Risk Association, Linkage Disequilibrium, and Haplotype Analyses of β-Like Globin Gene Polymorphisms with Malaria Risk in the Sabah Population of Malaysian Borneo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood Samples Collection and DNA Extraction
2.2. Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP)
2.3. Statistical Analyses
3. Results
3.1. Association of the β-Like Globin SNPs with the Risk of Malaria
3.2. LD Analysis of the β-Like Globin SNPs
3.3. Haplotype Analysis of the β-Like Globin SNPs with the Risk of Malaria
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Available online: https://www.who.int/publications/i/item/9789240040496 (accessed on 20 April 2022).
- Heuschen, A.K.; Lu, G.; Razum, O.; Abdul-Mumin, A.; Sankoh, O.; von Seidlein, L.; D’Alessandro, U.; Müller, O. Public health-relevant consequences of the COVID-19 pandemic on malaria in sub-Saharan Africa: A scoping review. Malar. J. 2021, 20, 339. [Google Scholar] [CrossRef] [PubMed]
- Hussin, N.; Lim, Y.A.L.; Goh, P.P.; William, T.; Jelip, J.; Mudin, R.N. Updates in malaria incidence and profile in Malaysia from 2013 to 2017. Malar. J. 2020, 19, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, E.T.J.; Neoh, J.W.F.; Lau, T.Y.; Lim, Y.A.L.; Chua, K.H.; Lee, P.C. Genetic and haplotype analyses targeting cytochrome b gene of Plasmodium knowlesi isolates of Malaysian Borneo and Peninsular Malaysia. Acta Trop. 2018, 181, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Chong, E.T.J.; Neoh, J.W.F.; Lau, T.Y.; Lim, Y.A.L.; Chai, H.C.; Chua, K.H.; Lee, P.C. Genetic diversity of circumsporozoite protein in Plasmodium knowlesi isolates from Malaysian Borneo and Peninsular Malaysia. Malar. J. 2020, 19, 377. [Google Scholar] [CrossRef]
- Chin, A.Z.; Avoi, R.; Atil, A.; Lukman, K.A.; Syed Abdul Rahim, S.S.; Ibrahim, M.Y.; Ahmed, K.; Jeffree, M.S. Risk factor of Plasmodium knowlesi infection in Sabah Borneo Malaysia, 2020: A population-based case-control study. PLoS ONE 2021, 16, e0257104. [Google Scholar] [CrossRef]
- Lakkakula, B.V.K.S.; Pattnaik, S. The HBG2 rs7482144 (C > T) polymorphism is linked to HbF levels but not to the severity of sickle cell anemia. J. Pediatr. Genet. 2021, in press. [Google Scholar] [CrossRef]
- Albarawi, D.J.; Balatay, A.A.; Al-Allawi, N. HBG2 -158 (C > T) polymorphism and its contribution to fetal hemoglobin variability in Iraqi Kurds with beta-thalassemia minor. J. Lab. Physicians 2018, 10, 370–373. [Google Scholar] [CrossRef] [Green Version]
- Elion, J.; Berg, P.E.; Lapoumeroulie, C.; Trabuchet, G.; Mittelman, M.; Krishnamoorthy, R.; Schechter, A.N.; Labie, D. DNA sequence variation in a negative control region 5’ to the β-globin gene correlates with the phenotypic expression of the βS mutation. Blood 1992, 79, 787–792. [Google Scholar] [CrossRef] [Green Version]
- Barati, Z.; Farsimadan, M.; Sharafshah, A.; Peymani, M.; Bijanzadeh, M. Association study of rs10768683 and rs968857 polymorphisms with transfusion-dependent thalassemia (TDT) in a southern Iranian population. Nucleosides Nucleotides Nucleic Acids 2019, 38, 88–99. [Google Scholar] [CrossRef]
- Sultana, G.N.N.; Begum, R.; Akhter, H.; Shamim, Z.; Rahim, M.A.; Chubey, G. The complete spectrum of beta (β) thalassemia mutations in Bangladeshi population. Austin Biomark. Diagn. 2016, 3, 1024. [Google Scholar]
- Barrera-Reyes, P.K.; Tejero, M.E. Genetic variation influencing hemoglobin levels and risk for anemia across populations. Ann. N. Y. Acad. Sci. 2019, 1450, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Ding, K.; de Andrade, M.; Manolio, T.A.; Crawford, D.C.; Rasmussen-Torvik, L.J.; Ritchie, M.D.; Denny, J.C.; Masys, D.R.; Jouni, H.; Pachecho, J.A.; et al. Genetic variants that confers resistance to malaria are associated with red blood cell traits in African-Americans: An electronic medical record-based genome-wide association study. G3-Genes Genom. Genet. 2013, 3, 1061–1068. [Google Scholar] [CrossRef] [Green Version]
- Jallow, M.; Teo, Y.Y.; Small, K.S.; Rockett, K.A.; Deloukas, P.; Clark, T.G.; Kivinen, K.; Bojang, K.A.; Conway, D.J.; Pinder, M.; et al. Genome-wide and fine-resolution association analysis of malaria in West Africa. Nat. Genet. 2009, 41, 657–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndila, C.M.; Uyoga, S.; Macharia, A.W.; Nyutu, G.; Peshu, N.; Ojal, J.; Shebe, M.; Awuondo, K.O.; Mturi, N.; Tsofa, B.; et al. Human candidate gene polymorphisms and risk of severe malaria in children in Kilifi, Kenya: A case-control association study. Lancet Haematol. 2018, 5, e333–e345. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.C.; Chong, E.T.J.; Anderios, F.; Lim, Y.A.L.; Chew, C.H.; Chua, K.H. Molecular detection of human Plasmodium species in Sabah using PlasmoNexTM multiplex PCR and hydrolysis probes real-time PCR. Malar. J. 2015, 14, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, E.T.J.; Goh, L.P.W.; Png, K.K.; Lee, P.C. An improved protocol for high quantity and quality of genomic DNA isolation from human peripheral blood. Curr. Appl. Sci. Technol. 2021, 21, 445–455. [Google Scholar]
- Ali, N.; Ayyub, M.; Khan, S.A.; Ahmed, S.; Abbas, K.; Malik, H.S.; Tashfeen, S. Frequency of Gɣ-globin promoter -158 (C>T) Xmn I polymorphism in patients with homozygous/compound heterozygous beta thalassaemia. Hematol. Oncol. Stem. Cell Ther. 2015, 8, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Tachavanich, K.; Viprakasit, V.; Chinchang, W.; Glomglao, W.; Pung-Amritt, P.; Tanphaichitr, V.S. Clinical and hematological phenotype of homozygous hemoglobin E: Revisit of a benign condition with hidden reproductive risk. Southeast Asian J. Trop. Med. Public Health 2009, 40, 306–316. [Google Scholar]
- He, Z.; Hu, Y.; Feng, L.; Lu, Y.; Liu, G.; Xi, Y.; Wen, L.; Xu, X.; Xu, K. Polymorphisms in the HBB gene relate to individual cardiorespiratory adaption in response to endurance training. Br. J. Sports Med. 2006, 40, 998–1002. [Google Scholar] [CrossRef]
- Shi, Y.Y.; He, L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005, 15, 97–98. [Google Scholar] [CrossRef]
- Nguyen, T.K.T.; Joly, P.; Bardel, C.; Moulsma, M.; Bonello-Palot, N.; Francina, A. The XmnI Gγ polymorphism influences hemoglobin F synthesis contrary to BCL11A and HBS1L-MYB SNPs in a cohort of 57 β-thalassemia intermedia patients. Blood Cells Mol. Dis. 2010, 45, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Billig, E.M.; McQueen, P.G.; McKenzie, F.E. Foetal haemoglobin and the dynamics of paediatric malaria. Malar. J. 2012, 11, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, M.S.; Raheem, E.; Sultana, T.A.; Ferdous, S.; Nahar, N.; Islam, S.; Arifuzzaman, M.; Razzaque, M.A.; Alam, R.; Aziz, S.; et al. Thalassemias in South Asia: Clinical lessons learnt from Bangladesh. Orphanet J. Rare Dis. 2017, 12, 93. [Google Scholar] [CrossRef] [PubMed]
- Orkin, S.H.; Kazazian Jr, H.H.; Antonarakis, S.E.; Ostrer, H.; Goff, S.C.; Sexton, J.P. Abnormal RNA processing due to the exon mutation of βE-globin gene. Nature 1982, 300, 768–769. [Google Scholar] [CrossRef]
- Taylor, S.M.; Cerami, C.; Fairhurst, R.M. Hemoglobinopathies: Slicing the Gordian knot of Plasmodium falciparum malaria pathogenesis. PLoS Pathog. 2013, 9, e1003327. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.A.; Lee, P.C.; Wee, Y.C.; Tan, K.L.; Mahali, N.F.; George, E.; Chua, K.H. High prevalence of alpha- and beta-thalassemia in the Kadazandusuns in East Malaysia: Challenges in providing effective health care for an indigenous group. J. Biomed. Biotech. 2010, 2010, 706872. [Google Scholar] [CrossRef]
- Reese, M.G.; Eeckman, F.H.; Kulp, D.; Haussler, D. Improved splice site detection in Genie. J. Comput. Biol. 1997, 4, 311–323. [Google Scholar] [CrossRef]
- Rogozin, I.B.; Milanesi, L. Analysis of donor splice sites in different eukaryotic organisms. J. Mol. Evol. 1997, 45, 50–59. [Google Scholar] [CrossRef]
- Lombardo, P.; Vaucher, P.; Rarau, P.; Mueller, I.; Favrat, B.; Senn, N. Hemoglobin levels and the risk of malaria in Papua New Guinean infants: A nested cohort study. Am. J. Trop. Med. Hyg. 2017, 97, 1770–1776. [Google Scholar] [CrossRef] [Green Version]
- Antonarakis, S.E.; Kazazian, H.H., Jr.; Orkin, S.H. DNA polymorphism and molecular pathology of the human globin gene clusters. Hum. Genet. 1985, 69, 1–14. [Google Scholar] [CrossRef]
- Vakali, A.; Patsoula, E.; Spanakos, G.; Danis, K.; Vassalou, E.; Tegos, N.; Economopoulou, A.; Baka, A.; Pavli, A.; Koutis, C.; et al. Malaria in Greece, 1975 to 2010. Eurosurveillance 2012, 47, 20322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orjuela-Sánchez, P.; Karunaweera, N.D.; da Silva-Nunes, M.; da Silva, N.S.; Scopel, K.K.G.; Goncalves, R.M.; Amaratunga, C.; Sá, J.M.; Socheat, D.; Fairhust, R.M.; et al. Single-nucleotide polymorphism, linkage disequilibrium and geographic structure in the malaria parasite Plasmodium vivax: Prospects for genome-wide association studies. BMC Genet. 2010, 11, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
SNP | Primer Sequence (5′ to 3′) | Restriction Enzyme | Annealing Temperature | Expected Amplicons | Reference |
---|---|---|---|---|---|
C-158T (rs7482144) | Forward primer: GAACTTAAGAGATAATGGCCTAA Reverse primer: ATGACCCATGGCGTCTGGACTAG | XmnI | 60 °C | Wild-type (C/C)—641 bp; Heterozygous (C/T)—641 bp, 418 bp, and 223 bp; Variant (T/T)—418 bp and 223 bp | [18] |
G79A (rs33950507) | Forward primer: CATTTGCTTCTGACACAACTG Reverse primer: TTGAGGTTGTCCAGGTAG | MnlI | 50 °C | Wild-type (G/G)—171 bp, 135 bp, 62 bp, and 59 bp; Heterozygous (G/A)—233 bp, 171 bp, 135 bp, 62 bp, and 59 bp; Variant (A/A)—233 bp, 135 bp, and 59 bp | [19] |
C16G (rs10768683) | Forward primer: TTAGGCTGCTGGTGGTC Reverse primer: CAATCATTCGTCTGTTTCC | AvaII | 58 °C | Wild-type (C/C)—320 bp and 25 bp; Heterozygous (C/G)—320 bp, 214 bp, 106 bp, and 25 bp; Variant (G/G)—214 bp, 106 bp, and 25 bp | [20] |
C-551T | Forward primer: CTTTGGGTTGTAAGTGA Reverse primer: TTGGGATATGTAGATGG | RsaI | 60 °C | Wild-type (C/C)—386 bp; Heterozygous (C/T)—386 bp, 219 bp, and 167 bp; Variant (T/T)—219 bp and 167 bp | [20] |
SNP | Cases | Controls | OR (95% CI) | p-Value |
---|---|---|---|---|
Overall | ||||
Allele | ||||
C | 361 | 313 | 1.00 (Reference) | - |
T | 15 | 27 | 0.48 (0.25–0.92) | 0.027 * |
Genotype | ||||
CC | 173 | 145 | 1.00 (Reference) | - |
CT | 15 | 23 | 0.55 (0.28–1.09) | 0.085 |
TT | 0 | 2 | - | - |
CT + TT | 15 | 25 | 0.50 (0.26–0.99) | 0.047 * |
P. knowlesi | ||||
Allele | ||||
C | 258 | 313 | 1.00 (Reference) | - |
T | 10 | 27 | 0.45 (0.21–0.95) | 0.035 * |
Genotype | ||||
CC | 124 | 145 | 1.00 (Reference) | - |
CT | 10 | 23 | 0.51 (0.23–1.11) | 0.089 |
TT | 0 | 2 | - | - |
CT + TT | 10 | 25 | 0.47 (0.22–1.01) | 0.054 |
P. falciparum | ||||
Allele | ||||
C | 54 | 313 | 1.00 (Reference) | - |
T | 2 | 27 | 0.43 (0.10–1.86) | 0.258 |
Genotype | ||||
CC | 26 | 145 | 1.00 (Reference) | - |
CT | 2 | 23 | 0.48 (0.11–2.18) | 0.346 |
TT | 0 | 2 | - | - |
CT + TT | 2 | 25 | 0.45 (0.10–2.00) | 0.292 |
P. vivax | ||||
Allele | ||||
C | 49 | 313 | 1.00 (Reference) | - |
T | 3 | 27 | 0.71 (0.21–2.43) | 0.585 |
Genotype | ||||
CC | 23 | 145 | 1.00 (Reference) | - |
CT | 3 | 23 | 0.82 (0.23–2.96) | 0.765 |
TT | 0 | 2 | - | - |
CT + TT | 3 | 25 | 0.76 (0.21–2.71) | 0.668 |
SNP | Cases | Controls | OR (95% CI) | p-Value |
---|---|---|---|---|
Overall | ||||
Allele | ||||
G | 372 | 337 | 1.00 (Reference) | - |
A | 4 | 3 | 1.21 (0.27–5.44) | 0.806 |
Genotype | ||||
GG | 184 | 167 | 1.00 (Reference) | - |
GA | 4 | 3 | 1.21 (0.27–5.49) | 0.805 |
AA | 0 | 0 | - | - |
GA + AA | 4 | 3 | 1.21 (0.27–5.49) | 0.805 |
P. knowlesi | ||||
Allele | ||||
G | 268 | 337 | 1.00 (Reference) | - |
A | 0 | 3 | - | - |
Genotype | ||||
GG | 134 | 167 | 1.00 (Reference) | - |
GA | 0 | 3 | - | - |
AA | 0 | 0 | - | - |
GA + AA | 0 | 3 | - | - |
P. falciparum | ||||
Allele | ||||
G | 53 | 337 | 1.00 (Reference) | - |
A | 3 | 3 | 6.36 (1.25–32.33) | 0.026 * |
Genotype | ||||
GG | 25 | 167 | 1.00 (Reference) | - |
GA | 3 | 3 | 6.68 (1.28–34.94) | 0.025 * |
AA | 0 | 0 | - | - |
GA + AA | 3 | 3 | 6.68 (1.28–34.94) | 0.025 * |
P. vivax | ||||
Allele | ||||
G | 51 | 337 | 1.00 (Reference) | - |
A | 1 | 3 | 2.20 (0.22–21.58) | 0.498 |
Genotype | ||||
GG | 25 | 167 | 1.00 (Reference) | - |
GA | 1 | 3 | 2.23 (0.22–22.25) | 0.496 |
AA | 0 | 0 | - | - |
GA + AA | 1 | 3 | 2.23 (0.22–22.25) | 0.496 |
SNP | Cases | Controls | OR (95% CI) | p-Value |
---|---|---|---|---|
Overall | ||||
Allele | ||||
C | 214 | 181 | 1.00 (Reference) | - |
G | 162 | 159 | 0.86 (0.64–1.16) | 0.323 |
Genotype | ||||
CC | 65 | 56 | 1.00 (Reference) | - |
CG | 84 | 69 | 1.05 (0.65–1.69) | 0.845 |
GG | 39 | 45 | 0.75 (0.43–1.30) | 0.305 |
CG + GG | 123 | 114 | 0.93 (0.60–1.44) | 0.744 |
P. knowlesi | ||||
Allele | ||||
C | 144 | 181 | 1.00 (Reference) | - |
G | 124 | 159 | 0.98 (0.71–1.35) | 0.903 |
Genotype | ||||
CC | 43 | 56 | 1.00 (Reference) | - |
CG | 58 | 69 | 1.09 (0.65–1.86) | 0.737 |
GG | 33 | 45 | 0.96 (0.52–1.74) | 0.881 |
CG + GG | 91 | 114 | 1.04 (0.64–1.69) | 0.875 |
P. falciparum | ||||
Allele | ||||
C | 33 | 181 | 1.00 (Reference) | - |
G | 23 | 159 | 0.79 (0.45–1.41) | 0.429 |
Genotype | ||||
CC | 9 | 56 | 1.00 (Reference) | - |
CG | 15 | 69 | 1.35 (0.55–3.32) | 0.510 |
GG | 4 | 45 | 0.55 (0.16–1.91) | 0.350 |
CG + GG | 19 | 114 | 1.04 (0.44–2.44) | 0.934 |
P. vivax | ||||
Allele | ||||
C | 37 | 181 | 1.00 (Reference) | - |
G | 15 | 159 | 0.46 (0.24–0.87) | 0.017 * |
Genotype | ||||
CC | 13 | 56 | 1.00 (Reference) | - |
CG | 11 | 69 | 0.69 (0.29–1.65) | 0.401 |
GG | 2 | 45 | 0.19 (0.04–0.89) | 0.035 * |
CG + GG | 13 | 114 | 0.49 (0.21–1.13) | 0.094 |
SNP | Cases | Controls | OR (95% CI) | p-Value |
---|---|---|---|---|
Overall | ||||
Allele | ||||
C | 205 | 161 | 1.00 (Reference) | - |
T | 171 | 179 | 0.75 (0.56–1.01) | 0.056 |
Genotype | ||||
CC | 62 | 51 | 1.00 (Reference) | - |
CT | 81 | 59 | 1.13 (0.69–1.86) | 0.634 |
TT | 45 | 60 | 0.62 (0.36–1.05) | 0.077 |
CT + TT | 126 | 119 | 0.87 (0.56–1.36) | 0.545 |
P. knowlesi | ||||
Allele | ||||
C | 145 | 161 | 1.00 (Reference) | - |
T | 123 | 179 | 0.76 (0.55–1.05) | 0.099 |
Genotype | ||||
CC | 47 | 51 | 1.00 (Reference) | - |
CT | 51 | 59 | 0.94 (0.54–1.62) | 0.818 |
TT | 36 | 60 | 0.65 (0.37–1.15) | 0.142 |
CT + TT | 87 | 119 | 0.79 (0.49–1.29) | 0.348 |
P. falciparum | ||||
Allele | ||||
C | 30 | 161 | 1.00 (Reference) | - |
T | 26 | 179 | 0.78 (0.44–1.37) | 0.389 |
Genotype | ||||
CC | 9 | 51 | 1.00 (Reference) | - |
CT | 12 | 59 | 1.15 (0.45–2.96) | 0.768 |
TT | 7 | 60 | 0.66 (0.23–1.90) | 0.442 |
CT + TT | 19 | 119 | 0.90 (0.38–2.13) | 0.819 |
P. vivax | ||||
Allele | ||||
C | 30 | 161 | 1.00 (Reference) | - |
T | 22 | 179 | 0.66 (0.37–1.19) | 0.167 |
Genotype | ||||
CC | 6 | 51 | 1.00 (Reference) | - |
CT | 18 | 59 | 2.59 (0.96–7.03) | 0.061 |
TT | 2 | 60 | 0.28 (0.05–1.47) | 0.133 |
CT + TT | 20 | 119 | 1.43 (0.54–3.77) | 0.471 |
SNP | C-158T | G79A | C16G | C-551T |
---|---|---|---|---|
C-158T | 1.000 | 0.402 | 0.477 | |
G79A | 0.001 | 0.238 | 0.657 | |
C16G | 0.012 | 0.000 | 0.698 | |
C-551T | 0.015 | 0.004 | 0.414 |
Haplotype # | Cases | Control | OR (95% CI) | p-Value |
---|---|---|---|---|
CGCC | 0.524 | 0.300 | 2.51 (1.84–3.42) | <0.001 * |
CGCT | 0.035 | 0.174 | 0.17 (0.09–0.31) | <0.001 * |
CGGC | 0.011 | 0.131 | 0.07 (0.03–0.20) | <0.001 * |
CGGT | 0.380 | 0.307 | 1.35 (0.99–1.84) | 0.061 |
TGGT | 0.040 | 0.022 | 1.77 (0.73–4.29) | 0.199 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chong, E.T.J.; Goh, L.P.W.; Yap, H.J.; Yong, E.W.C.; Lee, P.-C. Risk Association, Linkage Disequilibrium, and Haplotype Analyses of β-Like Globin Gene Polymorphisms with Malaria Risk in the Sabah Population of Malaysian Borneo. Genes 2022, 13, 1229. https://doi.org/10.3390/genes13071229
Chong ETJ, Goh LPW, Yap HJ, Yong EWC, Lee P-C. Risk Association, Linkage Disequilibrium, and Haplotype Analyses of β-Like Globin Gene Polymorphisms with Malaria Risk in the Sabah Population of Malaysian Borneo. Genes. 2022; 13(7):1229. https://doi.org/10.3390/genes13071229
Chicago/Turabian StyleChong, Eric Tzyy Jiann, Lucky Poh Wah Goh, Ho Jin Yap, Eric Wei Choong Yong, and Ping-Chin Lee. 2022. "Risk Association, Linkage Disequilibrium, and Haplotype Analyses of β-Like Globin Gene Polymorphisms with Malaria Risk in the Sabah Population of Malaysian Borneo" Genes 13, no. 7: 1229. https://doi.org/10.3390/genes13071229
APA StyleChong, E. T. J., Goh, L. P. W., Yap, H. J., Yong, E. W. C., & Lee, P.-C. (2022). Risk Association, Linkage Disequilibrium, and Haplotype Analyses of β-Like Globin Gene Polymorphisms with Malaria Risk in the Sabah Population of Malaysian Borneo. Genes, 13(7), 1229. https://doi.org/10.3390/genes13071229