How and Why Chromosomes Interact with the Cytoskeleton during Meiosis
Abstract
:1. Introduction
1.1. Homolog Pairing during Meiosis
1.2. Nuclear Envelope Remodeling
1.3. Chromosome–Nuclear Envelope Attachments during Meiosis
1.3.1. Mus musculus (Mouse)
1.3.2. Danio rerio (Zebrafish)
1.3.3. Caenorhabditis elegans
1.3.4. Drosophila melanogaster
1.3.5. Tetrahymena thermophila
1.3.6. Saccharomyces cerevisiae (Budding Yeast)
1.3.7. Schizosaccharomyces pombe (Fission Yeast)
1.3.8. Higher Plants
2. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Parvinen, M.; Söderström, K.-O. Chromosome Rotation and Formation of Synapsis. Nature 1976, 260, 534–535. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.Q.; Chikashige, Y.; Haraguchi, T.; Hiraoka, Y. Oscillatory Nuclear Movement in Fission Yeast Meiotic Prophase Is Driven by Astral Microtubules, as Revealed by Continuous Observation of Chromosomes and Microtubules in Living Cells. J. Cell Sci. 1998, 111, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Christophorou, N.; Rubin, T.; Bonnet, I.; Piolot, T.; Arnaud, M.; Huynh, J.-R. Microtubule-Driven Nuclear Rotations Promote Meiotic Chromosome Dynamics. Nat. Cell Biol. 2015, 17, 1388–1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.-Y.; Horn, H.F.; Stewart, C.L.; Burke, B.; Bolcun-Filas, E.; Schimenti, J.C.; Dresser, M.E.; Pezza, R.J. Mechanism and Regulation of Rapid Telomere Prophase Movements in Mouse Meiotic Chromosomes. Cell Rep. 2015, 11, 551–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zickler, D.; Kleckner, N. The Leptotene-Zygotene Transition of Meiosis. Annu. Rev. Genet. 1998, 32, 619–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zickler, D.; Kleckner, N. Recombination, Pairing, and Synapsis of Homologs during Meiosis. Cold Spring Harb. Perspect. Biol. 2015, 7. [Google Scholar] [CrossRef] [Green Version]
- Scherthan, H. A Bouquet Makes Ends Meet. Nat. Rev. Mol. Cell Biol. 2001, 2, 621–627. [Google Scholar] [CrossRef]
- Hiraoka, Y. Meiotic Telomeres: A Matchmaker for Homologous Chromosomes. Genes Cells Devoted Mol. Cell. Mech. 1998, 3, 405–413. [Google Scholar] [CrossRef]
- Link, J.; Jantsch, V. Meiotic Chromosomes in Motion: A Perspective from Mus musculus and Caenorhabditis elegans. Chromosoma 2019, 128, 317–330. [Google Scholar] [CrossRef] [Green Version]
- Penkner, A.; Tang, L.; Novatchkova, M.; Ladurner, M.; Fridkin, A.; Gruenbaum, Y.; Schweizer, D.; Loidl, J.; Jantsch, V. The Nuclear Envelope Protein Matefin/SUN-1 Is Required for Homologous Pairing in C. Elegans Meiosis. Dev. Cell 2007, 12, 873–885. [Google Scholar] [CrossRef] [Green Version]
- Penkner, A.M.; Fridkin, A.; Gloggnitzer, J.; Baudrimont, A.; Machacek, T.; Woglar, A.; Csaszar, E.; Pasierbek, P.; Ammerer, G.; Gruenbaum, Y.; et al. Meiotic Chromosome Homology Search Involves Modifications of the Nuclear Envelope Protein Matefin/SUN-1. Cell 2009, 139, 920–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, A.; Isaac, B.; Phillips, C.M.; Rillo, R.; Carlton, P.M.; Wynne, D.J.; Kasad, R.A.; Dernburg, A.F. Cytoskeletal Forces Span the Nuclear Envelope to Coordinate Meiotic Chromosome Pairing and Synapsis. Cell 2009, 139, 907–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loidl, J.; Lukaszewicz, A.; Howard-Till, R.A.; Koestler, T. The Tetrahymena Meiotic Chromosome Bouquet Is Organized by Centromeres and Promotes Interhomolog Recombination. J. Cell Sci. 2012, 125, 5873–5880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubin, T.; Macaisne, N.; Huynh, J.-R. Mixing and Matching Chromosomes during Female Meiosis. Cells 2020, 9, 696. [Google Scholar] [CrossRef] [Green Version]
- Hiraoka, Y.; Dernburg, A.F. The SUN Rises on Meiotic Chromosome Dynamics. Dev. Cell 2009, 17, 598–605. [Google Scholar] [CrossRef] [Green Version]
- Ding, D.-Q.; Yamamoto, A.; Haraguchi, T.; Hiraoka, Y. Dynamics of Homologous Chromosome Pairing during Meiotic Prophase in Fission Yeast. Dev. Cell 2004, 6, 329–341. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Xu, R.; Yu, J.; Xu, T.; Zhuang, Y.; Han, M. SUN1 Is Required for Telomere Attachment to Nuclear Envelope and Gametogenesis in Mice. Dev. Cell 2007, 12, 863–872. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-Y.; Conrad, M.N.; Dresser, M.E. Meiotic Chromosome Pairing Is Promoted by Telomere-Led Chromosome Movements Independent of Bouquet Formation. PLoS Genet. 2012, 8, e1002730. [Google Scholar] [CrossRef] [Green Version]
- Marshall, W.F.; Fung, J.C. Modeling Meiotic Chromosome Pairing: Nuclear Envelope Attachment, Telomere-Led Active Random Motion, and Anomalous Diffusion. Phys. Biol. 2016, 13, 026003. [Google Scholar] [CrossRef] [Green Version]
- Corredor, E.; Lukaszewski, A.J.; Pachón, P.; Allen, D.C.; Naranjo, T. Terminal Regions of Wheat Chromosomes Select Their Pairing Partners in Meiosis. Genetics 2007, 177, 699–706. [Google Scholar] [CrossRef] [Green Version]
- Calderón, M.D.C.; Rey, M.-D.; Cabrera, A.; Prieto, P. The Subtelomeric Region Is Important for Chromosome Recognition and Pairing during Meiosis. Sci. Rep. 2014, 4, 6488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blokhina, Y.P.; Nguyen, A.D.; Draper, B.W.; Burgess, S.M. The Telomere Bouquet Is a Hub Where Meiotic Double-Strand Breaks, Synapsis, and Stable Homolog Juxtaposition Are Coordinated in the Zebrafish, Danio Rerio. PLoS Genet. 2019, 15, e1007730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zickler, D. From Early Homologue Recognition to Synaptonemal Complex Formation. Chromosoma 2006, 115, 158–174. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.; Smith, G.R. The Meiotic Bouquet Promotes Homolog Interactions and Restricts Ectopic Recombination in Schizosaccharomyces pombe. Genetics 2006, 174, 167–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chacón, M.R.; Delivani, P.; Tolić, I.M. Meiotic Nuclear Oscillations Are Necessary to Avoid Excessive Chromosome Associations. Cell Rep. 2016, 17, 1632–1645. [Google Scholar] [CrossRef] [Green Version]
- Marshall, W.F.; Fung, J.C. Modeling Meiotic Chromosome Pairing: A Tug of War between Telomere Forces and a Pairing-Based Brownian Ratchet Leads to Increased Pairing Fidelity. Phys. Biol. 2019, 16, 046005. [Google Scholar] [CrossRef] [PubMed]
- Rog, O.; Dernburg, A.F. Direct Visualization Reveals Kinetics of Meiotic Chromosome Synapsis. Cell Rep. 2015, 10, 1639–1645. [Google Scholar] [CrossRef] [Green Version]
- Kosaka, H.; Shinohara, M.; Shinohara, A. Csm4-Dependent Telomere Movement on Nuclear Envelope Promotes Meiotic Recombination. PLoS Genet. 2008, 4, e1000196. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, V.V.; Hochwagen, A. The Meiotic Checkpoint Network: Step-by-Step through Meiotic Prophase. Cold Spring Harb. Perspect. Biol. 2014, 6, a016675. [Google Scholar] [CrossRef]
- Yu, Z.; Kim, Y.; Dernburg, A.F. Meiotic Recombination and the Crossover Assurance Checkpoint in Caenorhabditis elegans. Semin. Cell Dev. Biol. 2016, 54, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Chua, P.R.; Roeder, G.S. Tam1, a Telomere-Associated Meiotic Protein, Functions in Chromosome Synapsis and Crossover Interference. Genes Dev. 1997, 11, 1786–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conrad, M.N.; Dominguez, A.M.; Dresser, M.E. Ndj1p, a Meiotic Telomere Protein Required for Normal Chromosome Synapsis and Segregation in Yeast. Science 1997, 276, 1252–1255. [Google Scholar] [CrossRef] [PubMed]
- Conrad, M.N.; Lee, C.-Y.; Wilkerson, J.L.; Dresser, M.E. MPS3 Mediates Meiotic Bouquet Formation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2007, 104, 8863–8868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conrad, M.N.; Lee, C.-Y.; Chao, G.; Shinohara, M.; Kosaka, H.; Shinohara, A.; Conchello, J.-A.; Dresser, M.E. Rapid Telomere Movement in Meiotic Prophase Is Promoted By NDJ1, MPS3, and CSM4 and Is Modulated by Recombination. Cell 2008, 133, 1175–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cahoon, C.K.; Hawley, R.S. Regulating the Construction and Demolition of the Synaptonemal Complex. Nat. Struct. Mol. Biol. 2016, 23, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Roeder, G.S. Zip3 Provides a Link between Recombination Enzymes and Synaptonemal Complex Proteins. Cell 2000, 102, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Rog, O.; Dernburg, A.F. Chromosome Pairing and Synapsis during Caenorhabditis Elegans Meiosis. Curr. Opin. Cell Biol. 2013, 25, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Christophorou, N.; Rubin, T.; Huynh, J.-R. Synaptonemal Complex Components Promote Centromere Pairing in Pre-Meiotic Germ Cells. PLoS Genet. 2013, 9, e1004012. [Google Scholar] [CrossRef] [Green Version]
- Joyce, E.F.; Apostolopoulos, N.; Beliveau, B.J.; Wu, C.T. Germline Progenitors Escape the Widespread Phenomenon of Homolog Pairing during Drosophila Development. PLoS Genet. 2013, 9, e1004013. [Google Scholar] [CrossRef] [Green Version]
- Dechat, T.; Pfleghaar, K.; Sengupta, K.; Shimi, T.; Shumaker, D.K.; Solimando, L.; Goldman, R.D. Nuclear Lamins: Major Factors in the Structural Organization and Function of the Nucleus and Chromatin. Genes Dev. 2008, 22, 832–853. [Google Scholar] [CrossRef] [Green Version]
- Koreny, L.; Field, M.C. Ancient Eukaryotic Origin and Evolutionary Plasticity of Nuclear Lamina. Genome Biol. Evol. 2016, 8, 2663–2671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batsios, P.; Peter, T.; Baumann, O.; Stick, R.; Meyer, I.; Gräf, R. A Lamin in Lower Eukaryotes? Nucleus 2012, 3, 237–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciska, M.; de la Espina, S.M.D. The Intriguing Plant Nuclear Lamina. Front. Plant Sci. 2014, 5, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zetka, M.; Paouneskou, D.; Jantsch, V. The Nuclear Envelope, a Meiotic Jack-of-All-Trades. Curr. Opin. Cell Biol. 2020, 64, 34–42. [Google Scholar] [CrossRef]
- Lehner, C.F.; Stick, R.; Eppenberger, H.M.; Nigg, E.A. Differential Expression of Nuclear Lamin Proteins during Chicken Development. J. Cell Biol. 1987, 105, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Link, J.; Jahn, D.; Schmitt, J.; Göb, E.; Baar, J.; Ortega, S.; Benavente, R.; Alsheimer, M. The Meiotic Nuclear Lamina Regulates Chromosome Dynamics and Promotes Efficient Homologous Recombination in the Mouse. PLoS Genet. 2013, 9, e1003261. [Google Scholar] [CrossRef]
- Link, J.; Paouneskou, D.; Velkova, M.; Daryabeigi, A.; Laos, T.; Labella, S.; Barroso, C.; Piñol, S.P.; Montoya, A.; Kramer, H.; et al. Transient and Partial Nuclear Lamina Disruption Promotes Chromosome Movement in Early Meiotic Prophase. Dev. Cell 2018, 45, 212–225.e7. [Google Scholar] [CrossRef] [Green Version]
- Paouneskou, D.; Jantsch, V. Meiotic Chromosome Movement: What’s Lamin Got to Do with It? Nucleus 2019, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Razafsky, D.; Hodzic, D. Bringing KASH under the SUN: The Many Faces of Nucleo-Cytoskeletal Connections. J. Cell Biol. 2009, 186, 461–472. [Google Scholar] [CrossRef]
- Varas, J.; Graumann, K.; Osman, K.; Pradillo, M.; Evans, D.E.; Santos, J.L.; Armstrong, S.J. Absence of SUN1 and SUN2 Proteins in Arabidopsis Thaliana Leads to a Delay in Meiotic Progression and Defects in Synapsis and Recombination. Plant J. Cell Mol. Biol. 2015, 81, 329–346. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Ma, L.; Zhang, C.; Du, G.; Shen, Y.; Tang, D.; Li, Y.; Yu, H.; Ma, B.; Cheng, Z. The SUN Domain Proteins OsSUN1 and OsSUN2 Play Critical but Partially Redundant Roles in Meiosis. Plant Physiol. 2020, 183, 1517–1530. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, J.; Benavente, R.; Hodzic, D.; Höög, C.; Stewart, C.L.; Alsheimer, M. Transmembrane Protein Sun2 Is Involved in Tethering Mammalian Meiotic Telomeres to the Nuclear Envelope. Proc. Natl. Acad. Sci. USA 2007, 104, 7426–7431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mejat, A.; Misteli, T. LINC Complexes in Health and Disease. Nucleus 2010, 1, 40–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.L.; Burke, B. LINC Complexes and Nuclear Positioning. Semin. Cell Dev. Biol. 2018, 82, 67–76. [Google Scholar] [CrossRef]
- Chikashige, Y.; Yamane, M.; Okamasa, K.; Tsutsumi, C.; Kojidani, T.; Sato, M.; Haraguchi, T.; Hiraoka, Y. Membrane Proteins Bqt3 and -4 Anchor Telomeres to the Nuclear Envelope to Ensure Chromosomal Bouquet Formation. J. Cell Biol. 2009, 187, 413–427. [Google Scholar] [CrossRef] [Green Version]
- Shibuya, H.; Hernández-Hernández, A.; Morimoto, A.; Negishi, L.; Höög, C.; Watanabe, Y. MAJIN Links Telomeric DNA to the Nuclear Membrane by Exchanging Telomere Cap. Cell 2015, 163, 1252–1266. [Google Scholar] [CrossRef] [Green Version]
- da Cruz, I.; Brochier-Armanet, C.; Benavente, R. The TERB1-TERB2-MAJIN Complex of Mouse Meiotic Telomeres Dates Back to the Common Ancestor of Metazoans. BMC Evol. Biol. 2020, 20, 55. [Google Scholar] [CrossRef]
- Wang, W.; Shi, Z.; Jiao, S.; Chen, C.; Wang, H.; Liu, G.; Wang, Q.; Zhao, Y.; Greene, M.I.; Zhou, Z. Structural Insights into SUN-KASH Complexes across the Nuclear Envelope. Cell Res. 2012, 22, 1440–1452. [Google Scholar] [CrossRef] [Green Version]
- Gurusaran, M.; Davies, O.R. A Molecular Mechanism for LINC Complex Branching by Structurally Diverse SUN-KASH 6:6 Assemblies. eLife 2021, 10. [Google Scholar] [CrossRef]
- Daryabeigi, A.; Woglar, A.; Baudrimont, A.; Silva, N.; Paouneskou, D.; Vesely, C.; Rauter, M.; Penkner, A.; Jantsch, M.; Jantsch, V. Nuclear Envelope Retention of LINC Complexes Is Promoted by SUN-1 Oligomerization in the Caenorhabditis elegans Germ Line. Genetics 2016, 203, 733–748. [Google Scholar] [CrossRef] [Green Version]
- Shibuya, H.; Ishiguro, K.; Watanabe, Y. The TRF1-Binding Protein TERB1 Promotes Chromosome Movement and Telomere Rigidity in Meiosis. Nat. Cell Biol. 2014, 16, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Chikashige, Y.; Tsutsumi, C.; Yamane, M.; Okamasa, K.; Haraguchi, T.; Hiraoka, Y. Meiotic Proteins Bqt1 and Bqt2 Tether Telomeres to Form the Bouquet Arrangement of Chromosomes. Cell 2006, 125, 59–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, C.M.; Wong, C.; Bhalla, N.; Carlton, P.M.; Weiser, P.; Meneely, P.M.; Dernburg, A.F. HIM-8 Binds to the X Chromosome Pairing Center and Mediates Chromosome-Specific Meiotic Synapsis. Cell 2005, 123, 1051–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, C.M.; Dernburg, A.F. A Family of Zinc-Finger Proteins Is Required for Chromosome-Specific Pairing and Synapsis during Meiosis in C. elegans. Dev. Cell 2006, 11, 817–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Arranz, S.; Gardner, J.M.; Yu, Z.; Patel, N.J.; Heldrich, J.; Santos, B.; Carballo, J.A.; Jaspersen, S.L.; Hochwagen, A.; San-Segundo, P.A. SWR1-Independent Association of H2A.Z to the LINC Complex Promotes Meiotic Chromosome Motion. Front. Cell Dev. Biol. 2020, 8, 594092. [Google Scholar] [CrossRef]
- González-Arranz, S.; Cavero, S.; Morillo-Huesca, M.; Andújar, E.; Pérez-Alegre, M.; Prado, F.; San-Segundo, P. Functional Impact of the H2A.Z Histone Variant During Meiosis in Saccharomyces cerevisiae. Genetics 2018, 209, 997–1015. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Kostow, N.; Dernburg, A.F. The Chromosome Axis Mediates Feedback Control of CHK-2 to Ensure Crossover Formation in C. elegans. Dev. Cell 2015, 35, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Labella, S.; Woglar, A.; Jantsch, V.; Zetka, M. Polo Kinases Establish Links between Meiotic Chromosomes and Cytoskeletal Forces Essential for Homolog Pairing. Dev. Cell 2011, 21, 948–958. [Google Scholar] [CrossRef] [Green Version]
- Harper, N.C.; Rillo, R.; Jover-Gil, S.; Assaf, Z.J.; Bhalla, N.; Dernburg, A.F. Pairing Centers Recruit a Polo-like Kinase to Orchestrate Meiotic Chromosome Dynamics in C. elegans. Dev. Cell 2011, 21, 934–947. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, Y.; Chen, J.; Zuo, W.; Fan, Y.; Huang, S.; Liu, Y.; Chen, G.; Li, Q.; Li, J.; et al. The SUN1-SPDYA Interaction Plays an Essential Role in Meiosis Prophase I. Nat. Commun. 2021, 12, 3176. [Google Scholar] [CrossRef]
- Mikolcevic, P.; Isoda, M.; Shibuya, H.; del Barco, I.B.; Igea, A.; Suja, J.A.; Shackleton, S.; Watanabe, Y.; Nebreda, A.R. Essential Role of the Cdk2 Activator RingoA in Meiotic Telomere Tethering to the Nuclear Envelope. Nat. Commun. 2016, 7, 11084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, Z.; Bayazit, M.B.; Liu, H.; Zhang, J.; Busayavalasa, K.; Risal, S.; Shao, J.; Satyanarayana, A.; Coppola, V.; Tessarollo, L.; et al. Speedy A-Cdk2 Binding Mediates Initial Telomere-Nuclear Envelope Attachment during Meiotic Prophase I Independent of Cdk2 Activation. Proc. Natl. Acad. Sci. USA 2017, 114, 592–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moiseeva, V.; Amelina, H.; Collopy, L.C.; Armstrong, C.A.; Pearson, S.R.; Tomita, K. The Telomere Bouquet Facilitates Meiotic Prophase Progression and Exit in Fission Yeast. Cell Discov. 2017, 3, 17041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacKenzie, A.M.; Lacefield, S. CDK Regulation of Meiosis: Lessons from S. cerevisiae and S. pombe. Genes 2020, 11, 723. [Google Scholar] [CrossRef] [PubMed]
- Viera, A.; Alsheimer, M.; Gómez, R.; Berenguer, I.; Ortega, S.; Symonds, C.E.; Santamaría, D.; Benavente, R.; Suja, J.A. CDK2 Regulates Nuclear Envelope Protein Dynamics and Telomere Attachment in Mouse Meiotic Prophase. J. Cell Sci. 2015, 128, 88–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, N.; Talib, S.Z.A.; Singh, P.; Goh, C.M.F.; Liu, K.; Schimenti, J.C.; Kaldis, P. A Novel Function for CDK2 Activity at Meiotic Crossover Sites. PLoS Biol. 2020, 18, e3000903. [Google Scholar] [CrossRef]
- Zhang, L.; Stauffer, W.T.; Ziesel, A.; Wang, J.S.; Yu, Z.; Hollingsworth, N.M.; Dernburg, A.F. Meiotic Cell Cycle Progression Requires Adaptation to a Constitutive DNA Damage Signal. bioRxiv 2021. [Google Scholar] [CrossRef]
- Morimoto, A.; Shibuya, H.; Zhu, X.; Kim, J.; Ishiguro, K.; Han, M.; Watanabe, Y. A Conserved KASH Domain Protein Associates with Telomeres, SUN1, and Dynactin during Mammalian Meiosis. J. Cell Biol. 2012, 198, 165–172. [Google Scholar] [CrossRef]
- Horn, H.F.; Kim, D.I.; Wright, G.D.; Wong, E.S.M.; Stewart, C.L.; Burke, B.; Roux, K.J. A Mammalian KASH Domain Protein Coupling Meiotic Chromosomes to the Cytoskeleton. J. Cell Biol. 2013, 202, 1023–1039. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chen, Y.; Chen, J.; Wang, L.; Nie, L.; Long, J.; Chang, H.; Wu, J.; Huang, C.; Lei, M. The Meiotic TERB1-TERB2-MAJIN Complex Tethers Telomeres to the Nuclear Envelope. Nat. Commun. 2019, 10, 564. [Google Scholar] [CrossRef] [Green Version]
- Viera, A.; Rufas, J.S.; Martínez, I.; Barbero, J.L.; Ortega, S.; Suja, J.A. CDK2 Is Required for Proper Homologous Pairing, Recombination and Sex-Body Formation during Male Mouse Meiosis. J. Cell Sci. 2009, 122, 2149–2159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, K.; Sakai, C.; Kawasaki, T.; Sakai, N. Telomere Distribution Pattern and Synapsis Initiation during Spermatogenesis in Zebrafish. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2014, 243, 1448–1456. [Google Scholar] [CrossRef]
- Elkouby, Y.M.; Jamieson-Lucy, A.; Mullins, M.C. Oocyte Polarization Is Coupled to the Chromosomal Bouquet, a Conserved Polarized Nuclear Configuration in Meiosis. PLoS Biol. 2016, 14, e1002335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mytlis, A.; Elkouby, Y.M. Live and Time-Lapse Imaging of Early Oogenesis and Meiotic Chromosomal Dynamics in Cultured Juvenile Zebrafish Ovaries. Methods Mol. Biol. 2021, 2218, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.M.; Meng, X.; Zhang, L.; Chretien, J.H.; Urnov, F.D.; Dernburg, A.F. Identification of Chromosome Sequence Motifs That Mediate Meiotic Pairing and Synapsis in C. elegans. Nat. Cell Biol. 2009, 11, 934–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacQueen, A.J.; Phillips, C.M.; Bhalla, N.; Weiser, P.; Villeneuve, A.M.; Dernburg, A.F. Chromosome Sites Play Dual Roles to Establish Homologous Synapsis during Meiosis in C. elegans. Cell 2005, 123, 1037–1050. [Google Scholar] [CrossRef] [Green Version]
- Wynne, D.J.; Rog, O.; Carlton, P.M.; Dernburg, A.F. Dynein-Dependent Processive Chromosome Motions Promote Homologous Pairing in C. Elegans Meiosis. J. Cell Biol. 2012, 196, 47–64. [Google Scholar] [CrossRef] [Green Version]
- MacQueen, A.J.; Villeneuve, A.M. Nuclear Reorganization and Homologous Chromosome Pairing during Meiotic Prophase Require C. elegans Chk-2. Genes Dev. 2001, 15, 1674–1687. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ward, J.D.; Cheng, Z.; Dernburg, A.F. The Auxin-Inducible Degradation (AID) System Enables Versatile Conditional Protein Depletion in C. elegans. Development 2015, 142, 4374–4384. [Google Scholar] [CrossRef] [Green Version]
- Takeo, S.; Lake, C.M.; Morais-de-Sá, E.; Sunkel, C.E.; Hawley, R.S. Synaptonemal Complex-Dependent Centromeric Clustering and the Initiation of Synapsis in Drosophila Oocytes. Curr. Biol. 2011, 21, 1845–1851. [Google Scholar] [CrossRef] [Green Version]
- Tanneti, N.S.; Landy, K.; Joyce, E.F.; McKim, K.S. A Pathway for Synapsis Initiation during Zygotene in Drosophila oocytes. Curr. Biol. 2011, 21, 1852–1857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKee, B.D.; Yan, R.; Tsai, J.-H. Meiosis in Male Drosophila. Spermatogenesis 2012, 2, 167–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loidl, J. Tetrahymena Meiosis: Simple yet Ingenious. PLoS Genet. 2021, 17, e1009627. [Google Scholar] [CrossRef]
- Tian, M.; Agreiter, C.; Loidl, J. Spatial Constraints on Chromosomes Are Instrumental to Meiotic Pairing. J. Cell Sci. 2020, 133, jcs.253724. [Google Scholar] [CrossRef]
- Loidl, J.; Mochizuki, K. Tetrahymena Meiotic Nuclear Reorganization Is Induced by a Checkpoint Kinase-Dependent Response to DNA Damage. Mol. Biol. Cell 2009, 20, 2428–2437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mochizuki, K.; Novatchkova, M.; Loidl, J. DNA Double-Strand Breaks, but Not Crossovers, Are Required for the Reorganization of Meiotic Nuclei in Tetrahymena. J. Cell Sci. 2008, 121, 2148–2158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanat, J.J.; Kim, K.P.; Koszul, R.; Zanders, S.; Weiner, B.; Kleckner, N.; Alani, E. Csm4, in Collaboration with Ndj1, Mediates Telomere-Led Chromosome Dynamics and Recombination during Yeast Meiosis. PLoS Genet. 2008, 4, e1000188. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Bisig, C.G.; Conrad, M.M.; Ditamo, Y.; de Almeida, L.P.; Dresser, M.E.; Pezza, R.J. Extranuclear Structural Components That Mediate Dynamic Chromosome Movements in Yeast Meiosis. Curr. Biol. 2020, 30, 1207–1216.e4. [Google Scholar] [CrossRef]
- Fan, J.; Jin, H.; Koch, B.A.; Yu, H.-G. Mps2 Links Csm4 and Mps3 to Form a Telomere-Associated LINC Complex in Budding Yeast. Life Sci. Alliance 2020, 3, e202000824. [Google Scholar] [CrossRef]
- Trelles-Sticken, E.; Dresser, M.E.; Scherthan, H. Meiotic Telomere Protein Ndj1p Is Required for Meiosis-Specific Telomere Distribution, Bouquet Formation and Efficient Homologue Pairing. J. Cell Biol. 2000, 151, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J.P.; Watanabe, Y.; Nurse, P. Fission Yeast Taz1 Protein Is Required for Meiotic Telomere Clustering and Recombination. Nature 1998, 392, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Shimanuki, M.; Miki, F.; Ding, D.Q.; Chikashige, Y.; Hiraoka, Y.; Horio, T.; Niwa, O. A Novel Fission Yeast Gene, Kms1+, Is Required for the Formation of Meiotic Prophase-Specific Nuclear Architecture. Mol. Gen. Genet. 1997, 254, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Chikashige, Y.; Hiraoka, Y. Telomere Binding of the Rap1 Protein Is Required for Meiosis in Fission Yeast. Curr. Biol. 2001, 11, 1618–1623. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, A.; West, R.R.; McIntosh, J.R.; Hiraoka, Y. A Cytoplasmic Dynein Heavy Chain Is Required for Oscillatory Nuclear Movement of Meiotic Prophase and Efficient Meiotic Recombination in Fission Yeast. J. Cell Biol. 1999, 145, 1233–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chikashige, Y.; Ding, D.Q.; Funabiki, H.; Haraguchi, T.; Mashiko, S.; Yanagida, M.; Hiraoka, Y. Telomere-Led Premeiotic Chromosome Movement in Fission Yeast. Science 1994, 264, 270–273. [Google Scholar] [CrossRef]
- Higgins, J.D.; Perry, R.M.; Barakate, A.; Ramsay, L.; Waugh, R.; Halpin, C.; Armstrong, S.J.; Franklin, F.C.H. Spatiotemporal Asymmetry of the Meiotic Program Underlies the Predominantly Distal Distribution of Meiotic Crossovers in Barley. Plant Cell 2012, 24, 4096–4109. [Google Scholar] [CrossRef] [Green Version]
- Murphy, S.P.; Gumber, H.K.; Mao, Y.; Bass, H.W. A Dynamic Meiotic SUN Belt Includes the Zygotene-Stage Telomere Bouquet and Is Disrupted in Chromosome Segregation Mutants of Maize (Zea mays L.). Front. Plant Sci. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.J.; Liu, C.; Dernburg, A.F. How and Why Chromosomes Interact with the Cytoskeleton during Meiosis. Genes 2022, 13, 901. https://doi.org/10.3390/genes13050901
Kim HJ, Liu C, Dernburg AF. How and Why Chromosomes Interact with the Cytoskeleton during Meiosis. Genes. 2022; 13(5):901. https://doi.org/10.3390/genes13050901
Chicago/Turabian StyleKim, Hyung Jun, Chenshu Liu, and Abby F. Dernburg. 2022. "How and Why Chromosomes Interact with the Cytoskeleton during Meiosis" Genes 13, no. 5: 901. https://doi.org/10.3390/genes13050901
APA StyleKim, H. J., Liu, C., & Dernburg, A. F. (2022). How and Why Chromosomes Interact with the Cytoskeleton during Meiosis. Genes, 13(5), 901. https://doi.org/10.3390/genes13050901