Interaction between Boron and Other Elements in Plants
Abstract
:1. Introduction
2. Interaction of B with Other Mineral Nutrients
2.1. B and Nitrogen (N)
2.2. B and Phosphorus (P)
2.3. B and Calcium (Ca)
2.4. B and Potassium (K), Magnesium (Mg), S
2.5. B and Trace Elements
2.6. B and Sodium (Na), Selenium (Se), and Silicon (Si)
3. Interactions between B and Toxic Elements
4. Physiological Mechanism of the Interaction between B and Other Elements
4.1. Interaction with Other Elements via the Cell Wall
4.2. Interaction with Other Elements through Competitive Inhibition
4.3. Interaction with Other Elements through Their Related Signal Transduction Pathways
5. Summary and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Warington, K. The effect of boric acid and borax on the broad bean and certain other plants. Ann. Bot. 1923, 37, 629–672. [Google Scholar] [CrossRef]
- Lewis, D.H. Boron: The essential element for vascular plants that never was. New Phytol. 2019, 221, 1685–1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Fontes, A. Why boron is an essential element for vascular plants: A comment on Lewis ‘Boron: The essential element for vascular plants that never was’. New Phytol. 2019, 226, 1228–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wimmer, M.A.; Abreu, I.; Bell, R.W.; Bienert, M.D.; Brown, P.H.; Dell, B.; Fujiwara, T.; Goldbach, H.E.; Lehto, T.; Mock, H.; et al. Boron: An essential element for vascular plants: A comment on Lewis ‘Boron: The essential element for vascular plants that never was’. New Phytol. 2019, 226, 1232–1237. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Cristóbal, J.J.; Rexach, J.; González-Fontes, A. Boron in plants: Deficiency and toxicity. J. Integr. Plant Biol. 2008, 50, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Matoh, T.; Kawaguchi, S.; Kobayashi, M. Ubiquity of a borate-rhamnogalacturonan II complex in the cell walls of higher plants. Plant Cell Physiol. 1996, 37, 636–640. [Google Scholar] [CrossRef] [Green Version]
- Matoh, T.; Ishigaki, K.; Ohno, K.; Azuma, J.I. Isolation and characterization of a boron-polysaccharide complex from radish roots. Plant Cell Physiol. 1993, 34, 639–642. [Google Scholar]
- O’Neill, M.A.; Warrenfeltz, D.; Kates, K.; Pellerin, P.; Doco, T.; Darvill, A.G.; Albersheim, P. Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester: In vitro conditions for the formation and hydrolysis of the dimer. J. Biol. Chem. 1996, 271, 22923–22930. [Google Scholar] [CrossRef] [Green Version]
- Voxeur, A.; Fry, S.C. Glycosylinositol phosphorylceramides from Rosa cell cultures are boron-bridged in the plasma membrane and form complexes with rhamnogalacturonan II. Plant J. 2014, 79, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.F.; Zhang, Q.; He, M.L.; Wang, S.L.; Shi, L.; Xu, F.S. Molecular characterization of the genome-wide BOR transporter gene family and genetic analysis of BnaC04.BOR1;1c in Brassica napus. BMC Plant Biol. 2018, 18, 193. [Google Scholar] [CrossRef]
- Khan, M.K.; Pandey, A.; Hamurcu, M.; Avsaroglu, Z.Z.; Ozbek, M.; Omay, A.H.; Elbasan, F.; Omay, M.R.; Gokmen, F.; Topal, A.; et al. Variability in Physiological Traits Reveals Boron Toxicity Tolerance in Aegilops Species. Front. Plant Sci. 2021, 12, 736614. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Khan, M.K.; Hamurcu, M.; Brestic, M.; Topal, A.; Gezgin, S. Insight into the Root Transcriptome of a Boron-Tolerant Triticum zhukovskyi Genotype Grown under Boron Toxicity. Agronomy 2022, 12, 2421. [Google Scholar] [CrossRef]
- O’Neill, M.A.; Ishii, T.; Albersheim, P.; Darvill, M.G. Rhamnogalacturonan II: Structure and function of a borate cross-linked cell wall pectic polysaccharide. Ann. Rev. Plant Biol. 2004, 55, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, U.C.; MacLeod, J.A.; Sterling, J.D.E. Effects of boron and nitrogen on grain yield and boron and nitrogen concentrations of barley and wheat. Soil Sci. Soc. Am. J. 1976, 40, 723–726. [Google Scholar] [CrossRef]
- Camacho-Cristóbal, J.J.; González-Fontes, A. Boron deficiency decreases plasmalemma H+-ATPase expression and nitrate uptake, and promotes ammonium assimilation into asparagine in tobacco roots. Planta 2007, 226, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Liang, Y.; Shen, K. Effect of boron on the nitrate reductase activity in oilseed rape plants. J. Plant Nutr. 1993, 16, 1229–1239. [Google Scholar] [CrossRef]
- Fuertes-Mendizábal, T.; Bastías, E.I.; González-Murua, C.; González-Murua, C.; González-Moro, M.B. Nitrogen assimilation in the highly salt-and boron-tolerant ecotype Zea mays L. Amylacea. Plants 2020, 9, 322. [Google Scholar] [CrossRef] [Green Version]
- Brenchley, W.E.; Thornton, H.G. The relation between the devlopment, structure and functioning of the nodules on Vicia faba, as influenced by the presence or absence of boron in the nutrient medium. Proc. R. Soc. Lond. Biol. Sci. 1925, 98, 373–399. [Google Scholar]
- Bolanos, L.; Esteban, E.; de Lorenzo, C.; Fernandez-Pascual, M.; Bonilla, I. Essentiality of boron for symbiotic dinitrogen fixation in pea (Pisum sativum) rhizobium nodules. Plant Physiol. 1994, 104, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Bonilla, I.; Mergold-Villasenor, C.; Campos, M.E.; Sánchez, N.; Pérez, H.; López, L.; Castrejón, L.; Sánchez, F.; Cassab, G.I. The aberrant cell walls of boron-deficient bean root nodules have no covalently bound hydroxyproline-/proline-rich proteins. Plant Physiol. 1997, 115, 1329–1340. [Google Scholar] [CrossRef] [Green Version]
- Redondo-Nieto, M.; Wilmot, A.R.; El-Hamdaoui, A.; Bonilla, I.; Bolaos, L. Relationship between boron and calcium in the N2-fixing legume–rhizobia symbiosis. Plant Cell Environ. 2003, 26, 1905–1915. [Google Scholar] [CrossRef]
- Bolanos, L.; Brewin, N.J.; Bonilla, I. Effects of boron on Rhizobium-legume cell-surface interactions and nodule development. Plant Physiol. 1996, 110, 1249–1256. [Google Scholar] [CrossRef]
- Gerendas, J.; Heeschen, V.; Kahl, S.; Ratcliffe, R.G.; Rudolph, H. An investigation of N Me[tacute]abolism and pH regulation in Sphagnum using in vivo nuclear magnetic resonance and stable isotope mass spectrometry. Isot. Environ. Health Stud. 1997, 33, 21–29. [Google Scholar] [CrossRef]
- Dinh, A.Q.; Naeem, A.; Sagervanshi, A.; Wimmer, M.A.; Mühling, K.H. Boron uptake and distribution by oilseed rape (Brassica napus L.) as affected by different nitrogen forms under low and high boron supply. Plant Physiol. Biochem. 2021, 161, 156–165. [Google Scholar] [CrossRef]
- Kaya, C.; Tuna, A.L.; Dikilitas, M.; Ashraf, M.; Koskeroglu, S.; Guneri, M. Supplementary phosphorus can alleviate boron toxicity in tomato. Sci. Hortic. 2009, 121, 284–288. [Google Scholar] [CrossRef]
- Günes, A.; Alpaslan, M. Boron uptake and toxicity in maize genotypes in relation to boron and phosphorus supply. J. Plant Nutr. 2000, 23, 541–550. [Google Scholar] [CrossRef]
- Chatterjee, C.; Sinha, P.; Agarwala, S.C. Interactive effect of boron and phosphorus on growth and metabolism of maize grown in refined sand. Can. J. Plant Sci. 1990, 70, 455–460. [Google Scholar] [CrossRef]
- Masood, S.; Zhao, X.Q.; Shen, R.F. Bacillus pumilus increases boron uptake and inhibits rapeseed growth under boron supply irrespective of phosphorus fertilization. AoB Plants 2019, 11, plz036. [Google Scholar] [CrossRef] [PubMed]
- Robertson, G.A.; Loughman, B.C. Reversible effects of boron on the absorption and incorporation of phosphate in Vicia faba L. New Phytol. 1974, 73, 291–298. [Google Scholar] [CrossRef]
- Blamey, F.P.C.; Chapman, J. Research note: Boron toxicity in Spanish groundnuts. Agrochemophysica 1979, 11, 57–59. [Google Scholar]
- Sinha, P.; Dube, B.K.; Chatterjee, C. Phosphorus stress alters boron metabolism of mustard. Commun. Soil Sci. Plant. Anal. 2003, 34, 315–326. [Google Scholar] [CrossRef]
- Reeve, E.; Shive, J.W. Potassium-boron and calcium-boron relationships in plant nutrition. Soil Sci. 1944, 57, 1–14. [Google Scholar] [CrossRef]
- Bonilla, I.; El-Hamdaoui, A.; Bolaños, L. Boron and calcium increase Pisum sativum seed germination and seedling development under salt stress. Plant Soil 2004, 267, 97–107. [Google Scholar] [CrossRef]
- Turan, M.A.; Taban, N.; Taban, S. Effect of Calcium on the Alleviation of Boron Toxicity and Localization of Boron and Calcium in Cell Wall of Wheat. Not. Bot. Horti. Agrobol. 2009, 37, 99–103. [Google Scholar]
- Galeriani, T.M.; Neves, G.O.; Santos Ferreira, J.H.; Oliveira, R.N.; Oliveira, S.L.; Calonego, J.C.; Crusciol, C.A.C. Calcium and Boron Fertilization Improves Soybean Photosynthetic Efficiency and Grain Yield. Plants 2022, 11, 2937. [Google Scholar] [CrossRef]
- Tariq, M.; Mott, C.J.B. Effect of applied calcium-boron ratio on the availability of each to radish (Raphanus sativus L.). Sarhad J. Agric. 2007, 23, 357. [Google Scholar]
- Ngouémazong, D.E.; Tengweh, F.F.; Fraeye, I.; Duvetter, T.; Cardinaels, R.; Loey, A.V.; Moldenaers, P.; Hendrickx, M. Effect of de-methylesterification on network development and nature of Ca2+-pectin gels: Towards understanding structure–function relations of pectin. Food Hydr. 2012, 26, 89–98. [Google Scholar] [CrossRef]
- González-Fontes, A.; Navarro-Gochicoa, M.T.; Camacho-Cristóbal, J.J.; Begoña Herrera-Rodríguez, M.; Quiles-Pando, C.; Rexach, J. Is Ca2+ involved in the signal transduction pathway of boron deficiency? New hypotheses for sensing boron deprivation. Plant Sci. 2014, 217, 135–139. [Google Scholar] [CrossRef]
- Lopez-Lefebre, L.R.; Rivero, R.M.; Garcia, P.C.; Sánchez, E.; Ruiz, J.M.; Romero, L. Boron effect on mineral nutrients of tobacco. J. Plant Nutr. 2002, 25, 509–522. [Google Scholar] [CrossRef]
- Cramer, G.R.; Epstein, E.; Läuchli, A. Effects of sodium, potassium and calcium on salt-stressed barley: II. Elemental analysis. Physiol. Plant. 1991, 81, 197–202. [Google Scholar] [CrossRef]
- Mozafar, A. Boron effect on mineral nutrients of maize. Agric. J. 1989, 81, 285–290. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Shukla, L.M. Effect of boron–sulphur interaction on their uptake and quality parameters of mustard (Brassica juncea L.) and sunflower (Helianthus annuus L.). Indian Soc. Soil Sci. 2008, 56, 225–230. [Google Scholar]
- Alvarez-Tinaut, M.C.; Leal, A.; Martínez, L.R. Iron-manganese interaction and its relation to boron levels in tomato plants. Plant Soil 1980, 55, 377–388. [Google Scholar] [CrossRef]
- Peng, J.S.; Zhang, B.C.; Chen, H.; Wang, M.Q.; Wang, Y.T.; Li, H.M.; Cao, S.X.; Yi, H.Y.; Wang, H.; Zhou, Y.H.; et al. Galactosylation of rhamnogalacturonan-II for cell wall pectin biosynthesis is critical for root apoplastic iron reallocation in Arabidopsis. Mol. Plant 2021, 14, 1640–1651. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.M.; Maftoun, M.; Karimian, N.; Ronaghi, A.; Emam, Y. Effect of zinc× boron interaction on plant growth and tissue nutrient concentration of corn. J. Plant Nutr. 2007, 30, 773–781. [Google Scholar] [CrossRef]
- Graham, R.D.; Welch, R.M.; Grunes, D.L.; Cary, E.E.; Norvell, W.A. Effect of zinc deficiency on the accumulation of boron and other mineral nutrients in barley. Soil Sci. Soc. Am. J. 1987, 51, 652–657. [Google Scholar] [CrossRef]
- Singh, J.P.; Dahiya, D.J.; Narwal, R.P. Boron uptake and toxicity in wheat in relation to zinc supply. Fert. Res. 1990, 24, 105–110. [Google Scholar] [CrossRef]
- Rajaei, M.; Ejraei, A.A.K.; Ouliaei, H.R.; Tavakoli, A.R. Effect of zinc and boron interaction on growth and mineral composition of lemon seedlings in a calcareous soil. Int. J. Plant Prod. 2009, 3, 39–49. [Google Scholar]
- Sinha, P.; Jain, R.; Chatterjee, C. Interactive effect of boron and zinc on growth and metabolism of mustard. Comm. Soil Sci. Plant. Anal. 2000, 31, 41–49. [Google Scholar] [CrossRef]
- Chen, X.F.; Hua, D.; Zheng, Z.C.; Zhang, J.; Huang, W.T.; Chen, H.H.; Huang, Z.R.; Yang, L.T.; Ye, X.; Chen, L.S. Boron-mediated amelioration of copper-toxicity in sweet orange [Citrus sinensis (L.) Osbeck cv. Xuegan] seedlings involved reduced damage to roots and improved nutrition and water status. Ecotoxicol. Environ. Saf. 2022, 234, 113423. [Google Scholar] [CrossRef]
- Yang, M.; Shi, L.; Xu, F.; Lu, J.; Wang, Y. Effects of B, Mo, Zn, and their interactions on seed yield of rapeseed (Brassica napus L.). Pedosphere 2009, 19, 53–59. [Google Scholar] [CrossRef]
- Meng, J.; Chen, X.F.; Yang, W.Y.; Li, Z.F.; Zhang, Y.; Song, J.H.; Yang, X.W. Effect of combined application of zinc, boron and molybdenum on yield and saikosaponin a, saikosaponin d contents of Bupleurum chinense. Chin. J. Chin. Mater. Med. 2014, 39, 4297–4303. [Google Scholar]
- Zhang, Y.Q.; Lei, F.Y.; Chen, Y.; Li, S.J.; Dou, M.M.; Ma, L.H.; Shi, F.; Chen, X.F. Effect of combined fertilization of zinc, boron and molybdenum on agronomic traits and yield of Angelica dahurica. Plant Nutr. Fert. Sci. 2018, 24, 769–778. [Google Scholar]
- Rahman, M.; Rahman, K.; Sathi, K.S.; Alam, M.M.; Nahar, K.; Fujita, M.; Hasanuzzaman, M. Supplemental Selenium and Boron Mitigate Salt-Induced Oxidative Damages in Glycine max L. Plants 2021, 10, 2224. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.K.; Pandey, A.; Hamurcu, M.; Germ, M.; Yilmaz, F.G.; Ozbek, M.; Avsaroglu, Z.Z.; Topal, A.; Gezgin, S. Nutrient Homeostasis of Aegilops Accessions Differing in B Tolerance Level under Boron Toxic Growth Conditions. Biology 2022, 11, 1094. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Khan, M.K.; Hakki, E.E.; Gezgin, S.; Hamurcu, M. Combined Boron Toxicity and Salinity Stress—An Insight into Its Interaction in Plants. Plants 2019, 8, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Ballesta Mdel, C.; Bastias, E.; Zhu, C.; Schaffner, A.R.; Gonzalez-Moro, B.; Gonzalez-Murua, C.; Carvajal, M. Boric acid and salinity effects on maize roots. Response of aquaporins ZmPIP1 and ZmPIP2, and plasma membrane H+-ATPase, in relation to water and nutrient uptake. Physiol. Plant 2008, 132, 479–490. [Google Scholar] [CrossRef]
- Hove, R.M.; Ziemann, M.; Bhave, M. Identification and expression analysis of the barley (Hordeum vulgare L.) aquaporin gene family. PLoS ONE 2015, 10, e0128025. [Google Scholar] [CrossRef]
- Huanca-Mamani, W.; Ortiz, M.V.; Cárdenas-Ninasivincha, S.; Acosta-Garcia, G.; Bastías, E. Gene expression analysis in response to combined salt and boron (B) stresses in a tolerant maize landrace. Plant Omics 2018, 11, 80–88. [Google Scholar] [CrossRef]
- Jin, H.; Dong, D.; Yang, Q.; Zhu, D. Salt-responsive transcriptome profiling of Suaeda glauca via RNA sequencing. PLoS ONE 2016, 11, e0150504. [Google Scholar] [CrossRef]
- de Souza, J.P., Jr.; de M. Prado, R.; Campos, C.N.S.; Sousa, G.S., Jr.; Oliveira, K.R.; Cazetta, J.O.; Gratão, P.L. Addition of silicon to boron foliar spray in cotton plants modulates the antioxidative system attenuating boron deficiency and toxicity. BMC Plant Biol. 2022, 22, 338. [Google Scholar] [CrossRef] [PubMed]
- Riaz, M.; Yan, L.; Wu, X.; Hussain, S.; Aziz, O.; Jiang, C. Mechanisms of organic acids and boron induced tolerance of aluminum toxicity: A review. Ecotoxicol. Environ. Saf. 2018, 165, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Horst, W.J.; Wang, Y.; Eticha, D. The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: A review. Ann. Bot. 2010, 106, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Riaz, M.; Wu, X.; Du, C.; Liu, L.; Jiang, C. Ameliorative effects of boron on aluminum induced variations of cell wall cellulose and pectin components in trifoliate orange (Poncirus trifoliate (L.) Raf.) rootstock. Environ. Pollut. 2018, 240, 764–774. [Google Scholar] [CrossRef]
- Zhu, C.Q.; Cao, X.C.; Zhu, L.F.; Hu, W.J.; Hu, A.Y.; Abliz, B.; Bai, Z.G.; Huang, J.; Liang, Q.D.; Sajid, H.; et al. Boron reduces cell wall aluminum content in rice (Oryza sativa) roots by decreasing H2O2 accumulation. Plant Physiol. Biochem. 2019, 138, 80–90. [Google Scholar] [CrossRef]
- Corrales, I.; Poschenrieder, C.; Barceló, J. Boron-induced amelioration of aluminium toxicity in a monocot and a dicot species. J. Plant Physiol. 2008, 165, 504–513. [Google Scholar] [CrossRef]
- Riaz, M.; Yan, L.; Wu, X.; Hussain, S.; Aziz, O.; Imran, M.; Rana, M.S.; Jiang, C. Boron reduces aluminum-induced growth inhibition, oxidative damage and alterations in the cell wall components in the roots of trifoliate orange. Ecotoxicol. Environ. Saf. 2018, 153, 107–115. [Google Scholar] [CrossRef]
- Taylor, G.J.; Macfie, S.M. Modeling the potential for boron amelioration of aluminum toxicity using the Weibull function. Can. J. Bot. 1994, 72, 1187–1196. [Google Scholar] [CrossRef]
- Zhang, P.H.; Zhang, X.J.; Tang, T.W.; Hu, H.L.; Bai, N.N.; Zhang, D.W.; Meng, S.; Peng, J.S. Isolation of Three Metallothionein Genes and Their Roles in Mediating Cadmium Resistance. Agronomy 2022, 12, 2971. [Google Scholar] [CrossRef]
- Han, T.L.; Tang, T.W.; Zhang, P.H.; Liu, M.; Zhao, J.; Peng, J.S.; Meng, S. Cloning and Functional Characterization of SpZIP2. Genes 2022, 13, 2395. [Google Scholar] [CrossRef]
- Chen, D.; Chen, D.; Xue, R.; Long, J.; Lin, X.; Lin, Y.; Jia, L.; Zeng, R.; Song, Y. Effects of boron, silicon and their interactions on cadmium accumulation and toxicity in rice plants. J. Hazard. Mater. 2019, 367, 447–455. [Google Scholar] [CrossRef]
- Wu, X.; Song, H.; Guan, C.; Zhang, Z. Boron alleviates cadmium toxicity in Brassica napus by promoting the chelation of cadmium onto the root cell wall components. Sci. Total Environ. 2020, 728, 138833. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Song, H.; Guan, C.; Zhang, Z. Boron mitigates cadmium toxicity to rapeseed (Brassica napus) shoots by relieving oxidative stress and enhancing cadmium chelation onto cell walls. Environ. Pollut. 2020, 263, 114546. [Google Scholar] [CrossRef]
- Qin, S.; Liu, H.; Rengel, Z.; Gao, W.; Nie, Z.; Li, C.; Hou, M.; Cheng, J.; Zhao, P. Boron inhibits cadmium uptake in wheat (Triticum aestivum) by regulating gene expression. Plant Sci. 2020, 297, 110522. [Google Scholar] [CrossRef]
- Riaz, M.; Kamran, M.; Rizwan, M.; Ali, S.; Zhou, Y.; Núñez-Delgado, A.; Wang, X. Boron application mitigates Cd toxicity in leaves of rice by subcellular distribution, cell wall adsorption and antioxidant system. Ecotoxicol. Environ. Saf. 2021, 222, 112540. [Google Scholar] [CrossRef]
- Riaz, M.; Kamran, M.; Fang, Y.; Yang, G.; Rizwan, M.; Ali, S.; Zhou, Y.; Wang, Q.; Deng, L.; Wang, Y.; et al. Boron supply alleviates cadmium toxicity in rice (Oryza sativa L.) by enhancing cadmium adsorption on cell wall and triggering antioxidant defense system in roots. Chemosphere 2021, 266, 128938. [Google Scholar] [CrossRef]
- Yin, A.; Huang, B.; Xie, J.; Huang, Y.; Xin, J. Boron decreases cadmium influx into root cells of Capsicum annuum by altering cell wall components and plasmalemma permeability. Environ. Sci. Pollut. Res. 2021, 28, 52587–52597. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Y.; Fei, G.; Yu, S.L.; Liu, Y.F.; Fu, H.L.; Liao, Q.; Huang, B.F.; Liu, X.Y.; Xin, J.L.; Shen, C. Molecular and biochemical mechanisms underlying boron-induced alleviation of cadmium toxicity in rice seedlings. Ecotoxicol. Environ. Saf. 2021, 225, 112776. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, B.; Shen, C.; Zhou, W.; Liao, Q.; Chen, Y.; Xin, J. Boron supplying alters cadmium retention in root cell walls and glutathione content in Capsicum annuum. J. Hazard. Mater. 2022, 432, 128713. [Google Scholar] [CrossRef] [PubMed]
- Krzesłowska, M. The cell wall in plant cell response to trace metals: Polysaccharide remodeling and its role in defense strategy. Acta physiol. Plant. 2011, 33, 35–51. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.S.; Wang, Y.J.; Ding, G.; Ma, H.L.; Zhang, Y.J.; Gong, J.M. A pivotal role of cell wall in cadmium accumulation in the Crassulaceae hyperaccumulator Sedum plumbizincicola. Mol. Plant 2017, 10, 771–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, T.; Matsunaga, T. Pectic polysaccharide rhamnogalacturonan II is covalently linked to homogalacturonan. Phytochemistry 2001, 57, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Matoh, T.; Kobayashi, M. Boron and calcium, essential inorganic constituents of pectic polysaccharides in higher plant cell walls. J. Plant Res. 1998, 111, 179–190. [Google Scholar] [CrossRef]
- Kobayashi, M.; Nakagawa, H.; Asaka, T.; Matoh, T. Borate-rhamnogalacturonan II bonding reinforced by Ca2+ retains pectic polysaccharides in higher-plant cell walls. Plant Physiol. 1999, 119, 199–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, D.; Wang, J.; Hu, R.; Zhou, G.; O’Neill, M.A.; Kong, Y. Boron-bridged RG-II and calcium are required to maintain the pectin network of the Arabidopsis seed mucilage ultrastructure. Plant Mol. Biol. 2017, 94, 267–280. [Google Scholar] [CrossRef]
- Peng, J.S.; Guan, Y.H.; Lin, X.J.; Xu, X.J.; Xiao, L.; Wang, H.H.; Meng, S. Comparative understanding of metal hyperaccumulation in plants: A mini-review. Environ. Geochem. Health 2021, 43, 1599–1607. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Hua, Y.; Xu, F. Involvement of reactive oxygen species and Ca2+ in the differential responses to low-boron in rapeseed genotypes. Plant Soil 2017, 419, 219–236. [Google Scholar] [CrossRef]
- Koshib, T.; Kobayashi, M.; Ishihara, A.; Matoh, T. Boron nutrition of cultured tobacco BY-2 cells. VI. Calcium is involved in early responses to boron deprivation. Plant Cell Physiol. 2010, 51, 323–327. [Google Scholar] [CrossRef] [Green Version]
- Quiles-Pando, C.; Rexach, J.; Navarro-Gochicoa, M.T.; Camacho-Cristóbal, J.J.; Herrera-Rodríguez, M.B.; González-Fontes, A. Boron deficiency increases the levels of cytosolic Ca2+ and expression of Ca2+-related genes in Arabidopsis thaliana roots. Plant Physiol. Biochem. 2013, 65, 55–60. [Google Scholar] [CrossRef]
- Zhang, D.D.; Hua, Y.P.; Wang, X.H.; Zhao, H.; Shi, L.; Xu, F. A highdensity genetic map identifies a novel major QTL for boron efficiency in oilseed rape (Brassica napus L.). PLoS ONE 2014, 9, e112089. [Google Scholar]
- Hua, Y.P.; Zhang, D.D.; Zhou, T.; He, M.; Ding, G.; Shi, L.; Xu, F. Transcriptomics-assisted quantitative trait locus fine mapping for the rapid identification of a nodulin 26-like intrinsic protein gene regulating boron efficiency in allotetraploid rapeseed. Plant Cell Environ. 2016, 39, 1601–1618. [Google Scholar] [CrossRef] [PubMed]
Element | Interaction Pattern | Interaction Mechanism | References | |
---|---|---|---|---|
Microelements | N |
|
| [14,15,16,17,18,19,20,21,22,23,24] |
P |
|
| [25,26,28] | |
K | The accumulation of K and B in plants is mutually promoted. | Unknown | [32,39] | |
Ca | The increase in Ca concentration aggravates the B deficiency symptoms of plants but alleviates the toxicity of high-concentration B stress. An appropriate Ca/B ratio is highly important for plant growth. | The interaction between B and Ca is related to the physiological processes of the cell wall, the Ca2+ signal transduction pathway, and the B availability in soil | [32,33,34,35,36,37,38] | |
Mg | Mg accumulation in S. lycopersicum tissues is reduced with increasing B concentration, but changes in B concentration in Z. mays have no significant influence on Mg accumulation. | Unknown | [39,41] | |
S | In B. juncea and H. annuus, the absorption of S and of B are mutually promoted. | Unknown | [42] | |
Trace Elements | Fe | B promotes the absorption and long-distance transport of Fe by plants. | B can affect the dimerization of pectin RG-II, thus regulating the chelation of Fe by the cell wall and influencing the reuse of Fe in root apoplast. | [43,44] |
Mn | B promotes Mn accumulation in plants. | Unknown | [39,41,43] | |
Cu | In C. sinensis, B can reduce the absorption of Cu to alleviate the toxicity of excess Cu. | B can alleviate Cu damage to roots and improve nutrient and water status. | [50] | |
Zn | There is an antagonistic relationship between the accumulation of B and of Zn in plants. | Unknown | [45,49] | |
Mo | Combined application of B and Mo fertilizers can increase the yields of B. napus, B. chinense, A. dahurica and other crops | Unknown | [51,52,53] | |
Benificial Elements | Na and Se | B alleviates the salt-induced oxidative stress | B enhances the enzymatic activity of the antioxidant defense system and the glyoxalase systems. | [54,55,56,57,58,59,60] |
Si | Si mitigates the stress caused byboth B deficiency and toxicity | Si supplement reduced H2O2, primarily in B-deficient plants, and also increased proline and glycine-betaine concentration, mainly in plants under B toxicity. | [61] | |
Toxic Elements | Cd | B can reduce Cd accumulation in plants and alleviate the Cd toxicity to plants | B can promote the chelation of Cd by the cell wall, regulate the expression of Cd transport genes, and alleviate the oxidative stress caused by Cd. | [71,72,73,74,75,76,77,78,79] |
Al | B can reduce Al accumulation in plants and alleviate the Al toxicity to plants. | B can regulate the expression of Al transporter genes and pectin methylesterase genes and alleviate the oxidative stress caused by Al. | [62,63,64,65,66,67,68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Y.; Peng, J. Interaction between Boron and Other Elements in Plants. Genes 2023, 14, 130. https://doi.org/10.3390/genes14010130
Long Y, Peng J. Interaction between Boron and Other Elements in Plants. Genes. 2023; 14(1):130. https://doi.org/10.3390/genes14010130
Chicago/Turabian StyleLong, Ying, and Jiashi Peng. 2023. "Interaction between Boron and Other Elements in Plants" Genes 14, no. 1: 130. https://doi.org/10.3390/genes14010130
APA StyleLong, Y., & Peng, J. (2023). Interaction between Boron and Other Elements in Plants. Genes, 14(1), 130. https://doi.org/10.3390/genes14010130