Genetic Variants at the APOE Locus Predict Cardiometabolic Traits and Metabolic Syndrome: A Taiwan Biobank Study
Abstract
:1. Introduction
2. Participants and Methods
2.1. TWB Participants
2.2. Genomic DNA Extraction and Genotyping
2.3. Clinical Phenotypes and Laboratory Examinations
2.4. Regional Association Analysis with Conditional Analysis
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Regional Association Plots
3.3. Genotype–Phenotype Association Analysis for the APOE Locus Lead SNVs
3.4. Stepwise Linear Regression Analysis between the APOE Locus-Lead SNVs and Lipid Profile
4. Discussion
4.1. APOE Variants and Lipid Profile
4.2. CLPTM1 Polymorphism and Serum Lipid Levels
4.3. APOE-APOC1 Polymorphisms and Serum Triglyceride Levels
4.4. Association between APOE Gene Region Variants and Metabolic Syndrome
4.5. Association between APOE Gene Region Variants and Serum Albumin Levels
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allan, C.M.; Taylor, S.; Taylor, J.M. Two hepatic enhancers, HCR.1 and HCR.2, coordinate the liver expression of the entire human apolipoprotein E/C-I/C-IV/C-II gene cluster. J. Biol. Chem. 1997, 272, 29113–29119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allan, C.M.; Walker, D.; Segrest, J.P.; Taylor, J.M. Identification and characterization of a new human gene (APOC4) in the apolipoprotein E, C-I, and C-II gene locus. Genomics 1995, 28, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Buniello, A.; MacArthur, J.A.L.; Cerezo, M.; Harris, L.W.; Hayhurst, J.; Malangone, C.; McMahon, A.; Morales, J.; Mountjoy, E.; Sollis, E.; et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019, 47, D1005–D1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marais, A.D. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology 2019, 51, 165–176. [Google Scholar] [CrossRef]
- Khalil, Y.A.; Rabès, J.P.; Boileau, C.; Varret, M. APOE gene variants in primary dyslipidemia. Atherosclerosis 2021, 328, 11–22. [Google Scholar] [CrossRef]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgozoglu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56. [Google Scholar] [CrossRef]
- Trautwein, E.A.; McKay, S. The Role of Specific Components of a Plant-Based Diet in Management of Dyslipidemia and the Impact on Cardiovascular Risk. Nutrients 2020, 12, 2671. [Google Scholar] [CrossRef]
- D’Adamo, E.; Guardamagna, O.; Chiarelli, F.; Bartuli, A.; Liccardo, D.; Ferrari, F.; Nobili, V. Atherogenic dyslipidemia and cardiovascular risk factors in obese children. Int. J. Endocrinol. 2015, 2015, 912047. [Google Scholar] [CrossRef]
- Bennet, A.M.; Di Angelantonio, E.; Ye, Z.; Wensley, F.; Dahlin, A.; Ahlbom, A.; Keavney, B.; Collins, R.; Wiman, B.; de Faire, U.; et al. Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA 2007, 298, 1300–1311. [Google Scholar] [CrossRef]
- Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261, 921–923. [Google Scholar] [CrossRef]
- Phillips, M.C. Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life 2014, 66, 616–623. [Google Scholar] [CrossRef]
- Rasmussen, K.L. Plasma levels of apolipoprotein E, APOE genotype and risk of dementia and ischemic heart disease: A review. Atherosclerosis 2016, 255, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Pentikäinen, M.O.; Oksjoki, R.; Oörni, K.; Kovanen, P.T. Lipoprotein lipase in the arterial wall: Linking LDL to the arterial extracellular matrix and much more. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Sehayek, E.; Eisenberg, S. Mechanisms of inhibition by apolipoprotein C of apolipoprotein E-dependent cellular metabolism of human triglyceride-rich lipoproteins through the low density lipoprotein receptor pathway. J. Biol. Chem. 1991, 266, 18259–18267. [Google Scholar] [CrossRef]
- Weisgraber, K.H.; Mahley, R.W.; Kowal, R.C.; Herz, J.; Goldstein, J.L.; Brown, M.S. Apolipoprotein C-I modulates the interaction of apolipoprotein E with β-migrating very low density lipoproteins (β-VLDL) and inhibits binding of β-VLDL to low density lipoprotein receptor-related protein. J. Biol. Chem. 1990, 265, 22453–22459. [Google Scholar] [CrossRef]
- de Haan, W.; Out, R.; Berbée, J.F.; van der Hoogt, C.C.; van Dijk, K.W.; van Berkel, T.J.; Romijn, J.A.; Jukema, J.W.; Havekes, L.M.; Rensen, P.C. Apolipoprotein CI inhibits scavenger receptor BI and increases plasma HDL levels in vivo. Biochem. Biophys. Res. Commun. 2008, 377, 1294–1298. [Google Scholar] [CrossRef]
- Gautier, T.; Masson, D.; de Barros, J.P.; Athias, A.; Gambert, P.; Aunis, D.; Metz-Boutigue, M.H.; Lagrost, L. Human apolipoprotein C-I accounts for the ability of plasma high density lipoproteins to inhibit the cholesteryl ester transfer protein activity. J. Biol. Chem. 2000, 275, 37504–37509. [Google Scholar] [CrossRef] [Green Version]
- Ken-Dror, G.; Talmud, P.J.; Humphries, S.E.; Drenos, F. APOE/C1/C4/C2 gene cluster genotypes, haplotypes and lipid levels in prospective coronary heart disease risk among UK healthy men. Mol. Med. 2010, 16, 389–399. [Google Scholar] [CrossRef]
- Allan, C.M.; Taylor, J.M. Expression of a novel human apolipoprotein (apoC-IV) causes hypertriglyceridemia in transgenic mice. J. Lipid Res. 1996, 37, 1510–1518. [Google Scholar] [CrossRef]
- Kamboh, M.I.; Aston, C.E.; Hamman, R.F. DNA sequence variation in human apolipoprotein C4 gene and its effect on plasma lipid profile. Atherosclerosis 2000, 152, 193–201. [Google Scholar] [CrossRef]
- Wolska, A.; Dunbar, R.L.; Freeman, L.A.; Ueda, M.; Amar, M.J.; Sviridov, D.O.; Remaley, A.T. Apolipoprotein C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis 2017, 267, 49–60. [Google Scholar] [CrossRef]
- Breckenridge, W.C.; Little, J.A.; Steiner, G.; Chow, A.; Poapst, M. Hypertriglyceridemia associated with deficiency of apolipoprotein C-II. N. Engl. J. Med. 1978, 298, 1265–1273. [Google Scholar] [CrossRef]
- Shen, Y.; Lookene, A.; Nilsson, S.; Olivecrona, G. Functional analyses of human apolipoprotein CII by site-directed mutagenesis: Identification of residues important for activation of lipoprotein lipase. J. Biol. Chem. 2002, 277, 4334–4342. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.G.; Chen, S.; Leong, L.; Tulloch, J.; Yu, C.E. TOMM40 RNA Transcription in Alzheimer’s Disease Brain and Its Implication in Mitochondrial Dysfunction. Genes 2021, 12, 871. [Google Scholar] [CrossRef]
- Huang, L.O.; Rauch, A.; Mazzaferro, E.; Preuss, M.; Carobbio, S.; Bayrak, C.S.; Chami, N.; Wang, Z.; Schick, U.M.; Yang, N.; et al. Genome-wide discovery of genetic loci that uncouple excess adiposity from its comorbidities. Nat. Metab. 2021, 3, 228–243. [Google Scholar] [CrossRef]
- Roses, A.; Sundseth, S.; Saunders, A.; Gottschalk, W.; Burns, D.; Lutz, M. Understanding the genetics of APOE and TOMM40 and role of mitochondrial structure and function in clinical pharmacology of Alzheimer’s disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2016, 12, 687–694. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Lin, Y.; Li, X.; Driver, J.A.; Liang, L. Shared genetic architecture between metabolic traits and Alzheimer’s disease: A large-scale genome-wide cross-trait analysis. Hum. Genet. 2019, 138, 271–285. [Google Scholar] [CrossRef]
- Yoshiura, K.; Machida, J.; Daack-Hirsch, S.; Patil, S.R.; Ashworth, L.K.; Hecht, J.T.; Murray, J.C. Characterization of a novel gene disrupted by a balanced chromosomal translocation t(2;19)(q11.2;q13.3) in a family with cleft lip and palate. Genomics 1998, 54, 231–240. [Google Scholar] [CrossRef]
- Ge, Y.; Kang, Y.; Cassidy, R.M.; Moon, K.M.; Lewis, R.; Wong, R.O.L.; Foster, L.J.; Craig, A.M. Clptm1 Limits Forward Trafficking of GABA(A) Receptors to Scale Inhibitory Synaptic Strength. Neuron 2018, 97, 596–610.e598. [Google Scholar] [CrossRef]
- Richardson, T.G.; Sanderson, E.; Palmer, T.M.; Ala-Korpela, M.; Ference, B.A.; Davey Smith, G.; Holmes, M.V. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: A multivariable Mendelian randomisation analysis. PLoS Med. 2020, 17, e1003062. [Google Scholar] [CrossRef] [Green Version]
- Sinnott-Armstrong, N.; Tanigawa, Y.; Amar, D.; Mars, N.; Benner, C.; Aguirre, M.; Venkataraman, G.R.; Wainberg, M.; Ollila, H.M.; Kiiskinen, T.; et al. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat. Genet. 2021, 53, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Hsu, L.A.; Teng, M.S.; Lin, J.F.; Chou, H.H.; Lee, M.C.; Wu, Y.M.; Su, C.W.; Ko, Y.L. Interactive effects of C-reactive protein levels on the association between APOE variants and triglyceride levels in a Taiwanese population. Lipids Health Dis. 2016, 15, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.H.; Yang, J.H.; Chiang, C.W.K.; Hsiung, C.N.; Wu, P.E.; Chang, L.C.; Chu, H.W.; Chang, J.; Song, I.W.; Yang, S.L.; et al. Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum. Mol. Genet. 2016, 25, 5321–5331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, K.H.; Hsu, L.A.; Teng, M.S.; Wu, S.; Chou, H.H.; Ko, Y.L. Pleiotropic Effects of Common and Rare GCKR Exonic Mutations on Cardiometabolic Traits. Genes 2022, 13, 491. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.S.; Wu, S.; Hsu, L.A.; Chou, H.H.; Ko, Y.L. Pleiotropic Effects of Functional MUC1 Variants on Cardiometabolic, Renal, and Hematological Traits in the Taiwanese Population. Int. J. Mol. Sci. 2021, 22, 641. [Google Scholar] [CrossRef] [PubMed]
- Mahley, R.W. Apolipoprotein E: From cardiovascular disease to neurodegenerative disorders. J. Mol. Med. 2016, 94, 739–746. [Google Scholar] [CrossRef] [Green Version]
- Marais, A.D. Apolipoprotein E and Atherosclerosis. Curr. Atheroscler. Rep. 2021, 23, 34. [Google Scholar] [CrossRef]
- Sakaue, S.; Kanai, M.; Tanigawa, Y.; Karjalainen, J.; Kurki, M.; Koshiba, S.; Narita, A.; Konuma, T.; Yamamoto, K.; Akiyama, M.; et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 2021, 53, 1415–1424. [Google Scholar] [CrossRef]
- Carter, T.C.; Molloy, A.M.; Pangilinan, F.; Troendle, J.F.; Kirke, P.N.; Conley, M.R.; Orr, D.J.; Earley, M.; McKiernan, E.; Lynn, E.C.; et al. Testing reported associations of genetic risk factors for oral clefts in a large Irish study population. Birth Defects Res. Part A Clin. Mol. Teratol. 2010, 88, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.A.; Kho, M.; Zhao, W.; Yu, M.; Mitchell, C.; Faul, J.D. Genetic effects and gene-by-education interactions on episodic memory performance and decline in an aging population. Soc. Sci. Med. 2021, 271, 112039. [Google Scholar] [CrossRef]
- Jansen, I.E.; Savage, J.E.; Watanabe, K.; Bryois, J.; Williams, D.M.; Steinberg, S.; Sealock, J.; Karlsson, I.K.; Hägg, S.; Athanasiu, L.; et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 2019, 51, 404–413. [Google Scholar] [CrossRef]
- Hoffmann, T.J.; Theusch, E.; Haldar, T.; Ranatunga, D.K.; Jorgenson, E.; Medina, M.W.; Kvale, M.N.; Kwok, P.Y.; Schaefer, C.; Krauss, R.M.; et al. A large electronic-health-record-based genome-wide study of serum lipids. Nat. Genet. 2018, 50, 401–413. [Google Scholar] [CrossRef]
- Wallace, C.; Newhouse, S.J.; Braund, P.; Zhang, F.; Tobin, M.; Falchi, M.; Ahmadi, K.; Dobson, R.J.; Marçano, A.C.; Hajat, C.; et al. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: Serum urate and dyslipidemia. Am. J. Hum. Genet. 2008, 82, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Castellano, D.; Shepard, R.D.; Lu, W. Looking for Novelty in an “Old” Receptor: Recent Advances Toward Our Understanding of GABA(A)Rs and Their Implications in Receptor Pharmacology. Front. Neurosci. 2020, 14, 616298. [Google Scholar] [CrossRef]
- Han, W.; Shepard, R.D.; Lu, W. Regulation of GABA(A)Rs by Transmembrane Accessory Proteins. Trends Neurosci. 2021, 44, 152–165. [Google Scholar] [CrossRef]
- Yang, Y.; Lian, Y.T.; Huang, S.Y.; Yang, Y.; Cheng, L.X.; Liu, K. GABA and topiramate inhibit the formation of human macrophage-derived foam cells by modulating cholesterol-metabolism-associated molecules. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2014, 33, 1117–1129. [Google Scholar] [CrossRef]
- Yang, T.; Wei, P.; Pan, W. Integrative analysis of multi-omics data for discovering low-frequency variants associated with low-density lipoprotein cholesterol levels. Bioinformatics 2021, 36, 5223–5228. [Google Scholar] [CrossRef]
- Chen, H.J.; Bai, C.H.; Yeh, W.T.; Chiu, H.C.; Pan, W.H. Influence of metabolic syndrome and general obesity on the risk of ischemic stroke. Stroke 2006, 37, 1060–1064. [Google Scholar] [CrossRef] [Green Version]
- Johansen, C.T.; Kathiresan, S.; Hegele, R.A. Genetic determinants of plasma triglycerides. J. Lipid Res. 2011, 52, 189–206. [Google Scholar] [CrossRef] [Green Version]
- Surakka, I.; Horikoshi, M.; Mägi, R.; Sarin, A.P.; Mahajan, A.; Lagou, V.; Marullo, L.; Ferreira, T.; Miraglio, B.; Timonen, S.; et al. The impact of low-frequency and rare variants on lipid levels. Nat. Genet. 2015, 47, 589–597. [Google Scholar] [CrossRef] [Green Version]
- Fuior, E.V.; Gafencu, A.V. Apolipoprotein C1: Its Pleiotropic Effects in Lipid Metabolism and Beyond. Int. J. Mol. Sci. 2019, 20, 5939. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.H.; Liu, Z.; Ho, S.C. Metabolic syndrome and all-cause mortality: A meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 2010, 25, 375–384. [Google Scholar] [CrossRef]
- Yki-Järvinen, H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet. Diabetes Endocrinol. 2014, 2, 901–910. [Google Scholar] [CrossRef]
- Ranasinghe, P.; Mathangasinghe, Y.; Jayawardena, R.; Hills, A.P.; Misra, A. Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: A systematic review. BMC Public Health 2017, 17, 101. [Google Scholar] [CrossRef] [Green Version]
- Carty, C.L.; Bhattacharjee, S.; Haessler, J.; Cheng, I.; Hindorff, L.A.; Aroda, V.; Carlson, C.S.; Hsu, C.N.; Wilkens, L.; Liu, S.; et al. Analysis of metabolic syndrome components in >15 000 african americans identifies pleiotropic variants: Results from the population architecture using genomics and epidemiology study. Circ. Cardiovasc. Genet. 2014, 7, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Kristiansson, K.; Perola, M.; Tikkanen, E.; Kettunen, J.; Surakka, I.; Havulinna, A.S.; Stancáková, A.; Barnes, C.; Widen, E.; Kajantie, E.; et al. Genome-wide screen for metabolic syndrome susceptibility Loci reveals strong lipid gene contribution but no evidence for common genetic basis for clustering of metabolic syndrome traits. Circ. Cardiovasc. Genet. 2012, 5, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Lind, L. Genome-Wide Association Study of the Metabolic Syndrome in UK Biobank. Metab. Syndr. Relat. Disord. 2019, 17, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Son, K.Y.; Son, H.Y.; Chae, J.; Hwang, J.; Jang, S.; Yun, J.M.; Cho, B.; Park, J.H.; Kim, J.I. Genetic association of APOA5 and APOE with metabolic syndrome and their interaction with health-related behavior in Korean men. Lipids Health Dis. 2015, 14, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, L.Y.; Petrone, A.B.; Pankow, J.S.; Arnett, D.K.; North, K.E.; Ellison, R.C.; Hunt, S.C.; Rosenzweig, J.L.; Djoussé, L. Lack of association of apolipoprotein E (Apo E) polymorphism with the prevalence of metabolic syndrome: The National Heart, Lung and Blood Institute Family Heart Study. Diabetes/Metab. Res. Rev. 2015, 31, 582–587. [Google Scholar] [CrossRef] [Green Version]
- Novotny, D.; Vaverkova, H.; Karasek, D.; Malina, P. Genetic variants of apolipoprotein A5 T-1131C and apolipoprotein E common polymorphisms and their relationship to features of metabolic syndrome in adult dyslipidemic patients. Clin. Biochem. 2014, 47, 1015–1021. [Google Scholar] [CrossRef]
- Smolková, B.; Bonassi, S.; Buociková, V.; Dušinská, M.; Horská, A.; Kuba, D.; Džupinková, Z.; Rašlová, K.; Gašparovič, J.; Slíž, I.; et al. Genetic determinants of quantitative traits associated with cardiovascular disease risk. Mutat. Res. 2015, 778, 18–25. [Google Scholar] [CrossRef]
- Arques, S. Serum albumin and cardiovascular disease: State-of-the-art review. Ann. Cardiol. D’angeiologie 2020, 69, 192–200. [Google Scholar] [CrossRef]
Clinical and Laboratory Parameters | Total | Male | Female |
---|---|---|---|
Number | 81,387 | 29,487 | 51,900 |
Anthropology | |||
Age (years) | 51.0 (41.0–59.0) | 51.0 (41.0–60.0) | 51.0 (41.0–59.0) *** |
Waist circumference (cm) | 83.0 (76.0–89.5) | 87.5 (82.0–93.5) | 80.0 (74.0–86.5) *** |
Waist–hip ratio | 0.87 (0.82–0.91) | 0.90 (0.86–0.94) | 0.84 (0.80–0.89) *** |
Body mass index (kg/m2) | 23.78 (21.58–26.30) | 25.0 (23.0–27.3) | 23.0 (21.0–25.5) *** |
Blood Pressure | |||
Systolic BP † (mmHg) | 115.0 (105.0–126.7) | 121.0 (111.7–131.5) | 111.0 (102.0–123.0) *** |
Diastolic BP † (mmHg) | 71.0 (65.0–79.0) | 76.5 (70.0–83.0) | 69.0 (62.7–76.0) *** |
Mean BP † (mmHg) | 86.0 (78.7–94.3) | 91.2 (84.3–98.7) | 83.2 (76.3–91.3) *** |
Lipid profile | |||
Total cholesterol # (mg/dL) | 193.0 (171.0–216.0) | 190.0 (168.0–213.0) | 194.0 (172.0–218.0) *** |
HDL cholesterol # (mg/dL) | 53.0 (45.0–63.0) | 47.0 (40.0–54.0) | 57.0 (49.0–66.0) *** |
LDL cholesterol # (mg/dL) | 119.0 (99.0–140.0) | 121.0 (101.0–142.0) | 118.0 (98.0–140.0) |
Triglyceride # (mg/dL) | 90.0 (63.0–132.0) | 107.0 (74.0–156.0) | 83.0 (59.0–119.0) *** |
Glucose metabolism | |||
Fasting plasma glucose †† (mg/dL) | 92.0 (87.0–97.0) | 94.0 (89.0–99.0) | 90.0 (86.0–95.0) *** |
HbA1c †† (%) | 5.6 (5.4–5.9) | 5.6 (5.4–5.9) | 5.6 (5.4–5.8) |
Uric acid | |||
Uric acid ††† (mg/dL) | 5.2 (4.4–6.2) | 6.3 (5.5–7.1) | 4.8 (4.1–5.5) *** |
Renal function | |||
Creatinine (mg/dL) | 0.68 (0.57–0.83) | 0.88 (0.79–0.98) | 0.60 (0.54–0.67) *** |
eGFR (mL/min/1.73 m2) | 100.7 (87.5–116.4) | 92.6 (81.3–105.0) | 106.2 (92.4–122.2) *** |
Albuminuria (mg/L) | 8.7 (5.4–15.2) | 8.4 (5.3–15.0) | 9.0 (5.5–15.4) *** |
Liver function | |||
AST (U/L) | 23.0 (20.0–27.0) | 24.0 (21.0–29.0) | 22.0 (19.0–26.0) *** |
ALT (U/L) | 19.0 (14.0–27.0) | 23.0 (17.0–33.0) | 17.0 (13.0–23.0) *** |
gGT (U/L) | 17.0 (12.0–26.0) | 22.0 (16.0–34.0) | 14.0 (11.0–21.0) *** |
Serum albumin (g/dL) | 4.5 (4.4–4.7) | 4.6 (4.4–4.7) | 4.5 (4.3–4.6) *** |
Total bilirubin (mg/dL) | 0.6 (0.5–0.8) | 0.7 (0.6–0.9) | 0.6 (0.5–0.7) *** |
Hematological parameters | |||
Leukocyte count (103/μL) | 5.7 (4.7–6.8) | 5.9 (4.9–7.0) | 5.6 (4.6–6.6) |
Hematocrit (%) | 41.6 (39–44.5) | 44.9 (42.9–47.1) | 40.0 (37.9–42.1) *** |
Platelet count (103/μL) | 237.0 (202.0–276.0) | 221.0 (190.0–256.0) | 246.0 (211.0–286.0) *** |
Red blood cell count (106/μL) | 4.7 (4.4–5.0) | 5.1 (4.8–5.3) | 4.5 (4.3–4.8) *** |
Hemoglobin (g/dL) | 13.7 (12.8–14.8) | 15.1 (14.4–15.8) | 13.1 (12.4–13.8) *** |
Atherosclerotic risk factors | |||
Diabetes mellitus (%) | 9.5% | 12.4% | 7.9% *** |
Hypertension (%) | 22.4% | 30.9% | 17.5% *** |
Current smoking (%) | 9.1% | 20.3% | 2.8% |
Gout (%) | 3.9% | 9.8% | 0.6% *** |
Microalbuminuria (%) | 11.3% | 12.3% | 10.8% * |
Metabolic syndrome (%) | 22.2% | 26.9% | 19.6% *** |
Genetic Variants | MM | Mm | Mm | p Value * | p Value ** |
---|---|---|---|---|---|
APOE rs429358 | TT (62,865) | CT (11,841) | CC (519) | ||
Total cholesterol # (mg/dL) | 192.0 (170.0–215.0) | 198.0 (176.0–222.0) | 200.0 (181.0–224.0) | 3.50 × 10−66 | 2.38 × 10−71 |
HDL cholesterol # (mg/dL) | 53.0 (45.0–63.0) | 52.0 (44.0–62.0) | 51.0 (43.0–61.0) | 7.83 × 10−27 | 1.21 × 10−43 |
LDL cholesterol # (mg/dL) | 118.0 (98.0–139.0) | 125.0 (105.0–146.0) | 127.0 (108.0–149.0) | 1.61 × 10−110 | 5.81 × 10−120 |
Triglyceride # (mg/dL) | 89.0 (63.0–131.0) | 94.0 (66.0–141.0) | 100.0 (68.0–150.0) | 8.00 × 10−36 | 4.27 × 10−52 |
APOE rs7412 | CC (64,455) | TC (10,469) | TT (393) | ||
Total cholesterol # (mg/dL) | 195.0 (173.0–218.0) | 181.0 (161.0–204.0) | 164.0 (137.0–199.0) | <10−307 | <10−307 |
HDL cholesterol # (mg/dL) | 53.0 (45.0–62.0) | 55.0 (46.0–65.0) | 54.0 (46.0–65.0) | 2.34 × 10−29 | 2.37 × 10−44 |
LDL cholesterol # (mg/dL) | 122.0 (103.0–143.0) | 101.0 (85.0–120.0) | 59.0 (46.0–74.0) | <10−307 | <10−307 |
Triglyceride # (mg/dL) | 89.0 (63.0–131.0) | 94.0 (66.0–139.0) | 114.0 (78.0–177.5) | 2.42 × 10−39 | 1.45 × 10−35 |
APOE- APOC1 rs439401 | TT (26,681) | CT (36,300) | CC (12,458) | ||
Total cholesterol # (mg/dL) | 194.0 (172.0–217.0) | 192.0 (170.0–216.0) | 192.0 (170.0–216.0) | 1.11 × 10−8 | 1.16 × 10−8 |
HDL cholesterol # (mg/dL) | 53.0 (45.0–63.0) | 53.0 (45.0–63.0) | 53.0 (45.0–63.0) | 0.9970 | 0.3971 |
LDL cholesterol # (mg/dL) | 121.0 (102.0–142.0) | 118.0 (99.0–140.0) | 116.0 (95.0–139.0) | 1.28 × 10−90 | 2.20 × 10−97 |
Triglyceride # (mg/dL) | 87.0 (62.0–127.0) | 91.0 (64.0–133.0) | 96.0 (67.0–142.0) | 5.80 × 10−57 | 2.59 × 10−66 |
APOC1 rs438811 | CC (51,077) | TC (21,804) | TT (2258) | ||
Total cholesterol # (mg/dL) | 194.0 (172.0–217.0) | 190.0 (168.0–215.0) | 188.0 (163.0–213.0) | 1.68 × 10−51 | 1.63 × 10−56 |
HDL cholesterol # (mg/dL) | 53.0 (45.0–63.0) | 53.0 (45.0–63.0) | 53.0 (45.0–63.0) | 0.7682 | 0.6896 |
LDL cholesterol # (mg/dL) | 121.0 (102.0–142.0) | 115.0 (94.0–137.0) | 106.0 (81.0–130.0) | <10−307 | <10−307 |
Triglyceride # (mg/dL) | 88.0 (63.0–129.0) | 94.0 (65.0–139.0) | 99.0 (68.0–149.0) | 1.21 × 10−67 | 1.61 × 10−85 |
CLPTM1 rs11672748 | AA (20,021) | GA (37,145) | GG (17,842) | ||
Total cholesterol # (mg/dL) | 193.0 (171.0–217.0) | 193.0 (171.0–217.0) | 192.0 (170.0–216.0) | 0.0501 | 0.0223 |
HDL cholesterol # (mg/dL) | 53.0 (45.0–62.0) | 53.0 (45.0–63.0) | 54.0 (45.0–63.0) | 2.64 × 10−13 | 6.89 × 10−16 |
LDL cholesterol # (mg/dL) | 120.0 (100.0–141.0) | 119.0 (99.0–141.0) | 118.0 (98.0–138.0) | 2.06 × 10−13 | 2.83 × 10−14 |
Triglyceride # (mg/dL) | 90.0 (64.0–132.0) | 90.0 (63.0–132.0) | 90.0 (64.0–132.0) | 0.9639 | 0.9714 |
CLPTM1 rs3786505 | AA (20,031) | GA (37,183) | GG (17,840) | ||
Total cholesterol # (mg/dL) | 193.0 (171.0–217.0) | 193.0 (171.0–217.0) | 192.0 (170.0–216.0) | 0.0476 | 0.0187 |
HDL cholesterol # (mg/dL) | 53.0 (45.0–62.0) | 53.0 (45.0–63.0) | 54.0 (45.0–63.0) | 2.26 × 10−13 | 5.99 × 10−16 |
LDL cholesterol # (mg/dL) | 120.0 (100.0–141.0) | 119.0 (99.0–141.0) | 118.0 (98.0–138.0) | 1.33 × 10−13 | 1.67 × 10−14 |
Triglyceride # (mg/dL) | 90.0 (64.0–132.0) | 90.0 (63.0–132.0) | 90.0 (64.0–132.0) | 0.9535 | 0.9832 |
Lipid Profile | Total Cholesterol # (mg/dL) | LDL Cholesterol # (mg/dL) | HDL Cholesterol # (mg/dL) | Triglyceride # (mg/dL) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
β | r2 | p Value | β | r2 | p Value | β | r2 | p Value | β | r2 | p Value | |
Sex (male vs. female) | 0.0155 | 0.0050 | 1.25 × 10−140 | -- | -- | -- | 0.0001 | 0.0001 | 0.0001 | −0.0562 | 0.0191 | 1.10 × 10−230 |
Age (years) | 0.0014 | 0.0361 | <10−307 | 0.0015 | 0.0187 | <10−307 | 0.0623 | 0.0873 | <10−307 | 0.0031 | 0.0177 | <10−307 |
Body mass index (kg/m2) | 0.0018 | 0.0067 | 3.32 × 10−119 | 0.0051 | 0.0275 | <10−307 | −0.0094 | 0.1584 | <10−307 | 0.0222 | 0.1475 | <10−307 |
Current smoking (%) | 0.0055 | 0.0004 | 3.18 × 10−8 | -- | -- | -- | −0.0242 | 0.0041 | 4.53 × 10−88 | 0.0818 | 0.0089 | 1.43 × 10−182 |
APOE rs7412 (CC vs. CT vs. TT) | −0.0298 | 0.0213 | <10−307 | −0.0897 | 0.0838 | <10−307 | 0.0115 | 0.0019 | 2.07 × 10−37 | -- | -- | -- |
APOE rs429358 (TT vs.TC vs. CC) | 0.0101 | 0.0026 | 1.15 × 10−47 | 0.0172 | 0.0034 | 6.35 × 10−65 | −0.0107 | 0.0016 | 1.30 × 10−36 | -- | -- | -- |
CLPTM1 rs3786505 (AA vs. AG vs. GG) | -- | -- | -- | −0.0044 | 0.0007 | 3.10 × 10−15 | -- | -- | -- | -- | -- | -- |
CLPTM1 rs11672748 (AA vs. AG vs. GG) | -- | -- | -- | -- | -- | -- | 0.0037 | 0.0006 | 1.48 × 10−15 | -- | -- | -- |
APOC1 rs438811 (CC vs. CT vs. TT) | -- | -- | -- | -- | -- | -- | -- | -- | -- | 0.0210 | 0.0041 | 7.54 × 10−34 |
APOE- APOC1 rs439401 (TT vs.TC vs. CC) | -- | -- | -- | -- | -- | -- | -- | -- | -- | 0.0101 | 0.0006 | 4.78 × 10−14 |
Metabolic Syndrome | β | SE | p Value | OR | 95% CI |
---|---|---|---|---|---|
Sex (male vs. female) | 0.0891 | 0.0210 | 2.12 × 10−5 | 1.09 | 1.04–1.14 |
Age (years) | 0.0601 | 0.0010 | <10−307 | 1.06 | 1.06–1.06 |
Body mass index (kg/m2) | 0.3315 | 0.0031 | <10−307 | 1.39 | 1.38–1.40 |
Current smoking (%) | 0.5271 | 0.0329 | 7.58 × 10−58 | 1.69 | 1.59–1.81 |
APOE rs429358 (TT vs.TC vs. CC) | 0.1830 | 0.0240 | 2.29 × 10−14 | 1.20 | 1.15–1.26 |
APOC1 rs438811 (CC vs. CT vs. TT) | -- | -- | -- | -- | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, K.-H.; Wan, H.-L.; Teng, M.-S.; Chou, H.-H.; Hsu, L.-A.; Ko, Y.-L. Genetic Variants at the APOE Locus Predict Cardiometabolic Traits and Metabolic Syndrome: A Taiwan Biobank Study. Genes 2022, 13, 1366. https://doi.org/10.3390/genes13081366
Yeh K-H, Wan H-L, Teng M-S, Chou H-H, Hsu L-A, Ko Y-L. Genetic Variants at the APOE Locus Predict Cardiometabolic Traits and Metabolic Syndrome: A Taiwan Biobank Study. Genes. 2022; 13(8):1366. https://doi.org/10.3390/genes13081366
Chicago/Turabian StyleYeh, Kuan-Hung, Hsiang-Lin Wan, Ming-Sheng Teng, Hsin-Hua Chou, Lung-An Hsu, and Yu-Lin Ko. 2022. "Genetic Variants at the APOE Locus Predict Cardiometabolic Traits and Metabolic Syndrome: A Taiwan Biobank Study" Genes 13, no. 8: 1366. https://doi.org/10.3390/genes13081366
APA StyleYeh, K.-H., Wan, H.-L., Teng, M.-S., Chou, H.-H., Hsu, L.-A., & Ko, Y.-L. (2022). Genetic Variants at the APOE Locus Predict Cardiometabolic Traits and Metabolic Syndrome: A Taiwan Biobank Study. Genes, 13(8), 1366. https://doi.org/10.3390/genes13081366