; Gomes, B.R.; Bittar, C.S.; de Oliveira, G.Q.; de Almeida, J.P.; Bello, M.V.D.O.; Garzillo, C.; et al. Intensive care management of patients with COVID-19: A practical approach. Ann. Intensive Care 2021, 11, 36. [Google Scholar] [CrossRef] [PubMed]
- Zelmanovitz, T.; Gross, J.L.; Oliveira, J.R.; Paggi, A.; Tatsch, M.; Azevedo, M.J. The receiver operating characteristics curve in the evaluation of a random urine specimen as a screening test for diabetic nephropathy. Diabetes Care 1997, 20, 516–519. [Google Scholar] [CrossRef] [Green Version]
- Wink, P.L.; Volpato, F.; Lima-Morales, D.; Paiva, R.M.; Willig, J.B.; Bock, H.; de Paris, F.; Barth, A.L. RT-qPCR half-reaction optimization for the detection of SARS-CoV-2. Rev. Soc. Bras. Med. Trop. 2021, 54, e03192020. [Google Scholar] [CrossRef]
- Cafiero, C.; Rosapepe, F.; Palmirotta, R.; Re, A.; Ottaiano, M.P.; Benincasa, G.; Perone, R.; Varriale, E.; D’Amato, G.; Cacciamani, A.; et al. Angiotensin system polymorphisms’ in SARS-CoV-2 positive patients: Assessment between symptomatic and asymptomatic patients: A pilot study. Pharm. Pers. Med. 2021, 14, 621–629. [Google Scholar] [CrossRef]
- Calabrese, C.; Annunziata, A.; Coppola, A.; Pafundi, P.C.; Guarino, S.; Di Spirito, V.; Maddaloni, V.; Pepe, N.; Fiorentino, G. ACE Gene I/D Polymorphism and Acute Pulmonary Embolism in COVID19 Pneumonia: A Potential Predisposing Role. Front. Med. 2020, 7, 631148. [Google Scholar] [CrossRef]
- Gómez, J.; Albaiceta, G.M.; García-Clemente, M.; López-Larrea, C.; Amado-Rodríguez, L.; Lopez-Alonso, I.; Hermida, T.; Enriquez, A.I.; Herrero, P.; Melón, S.; et al. Angiotensin-converting enzymes (ACE, ACE2) gene variants and COVID-19 outcome. Gene 2020, 762, 145102. [Google Scholar] [CrossRef]
- Verma, S.; Abbas, M.; Verma, S.; Khan, F.H.; Raza, S.T.; Siddiqi, Z.; Ahmad, I.; Mahdi, F. Impact of I/D polymorphism of angiotensin-converting enzyme 1 (ACE1) gene on the severity of COVID-19 patients. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2021, 91, 104801. [Google Scholar] [CrossRef] [PubMed]
- Aladag, E.; Tas, Z.; Ozdemir, B.S.; Akbaba, T.H.; Akpınar, M.G.; Goker, H.; Unalan-Altintop, T.; Inkaya, A.C.; Alp, A.; Metan, G.; et al. Human Ace D/I Polymorphism Could Affect the Clinicobiological Course of COVID-19. J. Renin-Angiotensin-Aldosterone Syst. JRAAS 2021, 2021, 5509280. [Google Scholar] [CrossRef] [PubMed]
- Saad, H.; Jabotian, K.; Sakr, C.; Mahfouz, R.; Akl, I.B.; Zgheib, N.K. The Role of Angiotensin Converting Enzyme 1 Insertion/Deletion Genetic Polymorphism in the Risk and Severity of COVID-19 Infection. Front. Med. 2021, 8, 798571. [Google Scholar] [CrossRef] [PubMed]
- Gunal, O.; Sezer, O.; Ustun, G.U.; Ozturk, C.E.; Sen, A.; Yigit, S.; Demirag, M.D. Angiotensin-converting enzyme-1 gene insertion/deletion polymorphism may be associated with COVID-19 clinical severity: A prospective cohort study. Ann. Saudi Med. 2021, 41, 141–146. [Google Scholar] [CrossRef]
- Hubacek, J.A.; Dusek, L.; Majek, O.; Adamek, V.; Cervinkova, T.; Dlouha, D.; Adamkova, V. ACE I/D polymorphism in Czech first-wave SARS-CoV-2-positive survivors. Clin. Chim. Acta 2021, 519, 206–209. [Google Scholar] [CrossRef]
- Karakaş Çelik, S.; Çakmak Genç, G.; Pişkin, N.; Açikgöz, B.; Altinsoy, B.; Kurucu İşsiz, B.; Dursun, A. Polymorphisms of ACE (I/D) and ACE2 receptor gene (Rs2106809, Rs2285666) are not related to the clinical course of COVID-19: A case study. J. Med. Virol. 2021, 93, 5947–5952. [Google Scholar] [CrossRef]
- Möhlendick, B.; Schönfelder, K.; Breuckmann, K.; Elsner, C.; Babel, N.; Balfanz, P.; Dahl, E.; Dreher, M.; Fistera, D.; Herbstreit, F.; et al. ACE2 polymorphism and susceptibility for SARS-CoV-2 infection and severity of COVID-19. Pharm. Genom. 2021, 31, 165–171. [Google Scholar] [CrossRef]
- Shikov, A.E.; Barbitoff, Y.A.; Glotov, A.S.; Danilova, M.M.; Tonyan, Z.N.; Nasykhova, Y.A.; Mikhailova, A.A.; Bespalova, O.N.; Kalinin, R.S.; Mirzorustamova, A.M.; et al. Analysis of the Spectrum of ACE2 Variation Suggests a Possible Influence of Rare and Common Variants on Susceptibility to COVID-19 and Severity of Outcome. Front. Genet. 2020, 11, 551220. [Google Scholar] [CrossRef]
- Akbari, M.; Taheri, M.; Mehrpoor, G.; Eslami, S.; Hussen, B.M.; Ghafouri-Fard, S.; Arefian, N. Assessment of ACE1 variants and ACE1/ACE2 expression in COVID-19 patients. Vasc. Pharmacol. 2022, 142, 106934. [Google Scholar] [CrossRef]
- Mizuiri, S.; Hemmi, H.; Kumanomidou, H.; Iwamoto, M.; Miyagi, M.; Sakai, K.; Aikawa, A.; Ohara, T.; Yamada, K.; Shimatake, H.; et al. Angiotensin-converting enzyme (ACE) I/D genotype and renal ACE gene expression. Kidney Int. 2001, 60, 1124–1130. [Google Scholar] [CrossRef]
- Alimoradi, N.; Sharqi, M.; Firouzabadi, D.; Sadeghi, M.M.; Moezzi, M.I.; Firouzabadi, N. SNPs of ACE1 (rs4343) and ACE2 (rs2285666) genes are linked to SARS-CoV-2 infection but not with the severity of disease. Virol. J. 2022, 19, 48. [Google Scholar] [CrossRef] [PubMed]
- Khalilzadeh, F.; Sakhaee, F.; Sotoodehnejadnematalahi, F.; Zamani, M.S.; Ahmadi, I.; Anvari, E.; Fateh, A. Angiotensin-converting enzyme 2 rs2285666 polymorphism and clinical parameters as the determinants of COVID-19 severity in Iranian population. Int. J. Immunogenet. 2022, 49, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.H.; Li, J.Y.; Wang, C.; Zhang, L.M.; Qiao, H. The ACE2 G8790A Polymorphism: Involvement in Type 2 Diabetes Mellitus Combined with Cerebral Stroke. J. Clin. Lab. Anal. 2017, 31, e22033. [Google Scholar] [CrossRef] [PubMed]
- Asselta, R.; Paraboschi, E.M.; Mantovani, A.; Duga, S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging 2020, 12, 10087–10098. [Google Scholar] [CrossRef] [PubMed]
- Minashkin, M.M.; Grigortsevich, N.Y.; Kamaeva, A.S.; Barzanova, V.V.; Traspov, A.A.; Godkov, M.A.; Ageev, F.A.; Petrikov, S.S.; Pozdnyakova, N.V. The Role of Genetic Factors in the Development of Acute Respiratory Viral Infection COVID-19: Predicting Severe Course and Outcomes. Biomedicines 2022, 10, 549. [Google Scholar] [CrossRef]
- Amado-Rodriguez, L.; Del Riego, E.S.; de Ona, J.G.; Alonso, I.L.; Gil-Pena, H.; Lopez-Martinez, C.; Martín-Vicente, P.; Lopez-Vazquez, A.; Lopez, A.G.; Cuesta-Llavona, E.; et al. Effects of IFIH1 rs1990760 variants on systemic inflammation and outcome in critically ill COVID-19 patients in an observational translational study. eLife 2022, 11, e73012. [Google Scholar] [CrossRef]
- Molineros, J.E.; Maiti, A.K.; Sun, C.; Looger, L.L.; Han, S.; Kim-Howard, X.; Glenn, S.; Adler, A.; Kelly, J.A.; Niewold, T.B.; et al. Admixture mapping in lupus identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation, and autoantibody production. PLoS Genet. 2013, 9, e1003222. [Google Scholar] [CrossRef] [Green Version]
- Maiti, A.K. The African-American population with a low allele frequency of SNP rs1990760 (T allele) in IFIH1 predicts less IFN-beta expression and potential vulnerability to COVID-19 infection. Immunogenetics 2020, 72, 387–391. [Google Scholar] [CrossRef]
- Gorman, J.A.; Hundhausen, C.; Errett, J.S.; Stone, A.E.; Allenspach, E.J.; Ge, Y.; Arkatkar, T.; Clough, C.; Dai, X.; Khim, S.; et al. The A946T variant of the RNA sensor IFIH1 mediates an interferon program that limits viral infection but increases the risk for autoimmunity. Nat. Immunol. 2017, 18, 744–752. [Google Scholar] [CrossRef]
- Amodio, E.; Pipitone, R.M.; Grimaudo, S.; Immordino, P.; Maida, C.M.; Prestileo, T.; Restivo, V.; Tramuto, F.; Vitale, F.; Craxì, A.; et al. SARS-CoV-2 viral load, ifnλ polymorphisms and the course of COVID-19: An observational study. J. Clin. Med. 2020, 9, 3315. [Google Scholar] [CrossRef]
- Rahimi, P.; Tarharoudi, R.; Rahimpour, A.; Amroabadi, J.M.; Ahmadi, I.; Anvari, E.; Siadat, S.D.; Aghasadeghi, M.; Fateh, A. The association between interferon lambda 3 and 4 gene single-nucleotide polymorphisms and the recovery of COVID-19 patients. Virol. J. 2021, 18, 221. [Google Scholar] [CrossRef] [PubMed]
- Prokunina-Olsson, L.; Muchmore, B.; Tang, W.; Pfeiffer, R.M.; Park, H.; Dickensheets, H.; Hergott, D.; Porter-Gill, P.; Mumy, A.; Kohaar, I.; et al. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat. Genet. 2013, 45, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Dhangadamajhi, G.; Rout, R. Association of TLR3 functional variant (rs3775291) with COVID-19 susceptibility and death: A population-scale study. Hum. Cell 2021, 34, 1025–1027. [Google Scholar] [CrossRef] [PubMed]
- Pati, A.; Padhi, S.; Chaudhury, S.; Panda, A.K. TLR3 (rs3775291) variant is not associated with SARS-CoV-2 infection and related mortality: A population-based correlation analysis. Hum. Cell 2021, 34, 1274–1277. [Google Scholar] [CrossRef]
- Ranjith-Kumar, C.T.; Miller, W.; Sun, J.; Xiong, J.; Santos, J.; Yarbrough, I.; Lamb, R.J.; Mills, J.; Duffy, K.E.; Hoose, S.; et al. Effects of single nucleotide polymorphisms on Toll-like receptor 3 activity and expression in cultured cells. J. Biol. Chem. 2007, 282, 17696–17705. [Google Scholar] [CrossRef] [Green Version]
- Abdelsattar, S.; Kasemy, Z.A.; Ewida, S.F.; Abo-Elsoud, R.A.A.; Zytoon, A.A.; Abdelaal, G.A.; Abdelgawad, A.S.; Khalil, F.O.; Kamel, H.F.M. ACE2 and TMPRSS2 SNPs as Determinants of Susceptibility to, and Severity of, a COVID-19 Infection. Br. J. Biomed. Sci. 2022, 79, 10238. [Google Scholar] [CrossRef]
- Rokni, M.; Heidari Nia, M.; Sarhadi, M.; Mirinejad, S.; Sargazi, S.; Moudi, M.; Saravani, R.; Rahdar, S.; Kargar, M. Association of TMPRSS2 Gene Polymorphisms with COVID-19 Severity and Mortality: A Case-Control Study with Computational Analyses. Appl. Biochem. Biotechnol. 2022, 194, 3507–3526. [Google Scholar] [CrossRef]
- Monticelli, M.; Mele, B.H.; Benetti, E.; Fallerini, C.; Baldassarri, M.; Furini, S.; Frullanti, E.; Mari, F.; GEN-COVID Multicenter Study; Andreotti, G.; et al. Protective role of a tmprss2 variant on severe COVID-19 outcome in young males and elderly women. Genes 2021, 12, 596. [Google Scholar] [CrossRef]
- Ravikanth, V.; Sasikala, M.; Naveen, V.; Latha, S.S.; Parsa, K.V.L.; Vijayasarathy, K.; Amanchy, R.; Avanthi, S.; Govardhan, B.; Rakesh, K.; et al. A variant in TMPRSS2 is associated with decreased disease severity in COVID-19. Meta Gene. 2021, 29, 100930. [Google Scholar] [CrossRef]
- Wang, F.; Huang, S.; Gao, R.; Zhou, Y.; Lai, C.; Li, Z.; Xian, W.; Qian, X.; Li, Z.; Huang, Y.; et al. Initial whole-genome sequencing and analysis of the host genetic contribution to COVID-19 severity and susceptibility. Cell Discov. 2020, 6, 83. [Google Scholar] [CrossRef]
- David, A.; Parkinson, N.; Peacock, T.P.; Pairo-Castineira, E.; Khanna, T.; Cobat, A.; Tenesa, A.; Sancho-Shimizu, V.; Casanova, J.-L.; Abel, L.; et al. A common TMPRSS2 variant has a protective effect against severe COVID-19. Curr. Res. Transl. Med. 2022, 70, 103333. [Google Scholar] [CrossRef] [PubMed]
- Schönfelder, K.; Breuckmann, K.; Elsner, C.; Dittmer, U.; Fistera, D.; Herbstreit, F.; Risse, J.; Schmidt, K.; Sutharsan, S.; Taube, C.; et al. Transmembrane serine protease 2 Polymorphisms and Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Type 2 Infection: A German Case-Control Study. Front. Genet. 2021, 12, 667231. [Google Scholar] [CrossRef] [PubMed]
- Wulandari, L.; Hamidah, B.; Pakpahan, C.; Damayanti, N.S.; Kurniati, N.D.; Adiatmaja, C.O.; Wigianita, M.R.; Soedarsono; Husada, D.; Tinduh, D.; et al. Initial study on TMPRSS2 p.Val160Met genetic variant in COVID-19 patients. Hum. Genom. 2021, 15, 29. [Google Scholar] [CrossRef] [PubMed]
- Posadas-Sanchez, R.; Fragoso, J.M.; Sanchez-Munoz, F.; Rojas-Velasco, G.; Ramirez-Bello, J.; Lopez-Reyes, A.; Martínez-Gómez, L.E.; Sierra-Fernández, C.; Rodríguez-Reyna, T.; Regino-Zamarripa, N.E.; et al. Association of the Transmembrane Serine Protease-2 (TMPRSS2) Polymorphisms with COVID-19. Viruses 2022, 14, 1976. [Google Scholar] [CrossRef] [PubMed]
- Marroqui, L.; Dos Santos, R.S.; Floyel, T.; Grieco, F.A.; Santin, I.; Op de Beeck, A.; Marselli, L.; Marchetti, P.; Pociot, F.; Eizirik, D.L. TYK2, a Candidate Gene for Type 1 Diabetes, Modulates Apoptosis and the Innate Immune Response in Human Pancreatic β-Cells. Diabetes 2015, 64, 3808–3817. [Google Scholar] [CrossRef] [Green Version]
- Zintzaras, E.; Lau, J. Synthesis of genetic association studies for pertinent gene-disease associations requires appropriate methodological and statistical approaches. J. Clin. Epidemiol. 2008, 61, 634–645. [Google Scholar] [CrossRef]
- Zipeto, D.; Palmeira, J.D.F.; Arganaraz, G.A.; Arganaraz, E.R. ACE2/ADAM17/TMPRSS2 Interplay May Be the Main Risk Factor for COVID-19. Front. Immunol. 2020, 11, 576745. [Google Scholar] [CrossRef]
- Saengsiwaritt, W.; Jittikoon, J.; Chaikledkaew, U.; Udomsinprasert, W. Genetic polymorphisms of ACE1, ACE2, and TMPRSS2 associated with COVID-19 severity: A systematic review with meta-analysis. Rev. Med. Virol. 2022, 32, e2323. [Google Scholar] [CrossRef]
- Dieter, C.; Brondani, L.A.; Leitao, C.B.; Gerchman, F.; Lemos, N.E.; Crispim, D. Genetic polymorphisms associated with susceptibility to COVID-19 disease and severity: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0270627. [Google Scholar] [CrossRef]
- Singh, H.; Choudhari, R.; Nema, V.; Khan, A.A. ACE2 and TMPRSS2 polymorphisms in various diseases with special reference to its impact on COVID-19 disease. Microb. Pathog. 2021, 150, 104621. [Google Scholar] [CrossRef]
- Stopsack, K.H.; Mucci, L.A.; Antonarakis, E.S.; Nelson, P.S.; Kantoff, P.W. TMPRSS2 and COVID-19: Serendipity or Opportunity for Intervention? Cancer Discov. 2020, 10, 779–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Ardes, D.; Boccatonda, A.; Rossi, I.; Guagnano, M.T.; Santilli, F.; Cipollone, F.; Bucci, M. COVID-19 and RAS: Unravelling an Unclear Relationship. Int. J. Mol. Sci. 2020, 21, 3003. [Google Scholar] [CrossRef]
- Beyerstedt, S.; Casaro, E.B.; Rangel, E.B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 905–919. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zhang, S.; Gou, J.; Wen, Y.; Fan, L.; Zhou, J.; Zhou, G.; Xu, G.; Zhang, Z. Spike-mediated ACE2 down-regulation was involved in the pathogenesis of SARS-CoV-2 infection. J. Infect. 2022, 85, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Dobrijevic, Z.; Robajac, D.; Gligorijevic, N.; Sunderic, M.; Penezic, A.; Miljus, G.; Nedic, O. The association of ACE1, ACE2, TMPRSS2, IFITM3 and VDR polymorphisms with COVID-19 severity: A systematic review and meta-analysis. EXCLI J. 2022, 21, 818–839. [Google Scholar] [PubMed]
- Gupta, K.; Kaur, G.; Pathak, T.; Banerjee, I. Systematic review and meta-analysis of human genetic variants contributing to COVID-19 susceptibility and severity. Gene 2022, 844, 146790. [Google Scholar] [CrossRef]
- Brodin, P. Immune determinants of COVID-19 disease presentation and severity. Nat. Med. 2021, 27, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Miorin, L.; Kehrer, T.; Sanchez-Aparicio, M.T.; Zhang, K.; Cohen, P.; Patel, R.S.; Cupic, A.; Makio, T.; Mei, M.; Moreno, E.; et al. SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proc. Natl. Acad. Sci. USA 2020, 117, 28344–28354. [Google Scholar] [CrossRef]
- Arunachalam, P.S.; Wimmers, F.; Mok, C.K.P.; Perera, R.A.P.M.; Scott, M.; Hagan, T.; Sigal, N.; Feng, Y.; Bristow, L.; Tsang, O.T.-Y.; et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 2020, 369, 1210–1220. [Google Scholar] [CrossRef]
- Schreiber, G. The Role of Type I Interferons in the Pathogenesis and Treatment of COVID-19. Front. Immunol. 2020, 11, 595739. [Google Scholar] [CrossRef]
- Fabião, J.; Sassi, B.; Pedrollo, E.; Gerchman, F.; Kramer, C.; Leitão, C.; Pinto, L. Why do men have worse COVID-19-related outcomes? A systematic review and meta-analysis with sex adjusted for age. Braz. J. Med. Biol. Res. 2022, 55, e11711. [Google Scholar] [CrossRef] [PubMed]
- Abate, B.B.; Kassie, A.M.; Kassaw, M.W.; Aragie, T.G.; Masresha, S.A. Sex difference in coronavirus disease (COVID-19): A systematic review and meta-analysis. BMJ Open 2020, 10, e040129. [Google Scholar] [CrossRef] [PubMed]
- Ortolan, A.; Lorenzin, M.; Felicetti, M.; Doria, A.; Ramonda, R. Does gender influence clinical expression and disease outcomes in COVID-19? A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 99, 496–504. [Google Scholar] [CrossRef] [PubMed]
Polymorphism–Gene | Localization | Previous Association with COVID-19 | Functional Effect |
---|---|---|---|
rs1799752 (Del/Ins)—Angiotensin I converting enzyme (ACE1) | Chr 17—intron |
| The Del/Del genotype increased ACE1 expression [31]. |
rs2285666 (C/T)—Angiotensin converting enzyme 2 (ACE2) | Chr X—intron |
| The T allele increased ACE2 expression [34,35]. |
rs2109069 (G/A)—Dipeptidyl peptidase 9 (DPP9) | Chr 19—intron |
| Information not available. |
rs1990760 (C/T)—Interferon induced with helicase C domain 1 (IFIH1) | Chr 2—exon | The T allele increases IFIH1 expression [38]. The T allele increased IFN-I production [39] and protected mice against viral infections [40]. | |
rs2236757 (G/A)—Interferon α and β receptor subunit 2 (IFNAR2) | Chr 21—intron |
| Information not available. |
rs368234815 (TT/∆G)—Interferon lambda 4 (IFNL4) | Chr19—exon | This polymorphism does not affect IFNL4 mRNA expression levels, but the IFNL4 protein only is produced in the presence of the ΔG allele [43]. | |
rs3775291 (C/T)—Toll like receptor 3 (TLR3) | Chr 4—exon | This polymorphism does not seem to directly affect TLR3 expression [46]. | |
rs12329760 (C/T)—Transmembrane serine protease 2 (TMPRSS2) | Chr 21—exon |
| In silico analysis showed that this polymorphism might have an impact at the TMPRSS2 mRNA level [55]. The T allele increased TMPRSS2 expression [53]. |
rs2304256 (C/A) —Tyrosine kinase 2 (TYK2) | Chr 19—exon |
| The A allele decreased TYK2 expression [56]. |
Characteristics | All Patients (n = 694) | Inpatients (n = 280) | ICU Patients (n = 414) | p Values * |
---|---|---|---|---|
Age (years) | 59 ± 15.2 | 57 ± 17 | 59.5 ± 13.8 | 0.082 |
Sex (% males) | 47.1 | 46.1 | 57.5 | 0.004 |
Ethnicity (% non-whites) | 25.9 | 31.8 | 22.1 | 0.006 |
BMI (kg/m2) | 30.4 ± 7.1 | 29.2 ± 7.3 | 30.9 ± 7.0 | 0.009 |
Severity | ||||
Death (%) | 26.3 | 7.5 | 39.1 | <0.0001 |
Need for IMV (%) | 46.3 | 0 | 77.3 | - |
Need for RRT (%) | 21.1 | 5.4 | 31.8 | <0.0001 |
Comorbidities | ||||
Hypertension (%) | 72.1 | 73.8 | 71.1 | 0.565 |
Obesity (%) | 46.6 | 43.5 | 48.1 | 0.325 |
DM (%) | 44.6 | 35.2 | 50.5 | <0.0001 |
Chronic kidney disease (%) | 19.9 | 19.0 | 20.5 | 0.719 |
Cancer (%) | 11.1 | 16.3 | 7.8 | 0.001 |
Cardiac failure (%) | 15.2 | 15.9 | 14.8 | 0.802 |
Asthma (%) | 11.6 | 10.5 | 12.2 | 0.677 |
COPD (%) | 7.0 | 4.2 | 8.8 | 0.035 |
Organ transplantation (%) | 5.0 | 6.8 | 3.9 | 0.131 |
Blood counts | ||||
Hematocrit (%) | 36.6 ± 6.3 | 37.2 ± 6.2 | 36.1 ± 6.4 | 0.031 |
Hemoglobin (g/dL) | 12.2 ± 2.3 | 12.4 ± 2.2 | 12.0 ± 2.3 | 0.017 |
Leukocytes (×103/μL) | 8.14 (5.74–11.79) | 7.26 (5.43–10.03) | 9.07 (6.21–13.21) | <0.0001 |
Lymphocytes (%) | 10.4 (6.2–15.9) | 14.4 (9.9–23.2) | 8.3 (5.0–12.5) | <0.0001 |
Platelets (×103/μL) | 221.0 (164.0–272.0) | 211.0 (157.3–275.8) | 225.0 (167.0–272.0) | 0.544 |
Creatinine (mg/dL) | 0.98 (0.77–1.61) | 0.90 (0.74–1.19) | 1.05 (0.78–1.80) | <0.0001 |
eGFR (mL/min per 1.73m2) | 73.0 (40.1–91.0) | 79.0 (54.0–94.0) | 65.0 (33.2–90.0) | <0.0001 |
Sodium (mEq/L) | 138.9 ± 4.7 | 138.1 ± 4.2 | 139.5 ± 4.9 | <0.0001 |
Potassium (mEq/L) | 4.3 ± 0.7 | 4.2 ± 0.6 | 4.4 ± 0.7 | 0.014 |
C-reactive protein (mg/L) | 116.0 (49.5–186.9) | 69.3 (25.7–149.7) | 134.2 (79.3–211.1) | <0.0001 |
Urea (mg/L) | 43.0 (31.0–72.8) | 37.0 (27.0–53.0) | 50.0 (34.0–81.0) | <0.0001 |
D-dimer (μg/mL) | 1.16 (0.60–2.42) | 0.81 (0.5–1.48) | 1.46 (0.68–3.54) | <0.0001 |
Lactate (mmol/L) | 1.30 (0.96–1.70) | 1.14 (0.90–1.64) | 1.3 (1.0–1.7) | 0.006 |
LDH (U/L) | 375.0 (268.0–526.0) | 281.5 (220.8–375.0) | 455.0 (348.0–608.0) | <0.0001 |
HbA1c (%) | 6.0 (5.5–7.1) | 5.8 (5.3–6.5) | 6.1 (5.6–7.4) | <0.0001 |
Characteristics | Survivors (n = 469) | Non-Survivors (n = 183) | p Values * |
---|---|---|---|
Age (years) | 55 ± 15 | 65 ± 13 | <0.0001 |
Sex (% males) | 48.4 | 61.7 | 0.004 |
Ethnicity (% non-whites) | 27.7 | 24.3 | 0.447 |
BMI (kg/m2) | 30.8 ± 7.1 | 29.2 ± 6.5 | 0.011 |
Severity | |||
Need for ICU admission (%) | 32.1 | 98.4 | <0.0001 |
Need for IMV (%) | 31.5 | 84.2 | <0.0001 |
Need for RRT (%) | 11.9 | 46.4 | <0.0001 |
Comorbidities | |||
Hypertension (%) | 68.4 | 79.5 | 0.012 |
Obesity (%) | 48.1 | 40.6 | 0.126 |
DM (%) | 39.4 | 55.2 | 0.001 |
Chronic kidney disease (%) | 16.7 | 30.6 | <0.0001 |
Cancer (%) | 9.8 | 16.0 | 0.037 |
Cardiac failure (%) | 14.4 | 18.4 | 0.311 |
COPD (%) | 4.2 | 14.0 | <0.0001 |
Organ transplantation (%) | 5.5 | 5.0 | 0.940 |
Blood counts | |||
Hematocrit (%) | 37.0 ± 5.9 | 35.2 ± 6.9 | 0.002 |
Hemoglobin (g/dL) | 12.4 ± 2.2 | 11.6 ± 2.4 | <0.0001 |
Leukocytes (×103/μL) | 7.76 (5.58–11.06) | 9.24 (6.19–15.10) | 0.252 |
Lymphocytes (%) | 12.0 (7.83–18.2) | 7.2 (5.0–12.5) | <0.0001 |
Platelets (×103/μL) | 226.0 (166.7–272.2) | 212.5 (144.8–271.3) | 0.063 |
Creatinine (mg/dL) | 0.91 (0.74–1.26) | 1.42 (0.81–2.25) | <0.0001 |
eGFR (mL/min per 1.73m2) | 78.0 (51.0–94.0) | 47.0 (24.0–85.0) | <0.0001 |
Sodium (mEq/L) | 138.8 ± 4.1 | 139.3 ± 5.5 | 0.238 |
Potassium (mEq/L) | 4.2 ± 0.6 | 4.5 ± 0.8 | <0.0001 |
C-reactive protein (mg/L) | 99.7 (39.9–173.3) | 136.7 (73.3–207.8) | <0.0001 |
Urea (mg/L) | 37.0 (29.0–55.7) | 67.0 (43.0–99.0) | <0.0001 |
D-dimer (μg/mL) | 0.93 (0.54–1.94) | 1.72 (0.86–3.75) | <0.0001 |
Lactate (mmol/L) | 1.20 (0.90–1.60) | 1.30 (1.0–1.70) | 0.006 |
LDH (U/L) | 356.0 (244.0–480.5) | 481.0 (325.0–638.2) | <0.0001 |
HbA1c (%) | 5.8 (5.4–6.7) | 6.3 (5.7–7.4) | 0.037 |
Inpatients | ICU Patients | p * | Survivors | Non-Survivors | p * | Test for HWE p * | |
---|---|---|---|---|---|---|---|
rs1799752—ACE1 | 277 | 403 | 463 | 176 | |||
Genotype | |||||||
Del/Del | 85 (30.7) | 113 (28.0) | 0.138 | 132 (28.5) | 49 (27.8) | 0.266 | <0.00001 |
Del/Ins | 188 (67.9) | 274 (68.0) | 321 (69.3) | 119 (67.6) | |||
Ins/Ins | 4 (1.4) | 16 (4.0) | 10 (2.2) | 8 (4.6) | |||
Allele | |||||||
Del | 0.65 | 0.62 | 0.360 | 0.63 | 0.62 | 0.660 | - |
Ins | 0.35 | 0.38 | 0.37 | 0.38 | |||
rs2285666—ACE2 | 279 | 406 | 463 | 180 | |||
Genotype | |||||||
C/C | 182 (65.2) | 281 (69.2) | 0.007 | 308 (66.5) | 131 (72.8) | 0.222 | <0.00001 |
C/T | 64 (22.9) | 58 (14.3) | 93 (20.1) | 26 (14.4) | |||
T/T | 33 (11.9) | 67 (16.5) | 62 (13.4) | 23 (12.8) | |||
Allele | |||||||
C | 0.77 | 0.76 | 0.932 | 0.77 | 0.80 | 0.211 | - |
T | 0.23 | 0.24 | 0.23 | 0.20 | |||
rs2109069—DPP9 | 280 | 411 | 467 | 182 | |||
Genotype | |||||||
G/G | 114 (51.4) | 202 (49.1) | 0.376 | 241 (51.6) | 87 (47.8) | 0.591 | 0.905 |
G/A | 116 (41.4) | 167 (40.6) | 191 (40.9) | 78 (42.9) | |||
A/A | 20 (7.2) | 42 (10.3) | 35 (7.5) | 17 (9.3) | |||
Allele | |||||||
G | 0.69 | 0.69 | 0.847 | 0.72 | 0.69 | 0.346 | - |
A | 0.31 | 0.31 | 0.28 | 0.31 | |||
rs1990760—IFIH1 | 274 | 401 | 461 | 174 | |||
Genotype | |||||||
C/C | 93 (33.9) | 122 (30.4) | 0.481 | 147 (31.8) | 60 (34.5) | 0.255 | 0.488 |
C/T | 131 (47.8) | 193 (48.2) | 228 (49.5) | 74 (42.5) | |||
T/T | 50 (18.3) | 86 (21.4) | 86 (18.7) | 40 (23.0) | |||
Allele | |||||||
C | 0.58 | 0.54 | 0.245 | 0.57 | 0.56 | 0.829 | - |
T | 0.42 | 0.46 | 0.43 | 0.44 | |||
rs223675—IFNAR2 | 279 | 410 | 466 | 181 | |||
Genotype | |||||||
G/G | 124 (44.4) | 174 (42.4) | 0.740 | 212 (45.5) | 73 (40.3) | 0.356 | 0.638 |
G/A | 119 (42.7) | 187 (45.6) | 195 (41.8) | 87 (48.1) | |||
A/A | 36 (12.9) | 49 (12.0) | 59 (12.7) | 21 (11.6) | |||
Allele | |||||||
G | 0.66 | 0.65 | 0.885 | 0.66 | 0.64 | 0.526 | - |
A | 0.34 | 0.35 | 0.34 | 0.36 | |||
rs368234815—IFNL4 | 274 | 404 | 460 | 177 | |||
Genotype | |||||||
TT/TT | 110 (40.1) | 151 (37.4) | 0.687 | 170 (37.0) | 72 (40.7) | 0.580 | 0.007 |
TT/∆G | 117 (42.7) | 175 (43.3) | 201 (43.7) | 76 (42.9) | |||
∆G/∆G | 47 (17.2) | 78 (19.3) | 89 (19.3) | 29 (16.4) | |||
Allele | |||||||
TT | 0.61 | 0.59 | 0.394 | 0.59 | 0.62 | 0.306 | - |
G | 0.39 | 0.41 | 0.41 | 0.38 | |||
rs3775291—TLR3 | 278 | 404 | 463 | 179 | |||
Genotype | |||||||
C/C | 136 (48.9) | 183 (45.3) | 0.574 | 224 (48.4) | 79 (44.1) | 0.562 | 0.642 |
C/T | 112 (40.3) | 179 (44.3) | 194 (41.9) | 79 (44.1) | |||
T/T | 30 (10.8) | 42 (10.4) | 45 (9.7) | 21 (11.8) | |||
Allele | |||||||
C | 0.69 | 0.67 | 0.569 | 0.69 | 0.66 | 0.312 | - |
T | 0.31 | 0.33 | 0.31 | 0.34 | |||
rs12329760—TMPRSS2 | 279 | 410 | 465 | 182 | |||
Genotype | |||||||
C/C | 192 (68.8) | 263 (64.2) | 0.316 | 312 (67.1) | 115 (63.2) | 0.633 | 0.654 |
C/T | 77 (27.6) | 135 (32.9) | 138 (29.7) | 60 (33.0) | |||
T/T | 10 (3.6) | 12 (2.9) | 15 (3.2) | 7 (3.8) | |||
Allele | |||||||
C | 0.83 | 0.81 | 0.384 | 0.82 | 0.80 | 0.389 | - |
T | 0.17 | 0.19 | 0.18 | 0.20 | |||
rs2304256—TYK2 | 279 | 408 | 463 | 182 | |||
Genotype | |||||||
C/C | 161 (57.7) | 225 (55.1) | 0.426 | 261 (56.4) | 101 (55.5) | 0.272 | 0.272 |
C/A | 107 (38.4) | 158 (38.7) | 183 (39.5) | 68 (37.4) | |||
T/A | 11 (3.9) | 25 (6.2) | 19 (4.1) | 13 (7.1) | |||
Allele | |||||||
C | 0.77 | 0.74 | 0.347 | 0.76 | 0.74 | 0.506 | - |
A | 0.23 | 0.26 | 0.24 | 0.26 |
Sex | Groups | Unadjusted p * | Adjusted OR (95% IC)/p † | |
---|---|---|---|---|
Females | Inpatients | ICU Patients | ||
rs1799752/ACE1 | 149 | 171 | ||
Genotype | ||||
Del/Del | 55 (36.9) | 36 (21.1) | 0.002 | 1 |
Del/Ins | 93 (62.4) | 129 (75.4) | 2.203 (1.316–3.688)/0.003 | |
Ins/Ins | 1 (0.7) | 6 (3.5) | 8.127 (0.932–70.843)/0.058 | |
Allele | ||||
Del | 0.68 | 0.59 | 0.018 | - |
Ins | 0.32 | 0.41 | ||
Dominant model | ||||
Del/Del | 55 (36.9) | 36 (21.1) | 0.003 | 1 |
Del/Ins + Ins/Ins | 94 (63.1) | 135 (78.9) | 2.283 (1.366–3.814)/0.002 | |
rs1990760–IFIH1 | 147 | 172 | ||
Genotype | ||||
C/C | 59 (40.1) | 55 (32.0) | 0.081 | 1 |
C/T | 66 (44.9) | 75 (43.6) | 1.281 (0.762–2.155)/0.350 | |
T/T | 22 (15.0) | 42 (24.4) | 2.139 (1.100–4.161)/0.025 | |
Allele | ||||
C | 0.63 | 0.54 | 0.030 | - |
T | 0.37 | 0.46 | ||
Recessive model | ||||
C/C+ C/T | 125 (85.0) | 130 (75.6) | 0.050 | 1 |
T/T | 22 (15.0) | 42 (24.4) | 1.855 (1.024–3.359)/0.041 | |
Additive model | ||||
C/C | 59 (72.8) | 55 (56.7) | 0.038 | 1 |
T/T | 22 (27.2) | 42 (43.3) | 2.153 (1.097–4.226)/0.026 | |
Dominant model | ||||
C/C | 59 (40.1) | 55 (32.0) | 0.162 | 1 |
C/T + T/T | 88 (59.9) | 117 (68.0) | 1.493 (0.919–2.428)/0.106 | |
rs12329760–TMPRSS2 | 150 | 175 | ||
Genotype | ||||
C/C | 109 (72.7) | 104 (59.4) | 0.041 | 1 |
C/T | 38 (25.3) | 65 (37.2) | 1.697 (1.038–2.775)/0.035 | |
T/T | 3 (2.0) | 6 (3.4) | 1.960 (0.474–8.103)/0.353 | |
Allele | ||||
C | 0.85 | 0.78 | 0.021 | - |
T | 0.15 | 0.22 | ||
Dominant model | ||||
C/C | 109 (72.7) | 104 (59.4) | 0.017 | 1 |
C/T + T/T | 41 (27.3) | 71 (40.6) | 1.717 (1.065–2.769)/0.027 | |
Interaction ACE1, IFIH1 and TMPRSS2 | 145 | 170 | ||
0, 1, 2 or 3 mutated alleles | 141 (97.2) | 152 (89.4) | 0.013 | |
4, 5, or 6 mutated alleles | 4 (2.8) | 18 (10.6) | 3.859 (1.271–11.714)/0.017 | |
Females | Survivors | Non-survivors | ||
rs1990760–IFIH1 | 238 | 69 | ||
Genotype | ||||
C/C | 84 (35.3) | 24 (34.8) | 0.073 | 1 |
C/T | 113 (47.5) | 25 (36.2) | 0.717 (0.365–1.409)/0.334 | |
T/T | 41 (17.2) | 20 (29.0) | 1.889 (0.884–4.037)/0.101 | |
Allele | ||||
C | 0.59 | 0.53 | 0.236 | - |
T | 0.41 | 0.47 | ||
Recessive model | ||||
C/C+ C/T | 197 (82.8) | 49 (71.0) | 0.047 | 1 |
T/T | 41 (17.2) | 20 (29.0) | 2.281 (1.175–4.427)/0.015 | |
Additive model | ||||
C/C | 84 (67.2) | 24 (54.5) | 0.187 | 1 |
T/T | 41 (32.8) | 20 (45.5) | 2.065 (0.942–4.528)/0.070 | |
Dominant model | ||||
C/C | 84 (35.3) | 24 (34.8) | 1.000 | 1 |
C/T + T/T | 154 (64.7) | 45 (65.2) | 0.999 (0.545–1.833)/0.999 | |
rs12329760–TMPRSS2 | 240 | 71 | ||
Genotype | ||||
C/C | 164 (68.3) | 42 (59.2) | 0.192 | 1 |
C/T | 71 (29.6) | 25 (35.2) | 1.547 (0.850–2.813)/0.153 | |
T/T | 5 (2.1) | 4 (5.6) | 2.769 (0.690–11.108)/0.151 | |
Allele | ||||
C | 0.83 | 0.77 | 0.110 | - |
T | 0.17 | 0.23 | ||
Dominant model | ||||
C/C | 164 (68.3) | 42 (59.2) | 0.196 | 1 |
C/T + T/T | 76 (31.7) | 29 (40.8) | 1.647 (0.927–2.927)/0.089 | |
rs2304256–TYK2 | 240 | 71 | ||
Genotype | ||||
C/C | 136 (56.7) | 41 (57.7) | 0.171 | 1 |
C/A | 94 (39.1) | 23 (32.4) | 0.867 (0.473–1.589)/0.644 | |
A/A | 10 (4.2) | 7 (9.9) | 2.438 (0.817–7.279)/0.110 | |
Allele | ||||
C | 0.76 | 0.74 | 0.651 | - |
A | 0.24 | 0.26 | ||
Recessive model | ||||
C/C+ C/A | 230 (95.8) | 64 (90.1) | 0.076 | 1 |
A/A | 10 (4.2) | 7 (9.9) | 2.574 (0.882–7.513)/0.084 | |
Additive model | ||||
C/C | 136 (93.2) | 41 (85.4) | 0.138 | 1 |
A/A | 10 (6.8) | 7 (14.6) | 2.433 (0.806–7.343)/0.115 | |
Dominant model | ||||
C/C | 136 (56.7) | 41 (57.7) | 0.980 | 1 |
C/A + A/A | 104 (43.3) | 30 (42.3) | 1.024 (0.582–1.803)/0.934 | |
Interaction IFIH1, TMPRSS2 and TYK2 | 235 | 69 | ||
0, 1, 2 or 3 mutated alleles | 221 (94.0) | 60 (87.0) | 0.089 | |
4, 5, or 6 mutated alleles | 14 (6.0) | 9 (13.0) | 2.622 (1.026–6.704)/0.044 |
Stratification | Group | Unadjusted p * | Adjusted OR (95% IC)/p † | |
---|---|---|---|---|
Non-White | Inpatients | ICU Patients | ||
rs223675–IFNAR2 | 84 | 89 | ||
Genotype | ||||
G/G | 45 (53.5) | 41 (46.1) | 0.080 | 1 |
G/A | 34 (40.5) | 33 (37.0) | 1.085 (0.569–2.067)/0.804 | |
A/A | 5 (6.0) | 15 (16.9) | 3.357 (1.114–10.109)/0.031 | |
Allele | ||||
G | 0.74 | 0.65 | 0.065 | - |
A | 0.26 | 0.35 | ||
Recessive model | ||||
G/G + G/A | 79 (94.0) | 74 (83.1) | 0.045 | 1 |
A/A | 5 (6.0) | 15 (16.9) | 3.238 (1.116–9.391)/0.031 | |
Additive model | ||||
G/G | 45 (90.0) | 41 (73.2) | 0.050 | 1 |
A/A | 5 (10.0) | 15 (26.8) | 3.375 (1.116–10.208)/0.031 | |
Dominant model | ||||
G/G | 45 (53.6) | 41 (46.1) | 0.404 | 1 |
G/A + A/A | 39 (46.4) | 48 (53.9) | 1.377 (0.753–2.517)/0.299 | |
Non-white | Survivors | Non-survivors | ||
rs1799752/ACE1 | 123 | 42 | ||
Genotype | ||||
Del/Del | 37 (30.1) | 11 (26.2) | 0.011 | ‡ |
Del/Ins | 86 (69.9) | 28 (66.7) | ||
Ins/Ins | 0 (0.0) | 3 (7.1) | ||
Allele | ||||
Del | 0.65 | 0.60 | 0.368 | - |
Ins | 0.35 | 0.40 | ||
Recessive model | ||||
Del/Del + Del/Ins | 123 (100.0) | 39 (92.9) | 0.020 | 1 |
Ins/Ins | 0 (0.0) | 3 (7.1) | 14.56 (1.237–495.6)/0.032 * | |
Additive model | ||||
Del/Del | 37 (100.0) | 11 (78.6) | 0.025 | 1 |
Ins/Ins | 0 (0.0) | 3 (21.4) | 14.98 (1.188–537.5)/0.035 * | |
Dominant model | ||||
Del/Del | 37 (30.1) | 11 (26.2) | 0.777 | 1 |
Del/Ins + Ins/Ins | 86 (69.9) | 31 (73.8) | 1.122 (0.496–2.534)/0.783 | |
rs223675–IFNAR2 | 123 | 44 | ||
Genotype | ||||
G/G | 69 (56.1) | 16 (36.4) | 0.026 | 1 |
G/A | 44 (35.8) | 19 (43.2) | 1.997 (0.892–4.472)/0.093 | |
A/A | 10 (8.1) | 9 (20.4) | 3.682 (1.213–11.176)/0.021 | |
Allele | ||||
G | 0.74 | 0.58 | 0.006 | - |
A | 0.26 | 0.42 | ||
Recessive model | ||||
G/G + G/A | 113 (91.9) | 35 (79.5) | 0.053 | 1 |
A/A | 10 (8.1) | 9 (20.5) | 2.664 (0.951–7.465)/0.062 | |
Additive model | ||||
G/G | 69 (87.3) | 16 (64.0) | 0.020 | 1 |
A/A | 10 (12.7) | 9 (36.0) | 3.823 (1.203–12.149)/0.023 | |
Dominant model | ||||
G/G | 69 (56.1) | 16 (36.4) | 0.038 | 1 |
G/A + A/A | 54 (43.9) | 28 (63.6) | 2.336 (1.104–4.944)/0.027 | |
rs12329760–TMPRSS2 | 124 | 44 | ||
Genotype | ||||
C/C | 86 (69.4) | 23 (52.3) | 0.112 | 1 |
C/T | 34 (27.4) | 18 (40.9) | 2.050 (0.948–4.435)/0.068 | |
T/T | 4 (3.2) | 3 (6.8) | 3.090 (0.613–15.577)/0.172 | |
Allele | ||||
C | 0.83 | 0.73 | 0.042 | - |
T | 0.17 | 0.27 | ||
Dominant model | ||||
C/C | 86 (69.4) | 23 (52.3) | 1 | |
C/T + T/T | 38 (30.6) | 21 (47.7) | 0.064 | 2.160 (1.031–4.527)/0.041 |
Interaction ACE1 and TMPRSS2 | 123 | 42 | ||
0, 1 or 2 mutated alleles | 120 (97.6) | 37 (88.1) | 0.040 | |
3 or 4 mutated alleles | 3 (2.4) | 5 (11.9) | 5.854 (1.280–26.777)/0.023 | |
Interaction ACE1, IFNAR2 and TMPRSS2 | 122 | 42 | ||
0, 1, 2 or 3 mutated alleles | 119 (97.5) | 36 (85.7) | 0.012 | |
4, 5 or 6 mutated alleles | 3 (2.5) | 6 (14.3) | 6.468 (1.463–28.592)/0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dieter, C.; de Almeida Brondani, L.; Lemos, N.E.; Schaeffer, A.F.; Zanotto, C.; Ramos, D.T.; Girardi, E.; Pellenz, F.M.; Camargo, J.L.; Moresco, K.S.; et al. Polymorphisms in ACE1, TMPRSS2, IFIH1, IFNAR2, and TYK2 Genes Are Associated with Worse Clinical Outcomes in COVID-19. Genes 2023, 14, 29. https://doi.org/10.3390/genes14010029
Dieter C, de Almeida Brondani L, Lemos NE, Schaeffer AF, Zanotto C, Ramos DT, Girardi E, Pellenz FM, Camargo JL, Moresco KS, et al. Polymorphisms in ACE1, TMPRSS2, IFIH1, IFNAR2, and TYK2 Genes Are Associated with Worse Clinical Outcomes in COVID-19. Genes. 2023; 14(1):29. https://doi.org/10.3390/genes14010029
Chicago/Turabian StyleDieter, Cristine, Leticia de Almeida Brondani, Natália Emerim Lemos, Ariell Freires Schaeffer, Caroline Zanotto, Denise Taurino Ramos, Eliandra Girardi, Felipe Mateus Pellenz, Joiza Lins Camargo, Karla Suzana Moresco, and et al. 2023. "Polymorphisms in ACE1, TMPRSS2, IFIH1, IFNAR2, and TYK2 Genes Are Associated with Worse Clinical Outcomes in COVID-19" Genes 14, no. 1: 29. https://doi.org/10.3390/genes14010029