Class I MHC Polymorphisms Associated with Type 2 Diabetes in the Mexican Population
Abstract
1. Introduction
2. Materials and Methods
2.1. Exploration of the SIGMA Database
2.1.1. Diabetes in Mexico Study (DMS)
2.1.2. Mexico City Diabetes Study (MCDS)
2.1.3. Multiethnic Cohort (MEC)
2.1.4. UNAM/INCMNSZ Diabetes Study (UIDS)
2.2. Analysis and Documentation of Variants Found
2.3. IPD-IMGT/HLA Analysis
2.4. Comparison with GEO Dataset
3. Results
3.1. HLA Found Variants
3.2. HLA-A*03:01:01:01 Allele
3.3. HLA-C*01:02:01:01 Allele
3.4. HLA-C*01:02:01:01 and HLA-C*01:02:01:01 Allelic Frequencies
3.5. Differential HLA-A and HLA-C Expression Using GEO
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2009, 32, S62–S67. [Google Scholar] [CrossRef] [PubMed]
- Ali, O. Genetics of type 2 diabetes. World J. Diabetes 2013, 4, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.B.; Groop, L. Genetics of type 2 diabetes-pitfalls and possibilities. Genes 2015, 6, 87–123. [Google Scholar] [CrossRef] [PubMed]
- DiMeglio, L.A.; Evans-Molina, C.; Oram, R.A. Type 1 diabetes. Lancet 2018, 391, 2449–2462. [Google Scholar] [CrossRef]
- U.K. Prospective Diabetes Study Group. Prospective Diabetes Study 16: Overview of 6 Years’ Therapy of Type II Diabetes: A Progressive Disease. Diabetes 1995, 44, 1249–1258. [Google Scholar] [CrossRef]
- Levy, J.; Atkinson, A.B.; Bell, P.M.; McCance, D.R.; Hadden, D.R. β-cell deterioration determines the onset and rate of progression of secondary dietary failure in Type 2 diabetes mellitus: The 10-year follow-up of the Belfast Diet Study. Diabet. Med. 1998, 15, 290–296. [Google Scholar] [CrossRef]
- Kahn, S.E.; Haffner, S.M.; Heise, M.A.; Herman, W.H.; Hotoan, R.R.; Jones, N.P.; Kravitz, B.G.; Lachin, J.M.; O’Neill, M.C.; Zinman, B.; et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med. 2006, 355, 2427–2443. [Google Scholar] [CrossRef]
- Grant, S.F.A. The TCF7L2 Locus: A Genetic Window Into the Pathogenesis of Type 1 and Type 2 Diabetes. Diabetes Care 2019, 42, 1624–1629. [Google Scholar] [CrossRef]
- Moin, A.S.M.; Butler, A.E. Alterations in β Cell Identity in Type 1 and Type 2 Diabetes. Curr. Diabetes Rep. 2019, 19, 83. [Google Scholar] [CrossRef]
- Wiebe, J.C.; Wägner, A.M.; Novoa Mogollón, F.J. Genética de la diabetes mellitus. Nefrología 2011, 2, 111–119. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. T Cells and MHC Proteins. In Book Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002. Available online: https://www.ncbi.nlm.nih.gov/books/NBK26926/ (accessed on 15 March 2021).
- Clement, C.C.; Nanaware, P.P.; Yamazaki, T.; Negroni, M.P.; Ramesh, K.; Morozova, K.; Thangaswamy, S.; Graves, A.; Kim, H.J.; Li, T.W.; et al. Pleiotropic consequences of metabolic stress for the major histocompatibility complex class II molecule antigen processing and presentation machinery. Immunity 2021, 54, 721–736. [Google Scholar] [CrossRef] [PubMed]
- Perez-Luque, E.; Alaez, C.; Malacara, J.M.; Garay, M.E.; Fajardo, M.E.; Nava, L.E.; Gorodezky, C. Protective effect of DRB1 locus against type 2 diabetes mellitus in Mexican Mestizos. Hum. Immunol. 2003, 64, 110–118. [Google Scholar] [CrossRef]
- Tipu, H.N.; Ahmed, T.A.; Bashir, M.M. Human leukocyte antigen class II susceptibility conferring alleles among non-insulin dependent diabetes mellitus patients. J. Coll. Physicians Surg. Pak. 2011, 21, 26–29. [Google Scholar] [PubMed]
- Rich, S.S.; French, L.R.; Sprafka, J.M.; Clements, J.P.; Goetz, F.C. HLA-associated susceptibility to type 2 (non-insulin-dependent) diabetes mellitus: The Wadena City Health Study. Diabetologia 1993, 36, 234–238. [Google Scholar] [CrossRef]
- Groop, L.; Koskimies, S.; Pelkonen, R.; Tolppanen, E.M. Increased frequency of HLA-Cw4 in type 2 diabetes. Acta Endocrinol. 1983, 104, 475–478. [Google Scholar] [CrossRef]
- Jeck, W.R.; Siebold, A.P.; Sharpless, N.E. Review: A meta-analysis of GWAS and age-associated diseases. Aging Cell 2012, 11, 727–731. [Google Scholar] [CrossRef]
- Torres-García, D.; Barquera, R.; Zúñiga, J. Receptores de células NK (KIR): Estructura, función y relevancia en la susceptibilidad de enfermedades. Rev. Inst. Nal. Enf. Resp. Mex. 2008, 21, 57–65. [Google Scholar]
- Shapiro, M.R.; Thirawatananond, P.; Peters, L.; Sharp, R.C.; Ogundare, S.; Posgai, A.L.; Perry, D.J.; Brusko, T.M. De-coding genetic risk variants in type 1 diabetes. Immunol. Cell Biol. 2021, 99, 496–508. [Google Scholar] [CrossRef]
- Sharma, C.; Ali, B.R.; Osman, W.; Afandi, B.; Aburawi, E.H.; Beshyah, S.A.; Al-Mahayri, Z.; Al-Rifai, R.H.; Al Yafei, Z.; ElGhazali, G.; et al. Association of variants in PTPN22, CTLA-4, IL2-RA, and INS genes with type 1 diabetes in Emiratis. Ann. Hum. Genet. 2021, 85, 48–57. [Google Scholar] [CrossRef]
- Valta, M.; Gazali, A.M.; Viisanen, T.; Ihantola, E.L.; Ekman, I.; Toppari, J.; Knip, M.; Veijola, R.; Ilonen, J.; Lempainen, J.; et al. Type 1 diabetes linked PTPN22 gene polymorphism is associated with the frequency of circulating regulatory T cells. Eur. J. Immunol. 2020, 50, 581–588. [Google Scholar] [CrossRef]
- Bhatia, K.; Patel, M.; Gorogo, M. Type 2 (non-insulin-dependent) diabetes mellitus and HLA antigens in Papua New Guinea. Diabetologia 1984, 27, 370–372. [Google Scholar] [CrossRef] [PubMed]
- Tuomilehto-Wolf, E.; Tuomilehto, J.; Hitman, G.A.; Nissinen, A.; Stengård, J.; Pekkanen, J.; Kivinen, P.; Kaarsalo, E.; Karvonen, M.J. Genetic susceptibility to non-insulin dependent diabetes mellitus and glucose intolerance are located in HLA region. BMJ 1993, 307, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Diamantopoulos, E.J.; Andreadis, E.A.; Kakou, M.G.; Vassilopoulos, C.V.; Vlachonikolis, I.G.; Gianna-Kopoulos, N.A.; Tarassi, K.E.; Papasteriades, C.A.; Nicolaides, A.N. Association of the HLA antigens with early atheromatosis in subjects with type 2 diabetes mellitus. Int. Angiol. 2002, 21, 379–383. [Google Scholar] [PubMed]
- Imura, H.; Kuzuya, H.; Seino, Y. MHC class II antigen and other genes in NIDDM. Nihon Rinsho 1991, 49, 531–536. [Google Scholar] [PubMed]
- Banerji, M.A.; Norin, A.J.; Chaiken, R.L.; Lebovitz, H.E. HLA-DQ associations distinguish insulin-resistant and insulin-sensitive variants of NIDDM in black Americans. Diabetes Care 1993, 16, 429–433. [Google Scholar] [CrossRef]
- Romano-Carratelli, C.; Galdiero, M.; Bentivoglio, C.; Nuzzo, I.; Cozzolino, D.; Torella, R. HLA class II antigens and interleukin-1 in patients affected by type-II diabetes mellitus and hyperlipemia. J. Med. 1993, 24, 28–34. [Google Scholar]
- Pandey, J.P.; Zamani, M.; Cassiman, J.-J. Epistatic effects of genes encoding tumor necrosis factor-α, immunoglobulin allotypes, and HLA antigens on susceptibility to non-insulin-dependent (type 2) diabetes mellitus. Immunogenetics 1999, 49, 860–864. [Google Scholar] [CrossRef]
- Motala, A.A.; Busson, M.; Al-Harbi, E.M.; Khuzam, M.A.A.; Al-Omari, E.M.D.; Arekat, M.R.; Almawi, W.Y. Susceptible and protective human leukocyte antigen class II alleles and haplotypes in bahraini type 2 (non-insulin-dependent) diabetes mellitus patients. Clin. Diagn. Lab. Immunol. 2005, 12, 213–217. [Google Scholar] [CrossRef]
- Jacobi, T.; Massier, L.; Klöting, N.; Horn, K.; Schuch, A.; Ahnert, P.; Engel, C.; Löffler, M.; Burkhardt, R.; Thiery, J.; et al. HLA Class II Allele Analyses Implicate Common Genetic Components in Type 1 and Non-Insulin-Treated Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2020, 105, e245–e254. [Google Scholar] [CrossRef]
- Chinniah, R.; Sevak, V.; Pandi, S.; Ravi, P.M.; Vijayan, M.; Kannan, A.; Karuppiah, B. HLA-DRB1 genes and the expression dynamics of HLA CIITA determine the susceptibility to T2DM. Immunogenetics 2021, 73, 291–305. [Google Scholar] [CrossRef]
- Shin, S.; Hyun, B.; Lee, A.; Kong, H.; Han, S.; Lee, C.K.; Ha, N.J.; Kim, K. Metformin Suppresses MHC-Restricted Antigen Presentation by Inhibiting Co-Stimulatory Factors and MHC Molecules in APCs. Biomol. Ther. 2013, 21, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.L.; Jacobs, S.B.; Moreno-Macías, H.; Huerta-Chagoya, A.; Churchhouse, C.; Márquez-Luna, C.; García-Ortíz, H.; Gómez-Vázquez, M.J.; Burtt, N.P.; Aguilar-Salinas, C.A.; et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico. Nature 2014, 506, 97. [Google Scholar] [CrossRef] [PubMed]
- Patti, M.E.; Butte, A.J.; Crunkhorn, S.; Cusi, K.; Berria, R.; Kashyap, S.; Miyazaki, Y.; Kohane, I.; Costello, M.; Saccone, R.; et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc. Natl. Acad. Sci. USA 2003, 100, 8466–8471. [Google Scholar] [CrossRef] [PubMed]
- Marselli, L.; Thorne, J.; Dahiya, S.; Sgroi, D.C.; Sharma, A.; Bonner-Weir, S.; Marchetti, P.; Weir, G.C. Gene expression profiles of β-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS ONE 2010, 5, e11499. [Google Scholar] [CrossRef]
- Itariu, B.K.; Stulnig, T.M. Autoimmune aspects of type 2 diabetes mellitus—A mini-review. Gerontology 2014, 60, 189–196. [Google Scholar] [CrossRef]
- Napolitano, G.; Bucci, I.; Giuliani, C.; Massafra, C.; Di Petta, C.; Devangelio, E.; Singer, D.S.; Monaco, F.; Kohn, L.D. High glucose levels increase major histocompatibility complex class I gene expression in thyroid cells and amplify interferon-γ action. Endocrinology 2002, 143, 1008–1017. [Google Scholar] [CrossRef][Green Version]
- Nam, H.W.; Cho, Y.J.; Lim, J.A.; Kim, S.J.; Kim, H.; Sim, S.Y.; Lim, D.G. Functional status of immune cells in patients with long-lasting type 2 diabetes mellitus. Clin. Exp. Immunol. 2018, 194, 125–136. [Google Scholar] [CrossRef]
- Sarikonda, G.; Pettus, J.; Phatak, S.; Sachithanantham, S.; Miller, J.F.; Wesley, J.D.; Cadag, E.; Chae, J.; Ganesan, L.; Mallios, R.; et al. CD8 T-cell reactivity to islet antigens is unique to type 1 while CD4 T-cell reactivity exists in both type 1 and type 2 diabetes. J. Autoimmun. 2014, 50, 77–82. [Google Scholar] [CrossRef]
- Nakamura, M.; Nishida, W.; Yamada, Y.; Chujo, D.; Watanabe, Y.; Imagawa, A.; Hanafusa, T.; Kawasaki, E.; Onuma, H.; Osawa, H.; et al. Insulin administration may trigger pancreatic β-cell destruction in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 2008, 79, 220–229. [Google Scholar] [CrossRef]
- Cucak, H.; Grunnet, L.G.; Rosendahl, A. Accumulation of M1-like macrophages in type 2 diabetic islets is followed by a systemic shift in macrophage polarization. J. Leukoc. Biol. 2014, 95, 149–160. [Google Scholar] [CrossRef]
- Dittmer, I.; Woodfield, G.; Simpson, I. Non-insulin-dependent diabetes mellitus in New Zealand Maori: A relationship with Class I but not Class II histocompatibility locus antigens. N. Z. Med. J. 1998, 111, 294–296. [Google Scholar] [PubMed]
- Berzina, L.; Shtauvere-Brameus, A.; Rumba, I.; Sanjeevi, C.B. Microsatellite allele A5.1 of MHC class I chain-related gene A is associated with latent autoimmune diabetes in adults in Latvia. Ann. N. Y. Acad. Sci. 2002, 958, 353–356. [Google Scholar] [CrossRef]
- Sanjeevi, C.B.; Kanungo, A.; Berzina, L.; Shtauvere-Brameus, A.; Ghaderi, M.; Samal, K.C. MHC class I chain-related gene alleles distinguish malnutrition-modulated diabetes, insulin-dependent diabetes, and non-insulin-dependent diabetes mellitus patients from eastern India. Ann. N. Y. Acad. Sci. 2002, 958, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Pozzilli, P.; Pieralice, S. Latent Autoimmune Diabetes in Adults: Current Status and New Horizons. Endocrinol. Metab. 2018, 33, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Acton, R.T.; Roseman, J.M.; Bell, D.S.; Goldenberg, R.L.; Tseng, M.L.; Vanichanan, C.; Harman, L.A.; Go, R.C. Genes within the major histocompatibility complex predict NIDDM in African-American women in Alabama. Diabetes Care 1994, 17, 1491–1494. [Google Scholar] [CrossRef]
- Groop, L.; Groop, P.H.; Koskimies, S. Relationship between B-cell function and HLA antigens in patients with type 2 (non-insulin-dependent) diabetes. Diabetologia 1986, 29, 757–760. [Google Scholar] [CrossRef]
- Jabbar, A.A.; Mezaal, T.J.; Dawood, F.H. Association of HLA antigens with diabetes mellitus in an Iraqi population. Dis. Markers 1989, 7, 79–85. [Google Scholar]
- Li, H.; Lindholm, E.; Almgren, P.; Gustafsson, å.; Forsblom, C.; Groop, L.; Tuomi, T. Possible Human Leukocyte Antigen-Mediated Genetic Interaction between Type 1 and Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2001, 86, 574–582. [Google Scholar] [CrossRef]
- Patel, K.M. The Association of Human Leukocyte Antigen (HLA) Alleles and Type 2 Diabetes Mellitus (T2DM) among Mexican Americans (MA). ETD Collection University of Texas at El Paso. AAI3390623. Doctor Dissertation, ProQuest Dissertations Publishing, Ann Arbor, MI, USA, 2009. Available online: https://scholarworks.utep.edu/dissertations/AAI3390623 (accessed on 30 October 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza-Ramírez, P.; López-Olaiz, M.A.; Morales-Fernández, A.L.; Flores-Echiveste, M.I.; de Jesus Casillas-Navarro, A.; Pérez-Rodríguez, M.A.; de Jesús Orozco-Luna, F.; Cortés-Romero, C.; Zuñiga, L.Y.; Sanchez Parada, M.G.; et al. Class I MHC Polymorphisms Associated with Type 2 Diabetes in the Mexican Population. Genes 2022, 13, 772. https://doi.org/10.3390/genes13050772
Mendoza-Ramírez P, López-Olaiz MA, Morales-Fernández AL, Flores-Echiveste MI, de Jesus Casillas-Navarro A, Pérez-Rodríguez MA, de Jesús Orozco-Luna F, Cortés-Romero C, Zuñiga LY, Sanchez Parada MG, et al. Class I MHC Polymorphisms Associated with Type 2 Diabetes in the Mexican Population. Genes. 2022; 13(5):772. https://doi.org/10.3390/genes13050772
Chicago/Turabian StyleMendoza-Ramírez, Paola, Mildred Alejandra López-Olaiz, Adriana Lizeth Morales-Fernández, María Isabel Flores-Echiveste, Antonio de Jesus Casillas-Navarro, Marco Andrés Pérez-Rodríguez, Felipe de Jesús Orozco-Luna, Celso Cortés-Romero, Laura Yareni Zuñiga, María Guadalupe Sanchez Parada, and et al. 2022. "Class I MHC Polymorphisms Associated with Type 2 Diabetes in the Mexican Population" Genes 13, no. 5: 772. https://doi.org/10.3390/genes13050772
APA StyleMendoza-Ramírez, P., López-Olaiz, M. A., Morales-Fernández, A. L., Flores-Echiveste, M. I., de Jesus Casillas-Navarro, A., Pérez-Rodríguez, M. A., de Jesús Orozco-Luna, F., Cortés-Romero, C., Zuñiga, L. Y., Sanchez Parada, M. G., Hernandez-Ortega, L. D., Mercado-Sesma, A. R., & Baptista-Rosas, R. C. (2022). Class I MHC Polymorphisms Associated with Type 2 Diabetes in the Mexican Population. Genes, 13(5), 772. https://doi.org/10.3390/genes13050772