Evaluation of the Available Variant Calling Tools for Oxford Nanopore Sequencing in Breast Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Targeted Sequencing Data Analysis Pipeline
2.2. Classification of the Pathogenicity of Variants
2.3. Validation Data Set
3. Results
3.1. Data Analysis Workflow Outcome
3.2. Primary Filtering Outcomes
3.3. Comparison of the Variant Caller’s Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Guan, Y.F.; Li, G.R.; Wang, R.J.; Yi, Y.T.; Yang, L.; Jiang, D.; Zhang, X.P.; Peng, Y. Application of Next-Generation Sequencing in Clinical Oncology to Advance Personalized Treatment of Cancer. Chin. J. Cancer 2012, 31, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Park, S.J.; Kim, J.Y.; Kim, S.; Ryu, J.; Sohn, J.; Park, S.; Kim, G.M.; Hwang, I.S.; Choi, J.R.; et al. Next-Generation Sequencing of BRCA1/2 in Breast Cancer Patients: Potential Effects on Clinical Decision-Making Using Rapid, High-Accuracy Genetic Results. Ann. Surg. Treat. Res. 2017, 92, 331. [Google Scholar] [CrossRef] [PubMed]
- Bevers, T.B.; Anderson, B.O.; Bonaccio, E.; Buys, S.; Daly, M.B.; Dempsey, P.J.; Farrar, W.B.; Fleming, I.; Garber, J.E.; Harris, R.E.; et al. Breast Cancer Screening and Diagnosis. J. Nat. Comprehen. Cancer Netw. 2009, 7, 1060–1096. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Koren, S.; Miga, K.H.; Quick, J.; Rand, A.C.; Sasani, T.A.; Tyson, J.R.; Beggs, A.D.; Dilthey, A.T.; Fiddes, I.T.; et al. Nanopore Sequencing and Assembly of a Human Genome with Ultra-Long Reads. Nat. Biotechnol. 2018, 36, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Aganezov, S.; Goodwin, S.; Sherman, R.M.; Sedlazeck, F.J.; Arun, G.; Bhatia, S.; Lee, I.; Kirsche, M.; Wappel, R.; Kramer, M.; et al. Comprehensive Analysis of Structural Variants in Breast Cancer Genomes Using Single-Molecule Sequencing. Genome Res. 2020, 30, 1258–1273. [Google Scholar] [CrossRef] [PubMed]
- Krusche, P.; Trigg, L.; Boutros, P.C.; Mason, C.E.; De La Vega, F.M.; Moore, B.L.; Gonzalez-Porta, M.; Eberle, M.A.; Tezak, Z.; Lababidi, S.; et al. Best Practices for Benchmarking Germline Small-Variant Calls in Human Genomes. Nat. Biotechnol. 2019, 37, 555–560. [Google Scholar] [CrossRef]
- Karami, F.; Mehdipour, P. A Comprehensive Focus on Global Spectrum of BRCA1 and BRCA2 Mutations in Breast Cancer. BioMed Res. Inter. 2013, 2013, 928562. [Google Scholar] [CrossRef]
- Luo, R.; Wong, C.-L.; Wong, Y.-S.; Tang, C.-I.; Liu, C.-M.; Leung, C.-M.; Lam, T.-W. Exploring the Limit of Using a Deep Neural Network on Pileup Data for Germline Variant Calling. Nat. Mach. Intell. 2020, 2, 220–227. [Google Scholar] [CrossRef]
- Luo, R.; Sedlazeck, F.J.; Lam, T.-W.; Schatz, M.C. Clairvoyante: A Multi-Task Convolutional Deep Neural Network for Variant Calling in Single Molecule Sequencing. Nat. Commun. 2019, 10, 998. [Google Scholar] [CrossRef]
- Edge, P.; Bansal, V. Longshot Enables Accurate Variant Calling in Diploid Genomes from Single-Molecule Long Read Sequencing. Nat. Commun. 2019, 10, 4660. [Google Scholar] [CrossRef] [Green Version]
- GitHub—Nanoporetech/Medaka: Sequence Correction Provided by ONT Research. Available online: https://github.com/nanoporetech/medaka (accessed on 10 August 2022).
- Ahsan, M.U.; Liu, Q.; Fang, L.; Wang, K. NanoCaller for Accurate Detection of SNPs and Indels in Difficult-to-Map Regions from Long-Read Sequencing by Haplotype-Aware Deep Neural Networks. Genome Biol. 2021, 22, 261. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Ding, H.; Shen, J.; Zhai, H.; Wu, Z.; Yan, C.; Luo, H. BreakNet: Detecting deletions using long reads and a deep learning approach. BMC Bioinform. 2021, 22, 577. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Minimap2: Pairwise Alignment for Nucleotide Sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed]
- Samtools·GitHub. GitHub. Available online: https://github.com/samtools/ (accessed on 10 August 2022).
- GitHub—Ryanlayer/Bedtools. Available online: https://github.com/ryanlayer/bedtools (accessed on 10 August 2022).
- GitHub—Epi2me-Labs/Wf-Human-Snp: Small Variant Calling for Human Samples. Available online: https://github.com/epi2me-labs/wf-human-snp (accessed on 10 August 2022).
- SnpEff and SnpSift. Available online: http://pcingola.github.io/SnpEff/ (accessed on 10 August 2022).
- ClinVar. Available online: https://www.ncbi.nlm.nih.gov/clinvar/ (accessed on 8 August 2022).
- Home—MedGen—NCBI. Available online: https://www.ncbi.nlm.nih.gov/medgen/ (accessed on 8 August 2022).
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef] [PubMed]
- Kearney, H.M.; Thorland, E.C.; Brown, K.K.; Quintero-Rivera, F.; South, S.T. American College of Medical Genetics Standards and Guidelines for Interpretation and Reporting of Postnatal Constitutional Copy Number Variants. Genet. Med. 2011, 13, 680–685. [Google Scholar] [CrossRef]
- Plon, S.E.; Eccles, D.M.; Easton, D.; Foulkes, W.D.; Genuardi, M.; Greenblatt, M.S.; Hogervorst, F.B.L.; Hoogerbrugge, N.; Spurdle, A.B.; Tavtigian, S.V. Sequence Variant Classification and Reporting: Recommendations for Improving the Interpretation of Cancer Susceptibility Genetic Test Results. Hum. Mutat. 2008, 29, 1282–1291. [Google Scholar] [CrossRef]
- GitHub—Illumina/Hap.Py: Haplotype VCF Comparison Tools. Available online: https://github.com/Illumina/hap.py. (accessed on 10 August 2022).
- Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries—Sung—2021—CA: A Cancer Journal for Clinicians—Wiley Online Library. Available online: https://acsjournals.onlinelibrary.wiley.com/doi/10.3322/caac.21660 (accessed on 8 August 2022).
- Cortesi, L.; Rugo, H.S.; Jackisch, C. An Overview of PARP Inhibitors for the Treatment of Breast Cancer. Target. Oncol. 2021, 16, 255–282. [Google Scholar] [CrossRef]
- McCann, K.E.; Hurvitz, S.A. Advances in the Use of PARP Inhibitor Therapy for Breast Cancer. Drugs Context 2018, 7, 212540. [Google Scholar] [CrossRef]
- Tung, N.; Garber, J.E. PARP Inhibition in Breast Cancer: Progress Made and Future Hopes. NPJ Breast Cancer 2022, 8, 47. [Google Scholar] [CrossRef]
- Demir Cetinkaya, B.; Biray Avci, C. Molecular Perspective on Targeted Therapy in Breast Cancer: A Review of Current Status. Med. Oncol. 2022, 39, 149. [Google Scholar] [CrossRef]
- Pop, L.; Suciu, I.; Ionescu, O.; Bacalbasa, N.; Ionescu, P. The Role of Novel Poly (ADP-Ribose) Inhibitors in the Treatment of Locally Advanced and Metastatic Her-2/Neu Negative Breast Cancer with Inherited Germline BRCA1/2 Mutations. A Review of the Literature. J. Med. Life 2021, 14, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, K.; Zheng, D.; Luo, C.; Fan, Y.; Zhong, X.; Zheng, H. Efficacy and Safety of PARP Inhibitors in Advanced or Metastatic Triple-Negative Breast Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 2021, 11, 4363. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.M.; Chan, D.L.H.; Tio, M.; Patil, S.M.; Traina, T.A.; Robson, M.E.; Khasraw, M. PARP (Poly ADP-Ribose Polymerase) Inhibitors for Locally Advanced or Metastatic Breast Cancer. Cochrane Database Syst. Rev. 2021, 2021, CD011395. [Google Scholar] [CrossRef]
- Cardoso, F.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rubio, I.T.; Zackrisson, S.; Senkus, E. Early Breast Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2019, 30, 1194–1220. [Google Scholar] [CrossRef]
- Pepe, F.; Pisapia, P.; Russo, G.; Nacchio, M.; Pallante, P.; Vigliar, E.; De Angelis, C.; Insabato, L.; Bellevicine, C.; De Placido, S.; et al. BRCA1/2 NGS Somatic Testing in Clinical Practice: A Short Report. Genes 2021, 12, 1917. [Google Scholar] [CrossRef]
- Concolino, P.; Rizza, R.; Mignone, F.; Costella, A.; Guarino, D.; Carboni, I.; Capoluongo, E.; Santonocito, C.; Urbani, A.; Minucci, A. A Comprehensive BRCA1/2 NGS Pipeline for an Immediate Copy Number Variation (CNV) Detection in Breast and Ovarian Cancer Molecular Diagnosis. Clin. Chim. Acta 2018, 480, 173–179. [Google Scholar] [CrossRef]
- Fumagalli, C.; Rappa, A.; Casadio, C.; Betella, I.; Colombo, N.; Barberis, M.; Guerini-Rocco, E. Next-Generation Sequencing-Based BRCA Testing on Cytological Specimens from Ovarian Cancer Ascites Reveals High Concordance with Tumour Tissue Analysis. J. Clin. Pathol. 2020, 73, 168–171. [Google Scholar] [CrossRef]
- Grafodatskaya, D.; O’Rielly, D.D.; Bedard, K.; Butcher, D.T.; Howlett, C.J.; Lytwyn, A.; McCready, E.; Parboosingh, J.; Spriggs, E.L.; Vaags, A.K.; et al. Practice Guidelines for BRCA1/2 Tumour Testing in Ovarian Cancer. J. Med. Genet. 2022, 59, 727–736. [Google Scholar] [CrossRef]
- Trujillano, D.; Weiss, M.E.R.; Schneider, J.; Köster, J.; Papachristos, E.B.; Saviouk, V.; Zakharkina, T.; Nahavandi, N.; Kovacevic, L.; Rolfs, A. Next-Generation Sequencing of the BRCA1 and BRCA2 Genes for the Genetic Diagnostics of Hereditary Breast and/or Ovarian Cancer. J. Mol. Diagn. 2015, 17, 162–170. [Google Scholar] [CrossRef]
- Solano, A.R.; Palmero, E.I.; Delgado, L.; Carraro, D.M.; Ortíz-López, R.; Carranza, C.L.; Santamaria, C.; Cifuentes, L.; Jara Sosa, L.E.; Toland, A.E. Sequencing Technology Status of BRCA1/2 Testing in Latin American Countries. NPJ Genom. Med. 2020, 5, 22. [Google Scholar] [CrossRef]
- Sultova, E.; Westphalen, C.B.; Jung, A.; Kumbrink, J.; Kirchner, T.; Mayr, D.; Rudelius, M.; Ormanns, S.; Heinemann, V.; Metzeler, K.H.; et al. NGS-Guided Precision Oncology in Metastatic Breast and Gynecological Cancer: First Experiences at the CCC Munich LMU. Arch. Gynecol. Obstet. 2021, 303, 1331–1345. [Google Scholar] [CrossRef] [PubMed]
- Hempel, D.; Ebner, F.; Garg, A.; Trepotec, Z.; Both, A.; Stein, W.; Gaumann, A.; Güttler, L.; Janni, W.; DeGregorio, A.; et al. Real World Data Analysis of next Generation Sequencing and Protein Expression in Metastatic Breast Cancer Patients. Sci. Rep. 2020, 10, 10459. [Google Scholar] [CrossRef] [PubMed]
- Burris III, H.A.; Schlauch, D.; McKenzie, A.; Sharma, Y.; Spigel, D.R.; Jones, S.F.; Dilks, H.H. Adoption and Utilization of NGS-Based Molecular Profiling in Community-Based Oncology Practices: Insights from Sarah Cannon. J. Glob. Oncol. 2019, 5, 34. [Google Scholar] [CrossRef]
- Sturgill, E.G.; Misch, A.; Lachs, R.; Jones, C.C.; Schlauch, D.; Jones, S.F.; Shastry, M.; Yardley, D.A.; Burris, H.A.; Spigel, D.R.; et al. Next-Generation Sequencing of Patients With Breast Cancer in Community Oncology Clinics. JCO Precis. Oncol. 2021, 5, 1297–1311. [Google Scholar] [CrossRef] [PubMed]
- Eltokhy, M.A.; Saad, B.T.; Eltayeb, W.N.; El-Ansary, M.R.; Aboshanab, K.M.; Ashour, M.S.E. A Metagenomic Nanopore Sequence Analysis Combined with Conventional Screening and Spectroscopic Methods for Deciphering the Antimicrobial Metabolites Produced by Alcaligenes faecalis Soil Isolate MZ921504. Antibiotics 2021, 10, 1382. [Google Scholar] [CrossRef] [PubMed]
- Orsini, P.; Minervini, C.F.; Cumbo, C.; Anelli, L.; Zagaria, A.; Minervini, A.; Coccaro, N.; Tota, G.; Casieri, P.; Impera, L.; et al. Design and MinION Testing of a Nanopore Targeted Gene Sequencing Panel for Chronic Lymphocytic Leukemia. Sci. Rep. 2018, 8, 11798. [Google Scholar] [CrossRef]
- Minervini, C.F.; Cumbo, C.; Orsini, P.; Anelli, L.; Zagaria, A.; Impera, L.; Coccaro, N.; Brunetti, C.; Minervini, A.; Casieri, P.; et al. Mutational Analysis in BCR-ABL1 Positive Leukemia by Deep Sequencing Based on Nanopore MinION Technology. Exp. Mol. Pathol. 2017, 103, 33–37. [Google Scholar] [CrossRef]
- Minervini, C.F.; Cumbo, C.; Orsini, P.; Brunetti, C.; Anelli, L.; Zagaria, A.; Minervini, A.; Casieri, P.; Coccaro, N.; Tota, G.; et al. TP53 Gene Mutation Analysis in Chronic Lymphocytic Leukemia by Nanopore MinION Sequencing. Diagn. Pathol. 2016, 11, 96. [Google Scholar] [CrossRef]
- Minervini, C.F.; Cumbo, C.; Orsini, P.; Anelli, L.; Zagaria, A.; Specchia, G.; Albano, F. Nanopore Sequencing in Blood Diseases: A Wide Range of Opportunities. Front. Genet. 2020, 11, 76. [Google Scholar] [CrossRef]
- Index of /Giab/Ftp/Data/NA12878/Ultralong_OxfordNanopore. Available online: https://github.com/genome-in-a-bottle/giab_data_indexes (accessed on 10 August 2022).
- Index of /Giab/Ftp/Data/AshkenazimTrio/HG002_NA24385_son/Ultralong_OxfordNanopore/Guppy-V3.2.4_2020-01-22. Available online: https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/sequence.index.AJtrio_UCSC_ONT_UL_guppy-V3.2.4_2020-01-22 (accessed on 10 August 2022).
- Olson, N.D.; Wagner, J.; McDaniel, J.; Stephens, S.H.; Westreich, S.T.; Prasanna, A.G.; Johanson, E.; Boja, E.; Maier, E.J.; Serang, O.; et al. PrecisionFDA Truth Challenge V2: Calling variants from short and long reads in difficult-to-map regions. Cell Genom. 2022, 11, 100129. [Google Scholar] [CrossRef]
- Global Alliance for Genomics and Health·GitHub. Available online: https://github.com/ga4gh (accessed on 10 August 2022).
- Edge, P.; Bafna, V.; Bansal, V. HapCUT2: Robust and accurate haplotype assembly for diverse sequencing technologies. Genome Res. 2017, 27, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Patterson, M.; Garg, S.; Fischer, S.O.; Pisanti, N.; Klau, G.W.; Schöenhuth, A.; Marschall, T. WhatsHap: Fast and Accurate Read-Based Phasing. bioRxiv 2016, 085050. Available online: https://pub.uni-bielefeld.de/record/2941794 (accessed on 8 August 2022). [CrossRef]
- Shafin, K.; Pesout, T.; Chang, P.C.; Nattestad, M.; Kolesnikov, A.; Goel, S.; Baid, G.; Kolmogorov, M.; Eizenga, J.M.; Miga, K.H.; et al. Haplotype-Aware Variant Calling with PEPPER-Margin-DeepVariant Enables High Accuracy in Nanopore Long-Reads. Nat. Methods 2021, 18, 1322. [Google Scholar] [CrossRef]
- Barbitoff, Y.A.; Abasov, R.; Tvorogova, V.E.; Glotov, A.S.; Predeus, A.V. Systematic Benchmark of State-of-the-Art Variant Calling Pipelines Identifies Major Factors Affecting Accuracy of Coding Sequence Variant Discovery. BMC Genom. 2022, 23, 155. [Google Scholar] [CrossRef]
- Koboldt, D.C. Best Practices for Variant Calling in Clinical Sequencing. Genome Med. 2020, 12, 91. [Google Scholar] [CrossRef] [PubMed]
- Supernat, A.; Vidarsson, O.V.; Steen, V.M.; Stokowy, T. Comparison of Three Variant Callers for Human Whole Genome Sequencing. Sci. Rep. 2018, 8, 17851. [Google Scholar] [CrossRef]
- GitHub—Jts/Nanopolish: Signal-Level Algorithms for MinION Data. Available online: https://github.com/jts/nanopolish (accessed on 8 August 2022).
- Vendrell, J.A.; Vilquin, P.; Larrieux, M.; Van Goethem, C.; Solassol, J. Benchmarking of Amplicon-Based Next-Generation Sequencing Panels Combined with Bioinformatics Solutions for Germline BRCA1 and BRCA2 Alteration Detection. J. Mol. Diagn. 2018, 20, 754–764. [Google Scholar] [CrossRef]
- Feliubadaló, L.; Lopez-Doriga, A.; Castellsagué, E.; Del Valle, J.; Menéndez, M.; Tornero, E.; Montes, E.; Cuesta, R.; Gómez, C.; Campos, O.; et al. Next-Generation Sequencing Meets Genetic Diagnostics: Development of a Comprehensive Workflow for the Analysis of BRCA1 and BRCA2 Genes. Eur. J. Human Genet. 2013, 21, 864–870. [Google Scholar] [CrossRef]
- Park, K.; Kim, M.K.; Lee, T.; Hong, J.; Kim, H.K.; Ahn, S.; Lee, Y.J.; Kim, J.; Lee, S.W.; Lee, J.W.; et al. Performance Evaluation of an Amplicon-based Next-generation Sequencing Panel for BRCA1 and BRCA2 Variant Detection. J. Clin. Lab. Anal. 2020, 34, e23524. [Google Scholar] [CrossRef]
Tool | Version | Function |
---|---|---|
Guppy | v5.0.16 | data processing toolkit that contains Oxford Nanopore’s base-calling algorithms. Guppy is integrated into MinKNOW and is also available as a standalone version. |
Minimap2 | v2.22 | A sequence alignment tool that aligns DNA or mRNA sequences to a vast library of reference sequences. |
Samtools | v.1.14 | a collection of programs for manipulating alignments in the SAM, BAM, and CRAM formats. It converts between formats, sorts, merges, and indexes data, it can quickly remove PCR duplicates and calculate the mean coverage for a target region |
Medaka | v1.4.4 | a program that uses Nanopore sequencing data to generate consensus sequences and calling of variants. |
Clair | v2.11 | a tool that uses single molecule sequencing data to call germline small variants quickly and accurately. |
Longshot | v0.4.1 | a tool for detecting variants in diploid genomes using long error-prone reads. It takes an aligned BAM/CRAM file as input and outputs a phased VCF file containing variant and haplotype information. |
NanoCaller | v2.1.2 | a computational method for detecting SNPs/indels in long-read sequencing data that integrates long reads in a deep convolutional neural network and generates predictions for each SNP candidate variant site by considering pileup information from other candidate sites that share reads. |
Clair3 | v0.1-r11 | a long-read germline small variant caller excels in two major method categories: pileup calling, which handles most variant candidates quickly, and full alignment, which tackles complex candidates to maximize precision and recall. |
Hap.py | v0.3.15 | To compare a VCF with a gold standard dataset vcf |
SnpEff | v5.1 | Toolbox for genetic variant annotation and functional effect prediction. It describes and estimates the effects of genetic variants on genes and proteins (such as amino acid changes) |
Epi2me-labs/wf-human-SNP | v0.3.1 | includes a nextflow workflow for calling diploid variants in whole genome data. Clair3 is used in this workflow to identify small variants in long reads. |
Sample | Before Removing Duplicates | After Removing Duplicates | ||
---|---|---|---|---|
BRCA1 | BRCA2 | BRCA1 | BRCA2 | |
HG001 | 32.62 X | 36.89 X | 32.55 X | 36.89 X |
HG002 | 53.85 X | 70.06 X | 53.85 X | 70.06 X |
Tool Name | Total No. of BRCA1 Variants | Total No. of BRCA2 Variants | Total |
---|---|---|---|
Clair | 482 | 348 | 830 |
Longshot | 124 | 108 | 232 |
NanoCaller | 121 | 97 | 218 |
Medaka | 221 | 221 | 442 |
Clair3 | 225 | 172 | 397 |
Epi2me-labs/wf-human-SNP | 370 | 285 | 655 |
Tool Name | Total No. of BRCA1 Variants | Total No. of BRCA2 Variants | Total |
---|---|---|---|
Clair | 482 | 372 | 854 |
Longshot | 124 | 108 | 232 |
NanoCaller | 121 | 97 | 218 |
Medaka | 111 | 98 | 209 |
Clair3 | 370 | 172 | 542 |
Epi2me-labs/wf-human-SNP | 370 | 285 | 655 |
HG001 (NA12878) | Recall | Precision | F1 Score | Total Time Taken | |
---|---|---|---|---|---|
1. Human-SNP-wf | BRCA1-SNP | 98.04% | 95.24% | 96.62% | 1 h |
BRCA1-INDEL | 94.12% | 80.00% | 86.49% | ||
BRCA2-SNP | 95.24% | 96.15% | 95.69% | ||
BRCA2-INDEL | 94.74% | 75.00% | 83.72% | ||
2. Clair3 | BRCA1-SNP | 99.02% | 96.19% | 97.58% | 1 h 22 min |
BRCA1-INDEL | 94.12% | 80.00% | 86.49% | ||
BRCA2-SNP | 96.19% | 97.12% | 96.65% | ||
BRCA2-INDEL | 94.74% | 81.82% | 87.80% | ||
3. Medaka | BRCA1-SNP | 92.16% | 89.52% | 90.82% | 1 h 29 min |
BRCA1-INDEL | 58.82% | 50.00% | 54.05% | ||
BRCA2-SNP | 94.29% | 95.19% | 94.74% | ||
BRCA2-INDEL | 57.89% | 50.00% | 53.66% | ||
4. Nanocaller | BRCA1-SNP | 96.08% | 93.33% | 94.69% | 42 min |
BRCA1-INDEL | 76.47% | 65.00% | 70.27% | ||
BRCA2-SNP | 95.24% | 96.15% | 95.69% | ||
BRCA2-INDEL | 80.00% | 54.55% | 64.86% | ||
5. Longshot | BRCA1-SNP | 95.10% | 92.38% | 93.72% | 48 min |
BRCA1-INDEL | 70.59% | 60.00% | 64.86% | ||
BRCA2-SNP | 93.33% | 94.23% | 93.78% | ||
BRCA2-INDEL | 68.42% | 59.09% | 63.41% | ||
6. Clair | BRCA1-SNP | 96.08% | 93.33% | 94.69% | 2 h |
BRCA1-INDEL | 64.71% | 55.00% | 59.46% | ||
BRCA2-SNP | 93.33% | 94.23% | 93.78% | ||
BRCA2-INDEL | 63.16% | 54.55% | 58.54% |
HG002 (NA24385) | Recall | Precision | F1-Score | Total Time Taken | |
---|---|---|---|---|---|
1. wf-Human-SNP | BRCA1-SNP | 97.20% | 99.05% | 98.11% | 43 min |
BRCA1-INDEL | 93.33% | 70.00% | 80.00% | ||
BRCA2-SNP | 97.06% | 98.02% | 97.54% | ||
BRCA2-INDEL | 95.00% | 90.48% | 92.68% | ||
2. Clair3 | BRCA1-SNP | 96.26% | 98.10% | 97.17% | 1 h 7 min |
BRCA1-INDEL | 86.67% | 65.00% | 74.29% | ||
BRCA2-SNP | 95.10% | 96.04% | 95.57% | ||
BRCA2-INDEL | 85.00% | 80.95% | 82.93% | ||
3. Medaka | BRCA1-SNP | 91.59% | 93.33% | 92.45% | 39 min |
BRCA1-INDEL | 60.00% | 45.00% | 51.43% | ||
BRCA2-SNP | 90.20% | 91.09% | 90.64% | ||
BRCA2-INDEL | 60.00% | 57.14% | 58.54% | ||
4. Nanocaller | BRCA1-SNP | 95.33% | 97.14% | 96.23% | 28 min |
BRCA1-INDEL | 80.00% | 60.00% | 68.57% | ||
BRCA2-SNP | 94.12% | 95.05% | 94.58% | ||
BRCA2-INDEL | 85.00% | 80.95% | 82.93% | ||
5. Longshot | BRCA1-SNP | 94.39% | 96.19% | 95.28% | 38 min |
BRCA1-INDEL | 73.33% | 55.00% | 62.86% | ||
BRCA2-SNP | 92.16% | 93.07% | 92.61% | ||
BRCA2-INDEL | 75.00% | 71.43% | 73.17% | ||
6. Clair | BRCA1-SNP | 93.46% | 95.24% | 94.34% | 1 h 11 min |
BRCA1-INDEL | 66.67% | 50.00% | 57.14% | ||
BRCA2-SNP | 91.18% | 92.08% | 91.63% | ||
BRCA2-INDEL | 65.00% | 61.90% | 63.41% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helal, A.A.; Saad, B.T.; Saad, M.T.; Mosaad, G.S.; Aboshanab, K.M. Evaluation of the Available Variant Calling Tools for Oxford Nanopore Sequencing in Breast Cancer. Genes 2022, 13, 1583. https://doi.org/10.3390/genes13091583
Helal AA, Saad BT, Saad MT, Mosaad GS, Aboshanab KM. Evaluation of the Available Variant Calling Tools for Oxford Nanopore Sequencing in Breast Cancer. Genes. 2022; 13(9):1583. https://doi.org/10.3390/genes13091583
Chicago/Turabian StyleHelal, Asmaa A., Bishoy T. Saad, Mina T. Saad, Gamal S. Mosaad, and Khaled M. Aboshanab. 2022. "Evaluation of the Available Variant Calling Tools for Oxford Nanopore Sequencing in Breast Cancer" Genes 13, no. 9: 1583. https://doi.org/10.3390/genes13091583
APA StyleHelal, A. A., Saad, B. T., Saad, M. T., Mosaad, G. S., & Aboshanab, K. M. (2022). Evaluation of the Available Variant Calling Tools for Oxford Nanopore Sequencing in Breast Cancer. Genes, 13(9), 1583. https://doi.org/10.3390/genes13091583