Identification and Validation of Reliable Reference Genes for Gene Expression Studies in Koelreuteria paniculata
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Total RNA Isolation and cDNA Synthesis
2.3. Selection of Candidate K. paniculata Genes and Primer Design
2.4. Quantitative Real-Time PCR Analysis
2.5. Reference Gene Validation
2.6. Data Analysis
3. Results
3.1. Expression Profiles of Reference Genes
3.2. GeNorm Analysis
3.3. NormFinder Analysis
3.4. BestKeeper Analysis
3.5. Validation of Selected Reference Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ginzinger, D.G. Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream. Exp. Hematol. 2002, 30, 503–512. [Google Scholar] [CrossRef]
- Ponchel, F.; Toomes, C.; Bransfield, K.; Leong, F.T.; Douglas, S.H.; Field, S.L.; Bell, S.M.; Combaret, V.; Puisieux, A.; Mighell, A.J.; et al. Real-time PCR based on SYBR-Green I fluorescence: An alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnol. 2003, 3, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, L.C.; Wang, F.; Guo, X.; Lu, S.; Qiu, Z.; Zhao, Y.; Zhang, H.; Lin, J. Identification and characterization of small non-coding RNAs from Chinese fir by high throughput sequencing. BMC Plant Biol. 2012, 12, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bustin, S.A.; Benes, V.; Nolan, T.; Pfaffl, M.W. Quantitative real-time RT-PCR—A perspective. J. Mol. Endocrinol. 2005, 34, 597–601. [Google Scholar] [CrossRef] [Green Version]
- Huis, R.; Hawkins, S.; Neutelings, G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol. 2010, 10, 71. [Google Scholar] [CrossRef] [Green Version]
- Dheda, K.; Huggett, J.F.; Chang, J.S.; Kim, L.U.; Bustin, S.A.; Johnson, M.A.; Rook, G.A.; Zumla, A. The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal. Biochem. 2005, 344, 141–143. [Google Scholar] [CrossRef]
- Strube, C.; Buschbaum, S.; Wolken, S.; Schnieder, T. Evaluation of reference genes for quantitative real-time PCR to investigate protein disulfide isomerase transcription pattern in the bovine lungworm Dictyocaulus viviparus. Gene 2008, 425, 36–43. [Google Scholar] [CrossRef]
- Yang, C.; Pan, H.; Liu, Y.; Zhou, X. Stably expressed housekeeping genes across developmental stages in the two-spotted spider mite, Tetranychus urticae. PLoS ONE 2015, 10, e0120833. [Google Scholar] [CrossRef]
- Thellin, O.; Zorzi, W.; Lakaye, B.; De Borman, B.; Coumans, B.; Hennen, G.; Grisar, T.; Igout, A.; Heinen, E. Housekeeping genes as internal standards: Use and limits. J. Biotechnol. 1999, 75, 291–295. [Google Scholar] [CrossRef] [Green Version]
- Dheda, K.; Huggett, J.F.; Bustin, S.A.; Johnson, M.A.; Rook, G.; Zumla, A. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. BioTechniques 2004, 37, 112–114. [Google Scholar] [CrossRef] [Green Version]
- Bas, A.; Forsberg, G.; Hammarstrom, S.; Hammarstrom, M.L. Utility of the housekeeping genes 18S rRNA, beta-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes. Scand. J. Immunol. 2004, 59, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Yperman, J.; De Visscher, G.; Holvoet, P.; Flameng, W. Beta-actin cannot be used as a control for gene expression in ovine interstitial cells derived from heart valves. J. Heart Valve Dis. 2004, 13, 848–853. [Google Scholar] [PubMed]
- Sinha, P.; Saxena, R.K.; Singh, V.K.; Krishnamurthy, L.; Varshney, R.K. Selection and Validation of Housekeeping Genes as Reference for Gene Expression Studies in Pigeonpea (Cajanus cajan) under Heat and Salt Stress Conditions. Front. Plant Sci. 2015, 6, 1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicot, N.; Hausman, J.F.; Hoffmann, L.; Evers, D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J. Exp. Bot. 2005, 56, 2907–2914. [Google Scholar] [CrossRef]
- Morse, A.M.; Peterson, D.G.; Islam-Faridi, M.N.; Smith, K.E.; Magbanua, Z.; Garcia, S.A.; Kubisiak, T.L.; Amerson, H.V.; Carlson, J.E.; Nelson, C.D.; et al. Evolution of genome size and complexity in Pinus. PLoS ONE 2009, 4, e4332. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Ling, H.; Wu, Q.; Xu, L.; Que, Y. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci. Rep. 2014, 4, 7042. [Google Scholar] [CrossRef] [Green Version]
- Podevin, N.; Krauss, A.; Henry, I.; Swennen, R.; Remy, S. Selection and validation of reference genes for quantitative RT-PCR expression studies of the non-model crop Musa. Mol. Breeding. 2012, 30, 1237–1252. [Google Scholar] [CrossRef] [Green Version]
- Guenin, S.; Mauriat, M.; Pelloux, J.; Van Wuytswinkel, O.; Bellini, C.; Gutierrez, L. Normalization of qRT-PCR data: The necessity of adopting a systematic, experimental conditions-specific, validation of references. J. Exp. Bot. 2009, 60, 487–493. [Google Scholar] [CrossRef] [Green Version]
- Bao, W.; Qu, Y.; Shan, X.; Wan, Y. Screening and Validation of Housekeeping Genes of the Root and Cotyledon of Cunninghamia lanceolata under Abiotic Stresses by Using Quantitative Real-Time PCR. Int. J. Mol. Sci. 2016, 17, 1198. [Google Scholar] [CrossRef] [Green Version]
- Paolacci, A.R.; Tanzarella, O.A.; Porceddu, E.; Ciaffi, M. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol. Biol. 2009, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Exposito-Rodriguez, M.; Borges, A.A.; Borges-Perez, A.; Perez, J.A. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol. 2008, 8, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira, L.A.; Breton, M.C.; Bastolla, F.M.; Camargo Sda, S.; Margis, R.; Frazzon, J.; Pasquali, G. Reference genes for the normalization of gene expression in Eucalyptus species. Plant Cell Physiol. 2012, 53, 405–422. [Google Scholar] [CrossRef] [PubMed]
- Czechowski, T.; Stitt, M.; Altmann, T.; Udvardi, M.K.; Scheible, W.R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005, 139, 5–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, M.; Nijhawan, A.; Tyagi, A.K.; Khurana, J.P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 2006, 345, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Miao, H.; Zhao, R.; Han, X.; Zhang, T.; Zhang, H. Identification and testing of reference genes for Sesame gene expression analysis by quantitative real-time PCR. Planta 2013, 237, 873–889. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Li, X.; Chen, W.; Chen, J.; Lu, W.; Chen, L.; Fu, D. Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PLoS ONE 2012, 7, e44405. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, RESEARCH0034. [Google Scholar] [CrossRef] [Green Version]
- Andersen, C.L.; Jensen, J.L.; Orntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [Green Version]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Yang, X.; Yang, X.; Guo, T.; Gao, K.; Zhao, T.; Chen, Z.; An, X. High-Efficiency Somatic Embryogenesis from Seedlings of Koelreuteria paniculata Laxm. Forests 2018, 9, 769. [Google Scholar] [CrossRef] [Green Version]
- Brunner, A.M.; Yakovlev, I.A.; Strauss, S.H. Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol. 2004, 4, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radonic, A.; Thulke, S.; Mackay, I.M.; Landt, O.; Siegert, W.; Nitsche, A. Guideline to reference gene selection for quantitative real-time PCR. Biochem. Biophys. Res. Commun. 2004, 313, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Wang, H.; Shao, C.; Shao, H. Reference Gene Selection for qPCR Normalization of Kosteletzkya virginica under Salt Stress. BioMed Res. Int. 2015, 2015, 823806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Xiang, W.; Ma, Y.; Lei, P.; Tian, D.; Deng, X.; Yan, W.; Fang, X. Growth and heavy metal accumulation of Koelreuteria paniculata seedlings and their potential for restoring manganese mine wastelands in Hunan, China. Int. J. Environ. Res. Public Health 2015, 12, 1726–1744. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, A.E.; El-Hela, A.A.; Mohammad, A.I.; Cutler, S.J.; Ross, S.A. New triterpenoidal saponins from Koelreuteria paniculata. Phytochem. Lett. 2016, 17, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Qu, Q.H.; Zhang, L.; Bao, H.; Zhang, J.H.; You, X.J.; Wang, J.X. Chemical constituents of flavonoids from flowers of Koelreuteria paniculata. J. Chin. Med. Mater. 2011, 34, 1716–1719. [Google Scholar]
- Lei, H.M.; Li, Q.; Bi, W.; Bai, D.; Lin, W.H. A new saponin from Koelreuteria paniculata. Acta Pharm. Sin. 2007, 42, 171–173. [Google Scholar]
- Huggett, J.; Dheda, K.; Bustin, S.; Zumla, A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005, 6, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Hu, R.; Fan, C.; Li, H.; Zhang, Q.; Fu, Y.F. Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol. Biol. 2009, 10, 93. [Google Scholar] [CrossRef] [Green Version]
- Tong, Z.; Gao, Z.; Wang, F.; Zhou, J.; Zhang, Z. Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol. Biol. 2009, 10, 71. [Google Scholar] [CrossRef] [Green Version]
- Reid, K.E.; Olsson, N.; Schlosser, J.; Peng, F.; Lund, S.T. An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol. 2006, 6, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Jiang, L.; Xia, Q. Selection of reference genes for analysis of stress-responsive genes after challenge with viruses and temperature changes in the silkworm Bombyx mori. Mol. Genet. Genom. 2016, 291, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Solanas, M.; Moral, R.; Escrich, E. Unsuitability of using ribosomal RNA as loading control for Northern blot analyses related to the imbalance between messenger and ribosomal RNA content in rat mammary tumors. Anal. Biochem. 2001, 288, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Jian, B.; Liu, B.; Bi, Y.; Hou, W.; Wu, C.; Han, T. Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol. Biol. 2008, 9, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name | K. paniculata Transcriptome ID | Arabidopsis Homolog Locus | Arabidopsis Locus Description | Function |
---|---|---|---|---|
ACT | comp34058_c3_seq1 | AT3G12110 | ACT11 | Encodes an actin that is expressed predominantly during reproductive development |
EF1α | comp39196_c0_seq3 | AT5G60390 | EF1ALPHA | GTP binding Elongation factor Tu family protein |
GAPDH | comp35115_c0_seq2 | AT1G79530 | Glyceraldehyde-3-phosphate dehydrogenase | Encodes one of the chloroplast/plastid localized GAPDH isoforms |
UBQ | comp39429_c1_seq8 | AT2G47110 | UBQ6 | polyubiquitin gene the mRNA is cell-to-cell mobile |
CYP2 | comp31930_c0_seq1 | AT2G38730 | Cyclophilin | Cyclophilin-like peptidyl-prolyl cis-trans isomerase family protein |
RPL13 | comp30755_c0_seq1 | AT3G07110 | 60S ribosomal protein L13 | Ribosomal protein L13 family protein |
PLA2 | comp31360_c0_seq4 | AT1G06800 | PHOSPHOLIPASE A I γ 1 | Encodes a lipase that hydrolyzes phosphatidylcholine, glycolipids as well as triacylglycerols |
RP II | comp34901_c0_seq1 | AT3G22320 | RNA polymerase subunit | Non-catalytic subunit common to DNA-dependent RNA polymerases I, II, III and IV |
Name | Forward Primer Sequence [5′–3′] | Reverse Primer Sequence [5′–3′] | Amplicon Size (bp) | Product Tm (°C) | RT-qPCR Efficiency |
---|---|---|---|---|---|
ACT | ATCAGCAATGCCAGGGAACATA | TCGAGAAGAGCTATGAGTTGCC | 227 | 83.4 | 1.10 |
EF1α | AGCCCTCACTATCAGAAACAGC | GTTAAGATGGTTCCGACAAAGC | 214 | 80.6 | 1.07 |
GAPDH | AGAGAAACTGACGGGCTATCAA | ATGAAGCTTGTGTCGTGGTATG | 209 | 82.2 | 0.94 |
UBQ | ACGGGGTTTTACACTATGAACG | TCGGATAACCTCTTCCAACAGT | 214 | 80.6 | 0.90 |
CYP2 | TCGAAGAATACGATTGGGTTTT | TCAACGAATCCGTTACAAACAC | 193 | 83.8 | 0.79 |
RPL13 | GACCCTCTAGGGAACGATTCTT | CTCGTCAGAAGAAAGCTGTGAA | 216 | 83.0 | 1.00 |
PLA2 | AAATTAACGAGGACACCAATGC | GGGTATGGATATGGCGATCTTA | 212 | 79.0 | 0.95 |
RP II | CAACTGTGTTTCCTTCACCGTA | TGGTGGTTCAACAGAATTTGAC | 200 | 81.2 | 1.07 |
Ranking Order | All Samples | Plant Tissues | Embryo Developmental Stages | |||||||
---|---|---|---|---|---|---|---|---|---|---|
No Subgroups | 2 Subgroups | 6 Subgroups | ||||||||
Gene | Stab. | Gene | Stab. | Gene | Stab. | Gene | Stab. | Gene | Stab. | |
1 | ACT | 0.023 | PLA2 | 0.015 | PLA2 | 0.040 | GAPDH | 0.018 | PLA2 | 0.035 |
2 | PLA2 | 0.026 | GAPDH | 0.019 | ACT | 0.040 | ACT | 0.032 | ACT | 0.042 |
3 | GAPDH | 0.035 | ACT | 0.022 | GAPDH | 0.042 | PLA2 | 0.044 | CYP2 | 0.056 |
4 | RP II | 0.062 | UBQ | 0.039 | RP II | 0.068 | RP II | 0.058 | GAPDH | 0.062 |
5 | CYP2 | 0.082 | RP II | 0.040 | UBQ | 0.083 | EF1α | 0.060 | RP II | 0.068 |
6 | UBQ | 0.085 | EF1α | 0.046 | CYP2 | 0.083 | CYP2 | 0.078 | UBQ | 0.069 |
7 | EF1α | 0.104 | CYP2 | 0.052 | EF1α | 0.089 | UBQ | 0.097 | RPL13 | 0.081 |
8 | RPL13 | 0.151 | RPL13 | 0.063 | RPL13 | 0.122 | RPL13 | 0.162 | EF1α | 0.107 |
Ranking Order | All Samples | Embryo Developmental Stages | Plant Tissues | |||
---|---|---|---|---|---|---|
CV | r | CV | r | CV | r | |
1 | UBQ | ACT | CYP2 | PLA2 | UBQ | ACT |
2 | PLA2 | RPL13 | UBQ | RPL13 | RP II | GAPDH |
3 | CYP2 | PLA2 | PLA2 | CYP2 | PLA2 | RPL13 |
4 | RP II | GAPDH | ACT | ACT | CYP2 | EF1α |
5 | ACT | RP II | RP II | GAPDH | GAPDH | PLA2 |
6 | GAPDH | EF1α | GAPDH | RP II | ACT | RP II |
7 | EF1α | CYP2 | EF1α | EF1α | EF1α | CYP2 |
8 | RPL13 | UBQ | RPL13 | UBQ | RPL13 | UBQ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, K.; Khan, W.U.; Li, J.; Huang, S.; Yang, X.; Guo, T.; Guo, B.; Wu, R.; An, X. Identification and Validation of Reliable Reference Genes for Gene Expression Studies in Koelreuteria paniculata. Genes 2022, 13, 714. https://doi.org/10.3390/genes13050714
Gao K, Khan WU, Li J, Huang S, Yang X, Guo T, Guo B, Wu R, An X. Identification and Validation of Reliable Reference Genes for Gene Expression Studies in Koelreuteria paniculata. Genes. 2022; 13(5):714. https://doi.org/10.3390/genes13050714
Chicago/Turabian StyleGao, Kai, Wasif Ullah Khan, Juan Li, Sai Huang, Xiong Yang, Ting Guo, Bin Guo, Ruqian Wu, and Xinmin An. 2022. "Identification and Validation of Reliable Reference Genes for Gene Expression Studies in Koelreuteria paniculata" Genes 13, no. 5: 714. https://doi.org/10.3390/genes13050714
APA StyleGao, K., Khan, W. U., Li, J., Huang, S., Yang, X., Guo, T., Guo, B., Wu, R., & An, X. (2022). Identification and Validation of Reliable Reference Genes for Gene Expression Studies in Koelreuteria paniculata. Genes, 13(5), 714. https://doi.org/10.3390/genes13050714