Role of the Mediator Complex and MicroRNAs in Breast Cancer Etiology
Abstract
:1. Introduction
2. Role of miRNA in Breast Cancer
3. Molecular Classification of Breast Cancer
4. Role of Estrogen Receptor aplha in Breast Cancer Development
5. Mediator and Breast Cancer
5.1. MED1–MED24
5.2. MED7
5.3. MED12
5.4. MED15
5.5. MED19
5.6. MED23
5.7. MED27
5.8. MED28
6. Role of MED1 in the Resistance of Breast Cancer to the Endocrine Therapy
7. MED1 Regulation of ER-Dependent Oncogenic miRNA in Breast Cancer
8. MiRNA Regulation of MED Subunits
- hsa-miR-3198-MED7;
- hsa-miR-5692a-MED12;
- hsa-miR-6165-MED15;
- hsa-miR-4282-MED23;
- hsa-miR-8485-MED24;
- hsa-miR-3613-3p-MED28.
9. MiRNA-Based Therapies for Breast Cancer
10. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, Y.; Yu, X.; Hu, S.; Yu, J. A brief review on the mechanisms of miRNA regulation. Genom. Proteom. Bioinform. 2009, 7, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Morales, S.; Gulppi, F.; Gonzalez-Hormazabal, G.; Fernandez-Ramires, R.; Bravo, T.; Reyes, J.M.; Gomez, F.; Waugh, E.; Jara, L. Association of single nucleotide polymorphisms in Pre-miR-27a, Pre-miR-196a2, Pre-miR-423, miR-608 and Pre-miR-618 with breast cancer susceptibility in a South American population. BMC Genet. 2016, 17, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabekkodu, S.P.; Shukla, V.; Varghese, V.K.; Souza, J.D.; Chakrabarty, S.; Satyamoorthy, K. Clustered miRNAs and their role in biological functions and diseases. Biol. Rev. 2018, 93, 1955–1986. [Google Scholar] [CrossRef] [PubMed]
- Stavast, C.J.; Erkeland, S.J. The non-canonical aspects of microRNAs: Many roads to gene regulation. Cells 2019, 8, 1465. [Google Scholar] [CrossRef] [Green Version]
- Kandettu, A.; Radhakrishnan, R.; Chakrabarty, S.; Sriharikrishnaa, S.; Kabekkodu, S.P. The emerging role of miRNA clusters in breast cancer progression. Biochim. Biophys. Acta BBA-Rev. Cancer 2020, 1874, 188413. [Google Scholar] [CrossRef]
- Cantini, L.; Bertoli, G.; Cava, C.; Dubois, T.; Zinovyev, A.; Caselle, M.; Castiglioni, I.; Barillot, E.; Martignetti, L. Identification of microRNA clusters cooperatively acting on epithelial to mesenchymal transition in triple negative breast cancer. Nucleic Acids Res. 2019, 47, 2205–2215. [Google Scholar] [CrossRef] [Green Version]
- Loh, H.-Y.; Normal, B.P.; Lai, K.-S.; Rahman, N.M.A.N.A.; Alitheen, N.B.M.; Osman, M.A. The regulatory role of microRNAs in breast cancer. Int. J. Mol. Sci. 2019, 20, 4940. [Google Scholar] [CrossRef] [Green Version]
- Borchert, G.M.; Lanier, W.; Davidson, B.L. RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol. 2006, 13, 1097–1101. [Google Scholar] [CrossRef]
- Melo, S.A.; Esteller, M. Dysregulation of microRNAs in cancer: Playing with fire. FEBS Lett. 2011, 585, 2087–2099. [Google Scholar] [CrossRef]
- Kabekkodu, S.P.; Shukla, V.; Varghese, V.K.; Adiga, D.; Jishnu, P.V.; Chakrabarty, S.; Satyamoorthy, S. Cluster miRNAs and cancer: Diagnostic, prognostic and therapeutic opportunities. Wiley Interdiscip. Rev. RNA 2020, 11, e1563. [Google Scholar] [CrossRef]
- Mulrane, L.; McGee, S.F.; Gallagher, W.M.; O’Connor, D.P. miRNA dysregulation in breast cancer. Cancer Res. 2013, 73, 6554–6562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cisneros-Soberanis, F.; Andonegui, M.A.; Herrera, L.A. miR-125b-1 is repressed by histone modifications in breast cancer cell lines. Springerplus 2016, 5, 959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsang, J.; Tse, G.M. Molecular classification of breast cancer. Adv. Anat. Pathol. 2020, 27, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Badve, S.; Dabbs, D.J.; Schnitt, S.J.; Baehner, F.L.; Decker, T.; Eusebi, V.; Fox, S.B.; Ichihara, S.; Jacquemier, J.; Lakhani, S.R.; et al. Basal-like and triple-negative breast cancers: A critical review with an emphasis on the implications for pathologists and oncologists. Mod. Pathol. 2011, 24, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elnaby, M.; Alfonse, M.; Roushdy, M. Classification of breast cancer using microarray gene expression data: A survey. J. Biomed. Inform. 2021, 117, 103764. [Google Scholar] [CrossRef]
- Yager, J.D.; Davidson, N.E. Estrogen carcinogenesis in breast cancer. N. Engl. J. Med. 2006, 354, 270–282. [Google Scholar] [CrossRef] [Green Version]
- Wen, C.; Wu, L.; Fu, L.; Wang, B.; Zhou, H. Unifying mechanism in the initiation of breast cancer by metabolism of estrogen. Mol. Med. Rep. 2017, 16, 1001–1006. [Google Scholar] [CrossRef] [Green Version]
- Platet, N.; Cathiard, A.M.; Gleizes, M.; Garcia, M. Estrogens and their receptors in breast cancer progression: A dual role in cancer proliferation and invasion. Crit. Rev. Oncol. Hematol. 2004, 51, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Maynadier, M.; Nirdé, P.; Ramirez, J.-M.; Cathiard, A.M.; Platet, N.; Chambon, M.; Garcia, M. Role of estrogens and their receptors in adhesion and invasiveness of breast cancer cells. In Hormonal Carcinogenesis V; Springer: New York, NY, USA, 2008; pp. 485–491. [Google Scholar]
- Marcotte, R.; Sayad, A.; Brown, K.R.; Sanchez-Garcia, F.; Reimand, J.; Haider, M.; Virtanen, C.; Bradner, J.E.; Bader, G.D.; Mills, G.B.; et al. Functional genomic landscape of human breast cancer drivers, vulnerabilities, and resistance. Cell 2016, 164, 293–309. [Google Scholar] [CrossRef] [Green Version]
- Bjornstrom, L.; Sjoberg, M. Mechanisms of estrogen receptor signaling convergence of genomic and nongenomic actions on target genes. Mol. Endocrinol. 2005, 19, 833–842. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ma, H.; Yao, J. ERα, a Key Target for Cancer Therapy: A Review. OncoTargets Ther. 2020, 13, 2183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulynko, Y.A.; O’malley, B.W. Nuclear receptor coactivators: Structural and functional biochemistry. Biochemistry 2011, 50, 313–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, P.; Wang, Z.; O’malley, B.W. Structural Studies with Coactivators for the Estrogen Receptor. In Estrogen Receptor and Breast Cancer; Humana Press: Cham, Germany, 2019; pp. 71–93. [Google Scholar]
- Hall, J.M.; Mcdonnell, D.P. Coregulators in nuclear estrogen receptor action. Mol. Interv. 2005, 5, 343. [Google Scholar] [CrossRef] [PubMed]
- Katzenellenbogen, B.S. Estrogen receptors: Bioactivities and interactions with cell signaling pathways. Biol. Reprod. 1996, 54, 287–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuentes, N.; Silveyra, P. Estrogen receptor signaling mechanisms. Adv. Protein Chem. Struct. Biol. 2019, 116, 135–170. [Google Scholar] [PubMed]
- Zheng, Y.; Shao, X.; Huang, Y.; Shi, L.; Chen, B.; Wang, X.; Yang, H.; Chen, Z.; Zhang, X. Role of estrogen receptor in breast cancer cell gene expression. Mol. Med. Rep. 2016, 13, 4046–4050. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.T.; Gou, X.; Seker, S.; Ellis, M.J. ESR1 alterations and metastasis in estrogen receptor positive breast cancer. J. Cancer Metastasis Treat. 2019, 5, 38. [Google Scholar] [CrossRef] [Green Version]
- Koboldt, D.C.F.R.; Fulton, R.; McLellan, M.; Schmidt, H.; Kalicki-Veizer, J.; McMichael, J.; Fulton, L.L.; Dooling, D.J.; Ding, L.; Mardis, E.R.; et al. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar]
- Markiewicz, A.; Welnicka-Jaskiewicz, M.; Skokowski, J.; Jaskiewicz, J.; Szade, J.; Jassem, J.; Zaczek, A.J. Prognostic significance of ESR1 amplification and ESR1 PvuII, CYP2C19*2, UGT2B15*2 polymorphisms in breast cancer patients. PLoS ONE 2013, 8, e72219. [Google Scholar] [CrossRef] [Green Version]
- Pentheroudakis, G.; Kotoula, V.; Eleftheraki, A.G.; Tsolaki, E.; Wirtz, R.M.; Kalogeras, K.T.; Batistatou, A.; Bobos, M.; Dimopoulos, M.A.; Timotheadou, E.; et al. Prognostic significance of ESR1 gene amplification, mRNA/protein expression and functional profiles in high-risk early breast cancer: A translational study of the Hellenic Cooperative Oncology Group (HeCOG). PLoS ONE 2013, 8, e70634. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, K.V.; Ejlertsen, B.; Müller, S.; Moller, S.; Rasmussen, B.B.; Balslev, E.; Laenkholm, A.-V.; Christiansen, P.; Mouridsen, H.T. Amplification of ESR1 may predict resistance to adjuvant tamoxifen in postmenopausal patients with hormone receptor positive breast cancer. Breast Cancer Res. Treat. 2011, 127, 345–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomita, S.; Zhang, Z.; Nakano, M.; Ibusuki, M.; Kawazoe, T.; Yamamoto, Y.; Iwase, H. Estrogen receptor α gene ESR1 amplification may predict endocrine therapy responsiveness in breast cancer patients. Cancer Sci. 2009, 100, 1012–1017. [Google Scholar] [CrossRef] [PubMed]
- Weis, K.E.; Ekena, K.; Thomas, J.A.; Lazennec, G.; Katzenellenbogen, B. Constitutively active human estrogen receptors containing amino acid substitutions for tyrosine 537 in the receptor protein. Mol. Endocrinol. 1996, 10, 1388–1398. [Google Scholar] [PubMed] [Green Version]
- Giltnane, J.M.; Hutchinson, K.E.; Stricker, T.P.; Formisano, L.; Young, C.D.; Estrada, M.V.; Nixon, M.J.; Du, L.; Sanchez, V.; Gonzalez Ericsson, P.; et al. Genomic profiling of ER+ breast cancers after short-term estrogen suppression reveals alterations associated with endocrine resistance. Sci. Transl. Med. 2017, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Veeraraghavan, J.; Tan, Y.; Cao, X.; Kim, J.A.; Wang, X.; Chamness, G.C.; Maiti, S.N.; Cooper, L.J.N.; Edwards, D.P.; Contreras, A.; et al. Recurrent ESR1–CCDC170 rearrangements in an aggressive subset of oestrogen receptor-positive breast cancers. Nat. Commun. 2014, 5, 4577. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Shen, D.; Shao, J.; Crowder, R.; Liu, W.; Prat, A.; He, X.; Liu, S.; Hoog, J.; Lu, C.; et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 2013, 4, 1116–1130. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.T.; Gou, X.; Ellis, M.J. ESR1 fusions drive endocrine therapy resistance and metastasis in breast cancer. Mol. Cell. Oncol. 2018, 5, e1526005. [Google Scholar] [CrossRef] [Green Version]
- Tomlins, S.A.; Rhodes, D.R.; Perner, S.; Dhanasekaran, S.M.; Mehra, R.; Sun, X.-W.; Varambally, S.; Cao, X.; Tchinda, J.; Kuefer, R.; et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005, 310, 644–648. [Google Scholar] [CrossRef]
- Soutourina, J. Transcription regulation by the Mediator complex. Nat. Rev. Mol. Cell Biol. 2018, 19, 262–274. [Google Scholar] [CrossRef]
- Abdella, R.; Talyzina, A.; Chen, S.; Inouye, C.; Tijan, R.; He, Y. Structure of the human Mediator-bound transcription preinitiation complex. Science 2021, 372, 52–56. [Google Scholar] [CrossRef]
- Thompson, C.M.; Koleske, A.J.; Chao, D.M.; Young, R.A. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 1993, 73, 1361–1375. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Björklund, S.; Li, Y.; Sayre, M.H.; Kornberg, R.D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 1994, 77, 599–608. [Google Scholar] [CrossRef]
- Chao, D.M.; Gadbois, E.L.; Murray, S.F.; Anderson, S.F.; Sonu, M.S.; Parvin, J.D.; Young, R.A. A mammalian SRB protein associated with an RNA polymerase II holoenzyme. Nature 1996, 380, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, E.; Shiekhattar, R.; Sheldon, M.; Cho, H.; Drapkin, R.; Rickert, P.; Lees, E.; Anderson, C.W.; Linn, S.; Reinberg, D. A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 1996, 381, 86–89. [Google Scholar] [CrossRef]
- Bourbon, H.-M.; Aguilera, A.; Ansari, A.Z.; Asturias, F.J.; Berk, A.J.; Bjorklund, S.; Blackwell, T.K.; Borggrefe, T.; Carey, M.; Carlson, M.; et al. A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II. Mol. Cell 2004, 14, 553–557. [Google Scholar] [CrossRef]
- André, K.M.; Sipos, E.H.; Soutourina, J. Mediator roles going beyond transcription. Trends Genet. 2021, 37, 224–234. [Google Scholar] [CrossRef]
- Sierecki, E. The Mediator complex and the role of protein-protein interactions in the gene regulation machinery. In Seminars in Cell & Developmental Biology; Academic Press: Sydney, Australia, 2020; pp. 20–30. [Google Scholar]
- Schiano, C.; Casamassimi, A.; Rienzo, M.; Nigris, F.; Sommese, L.; Napoli, C. Involvement of Mediator complex in malignancy. Biochim. Biophys. Acta BBA-Rev. Cancer 2014, 1845, 66–83. [Google Scholar] [CrossRef]
- Zhu, Y.; Qi, C.; Jain, S.; Le Beau, M.M.; Espinosa, R.; Atkins, G.B.; Lazar, M.A.; Yeldani, A.V.; Rao, M.S.; Reddy, J.K. Amplification and overexpression of peroxisome proliferatoractivated receptor binding protein (PBP/PPARBP) gene in breast cancer. Proc. Natl. Acad. Sci. USA 1999, 96, 10848–10853. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.K.; Guermah, M.; Yuan, C.-X.; Roeder, R.G. The TRAP/Mediator coactivator complex interacts directly with estrogen receptors α and β through the TRAP220 subunit and directly enhances estrogen receptor function in vitro. Proc. Natl. Acad. Sci. USA 2002, 99, 2642–2647. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Krutchinsky, A.; Fukuda, A.; Chen, W.; Yamamura, S.; Chait, B.T.; Roeder, R.G. MED1/TRAP220 exists predominantly in a TRAP/Mediator subpopulation enriched in RNA polymerase II and is required for ER-mediated transcription. Mol. Cell 2005, 19, 89–100. [Google Scholar] [CrossRef]
- Luoh, S.-W. Amplification and expression of genes from the 17q11~q12 amplicon in breast cancer cells. Cancer Genet. Cytogenet. 2002, 136, 43–47. [Google Scholar] [CrossRef]
- Jacot, W.; Fiche, M.; Zaman, K.; Wolfer, A.; Lamy, P.-J. The HER2 amplicon in breast cancer: Topoisomerase IIA and beyond. Biochim. Biophys. Acta BBA-Rev. Cancer 2013, 1836, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Hu, Q.; Ito, M.; Meyer, S.; Waltz, S.; Khan, S.; Roeder, R.G.; Zhang, X. Key roles for MED1 LxxLL motifs in pubertal mammary gland development and luminal-cell differentiation. Proc. Natl. Acad. Sci. USA 2010, 107, 6765–6770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Leonard, M.; Zhang, Y.; Zhao, D.; Mahmoud, C.; Khan, S.; Wang, J.; Lower, E.; Zhang, X. HER2-driven breast tumorigenesis relies upon interactions of the estrogen receptor with coactivator MED1. Cancer Res. 2018, 78, 422–435. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Leonard, M.; Lou, Z.; Yeo, S.; Bick, G.; Hao, M.; Cai, C.; Charif, M.; Wang, J.; Guan, J.-L.; et al. Functional cooperation between co-amplified genes promotes aggressive phenotypes of HER2-positive breast cancer. Cell Rep. 2021, 34, 108822. [Google Scholar] [CrossRef]
- Hasegawa, N.; Sumitomo, A.; Fujita, A.; Aritome, N.; Mizuta, S.; Matsui, K.; Ishino, R.; Inoue, K.; Uruhama, N.; Nose, J.; et al. Mediator subunits MED1 and MED24 cooperatively contribute to pubertal mammary gland development and growth of breast carcinoma cells. Mol. Cell. Biol. 2012, 32, 1483–1495. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Jiang, P.; Xu, Q.; Zhang, X. Arginine and glutamate-rich 1 (ARGLU1) interacts with mediator subunit 1 (MED1) and is required for estrogen receptor-mediated gene transcription and breast cancer cell growth. J. Biol. Chem. 2011, 286, 17746–17754. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.Y.; Park, J.M.; Gim, B.S.; Han, S.J.; Lee, J.; Kim, Y.-J. Caenorhabditis elegans mediator complexes are required for developmental-specific transcriptional activation. Proc. Natl. Acad. Sci. USA 1999, 96, 14990–14995. [Google Scholar] [CrossRef] [Green Version]
- Joseph, C.; Macnamara, O.; Craze, M.; Russell, R.; Provenzano, E.; Nolan, C.C.; Diez-Rodriguez, M.; Sonbul, S.N.; Aleskandaranay, M.A.; Green, A.R.; et al. Mediator complex (MED) 7: A biomarker associated with good prognosis in invasive breast cancer, especially ER+ luminal subtypes. Br. J. Cancer 2018, 118, 1142–1151. [Google Scholar] [CrossRef] [Green Version]
- Masuda, H.; Zhang, D.; Bartholomeusz, C.; Doihara, H.; Hortobagyi, G.N.; Ueno, N.T. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res. Treat. 2012, 136, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; O’regan, R.; Xu, W. The emerging role of mediator complex subunit 12 in tumorigenesis and response to chemotherapeutics. Cancer 2020, 126, 939–948. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Kulshreshtha, R. Insights into the regulatory role and clinical relevance of mediator subunit, MED12, in human diseases. J. Cell. Physiol. 2021, 236, 3163–3177. [Google Scholar] [CrossRef] [PubMed]
- van de Plassche, S.; de Brouwer, A.P.M. MED12-Related (Neuro) Developmental Disorders: A Question of Causality. Genes 2021, 12, 663. [Google Scholar] [CrossRef] [PubMed]
- Philibert, R.A.; Madan, A. Role of MED12 in transcription and human behavior. Future Med. 2007, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Knuesel, M.T.; Meyer, K.D.; Bernecky, C.; Taatjes, D.J. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev. 2009, 23, 439–451. [Google Scholar] [CrossRef] [Green Version]
- Mcdermott, M.S.J.; Chumanevich, A.; Lim, C.-U.; Liang, J.; Chen, M.; Altilia, S.; Oliver, D.; Rae, J.M.; Shtutman, M.; Kiaris, H.; et al. Inhibition of CDK8 mediator kinase suppresses estrogen dependent transcription and the growth of estrogen receptor positive breast cancer. Oncotarget 2017, 8, 12558. [Google Scholar] [CrossRef] [Green Version]
- Crown, J. CDK8: A new breast cancer target. Oncotarget 2017, 8, 14269. [Google Scholar] [CrossRef]
- Philip, S.; Kumarasiri, M.; Teo, T.; Yu, M.; Wang, S. Cyclin-dependent kinase 8: A new hope in targeted cancer therapy? Miniperspective. J. Med. Chem. 2017, 61, 5073–5092. [Google Scholar] [CrossRef]
- Gao, W.-W.; Xiao, R.-Q.; Zhang, W.-J.; Hu, Y.-R.; Peng, B.-L.; Li, W.-J.; He, Y.-H.; Shen, H.-F.; Ding, J.-C.; Huang, Q.-X. JMJD6 licenses ERα-dependent enhancer and coding gene activation by modulating the recruitment of the CARM1/MED12 co-activator complex. Mol. Cell 2018, 70, 340–357.e8. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zeng, H.; Wang, Q.; Zhao, Z.; Boyer, T.G.; Bian, X.; Xu, W. MED12 methylation by CARM1 sensitizes human breast cancer cells to chemotherapy drugs. Sci. Adv. 2015, 1, e1500463. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Yang, X.; Wang, H.; Ning, Y.; Yan, J.; Chen, Y.-G.; Wang, G. Mediator MED15 modulates transforming growth factor β (TGF β)/Smad signaling and breast cancer cell metastasis. J. Mol. Cell Biol. 2013, 5, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Li, L.-H.; He, J.; Hua, D.; Guo, Z.-J.; Gao, Q. Lentivirus-mediated inhibition of Med19 suppresses growth of breast cancer cells in vitro. Cancer Chemother. Pharmacol. 2011, 68, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Fan, Y.; Liu, B.; Qi, X.; Guo, Z.; Li, L. Med19 promotes breast cancer cell proliferation by regulating CBFA2T3/HEB expression. Breast Cancer 2017, 24, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gao, D.; Fang, K.; Guo, Z.; Li, L. Med19 is targeted by miR-101–3p/miR-422a and promotes breast cancer progression by regulating the EGFR/MEK/ERK signaling pathway. Cancer Lett. 2019, 444, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Zhang, L.; Li, D.; Sun, H. MED23 in endocrinotherapy for breast cancer. Oncol. Lett. 2017, 13, 4679–4684. [Google Scholar] [CrossRef] [Green Version]
- Baselga, J.; Campone, M.; Piccart, M.; Burris, H.A.; Rugo, H.S.; Sahmoud, T.; Noguchi, S.; Gnant, M.; Pritchard, K.I.; Lebrun, F.; et al. Everolimus in postmenopausal hormone-receptor—Positive advanced breast cancer. N. Engl. J. Med. 2012, 366, 520–529. [Google Scholar] [CrossRef] [Green Version]
- DuüRr, K.; Holzschuh, J.; Filippi, A.; Ettl, A.-K.; Ryu, S.; Shepherd, L.T.; Driever, W. Differential roles of transcriptional mediator complex subunits Crsp34/Med27, Crsp150/Med14 and Trap100/Med24 during zebrafish retinal development. Genetics 2006, 174, 693–705. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Ishohanni, P.; Shao, Y.; Graham, B.H.; Hickey, S.E.; Brooks, S.; Suomalainen, A.; Joset, P.; Steindl, K.; Rauch, A.; et al. MED27 Variants Cause Developmental Delay, Dystonia, and Cerebellar Hypoplasia. Ann. Neurol. 2021, 89, 828–833. [Google Scholar] [CrossRef]
- Wang, Y.H.; Huang, J.-H.; Tu, J.-F.; Wu, M.-H. MED27 promotes malignant behavior of cells by affecting Sp1 in breast cancer. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 6802–6808. [Google Scholar]
- Huang, C.-Y.; Hsieh, N.-T.; Li, C.-I.; Weng, Y.-T.; Liu, H.-S.; Lee, M.-F. MED28 Regulates Epithelial–Mesenchymal Transition through NFκB in Human Breast Cancer Cells. J. Cell. Physiol. 2017, 232, 1337–1345. [Google Scholar] [CrossRef]
- Yoon, N.K.; Maresh, E.L.; Elshimali, Y.; Li, A.; Horvath, S.; Seligson, D.B.; Chia, D.; Goodglick, L. Elevated MED28 expression predicts poor outcome in women with breast cancer. BMC Cancer 2010, 10, 335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.-I. MED28 Modulates Cell Cycle Progression in Human Breast Cancer Cells. FASEB J. 2015, 29, 728. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Chou, Y.-H.; Hsieh, N.-T.; Chen, H.-H.; Lee, M.-F. MED28 regulates MEK1-dependent cellular migration in human breast cancer cells. J. Cell. Physiol. 2012, 227, 3820–3827. [Google Scholar] [CrossRef] [PubMed]
- Shou, J.; Massarweh, S.; Osborne, C.K.; Wakeling, A.E.; Ali, S.; Weiss, H.; Schiff, R. Mechanisms of tamoxifen resistance: Increased estrogen receptor-HER2/neu cross-talk in ER/HER2—Positive breast cancer. J. Natl. Cancer Inst. 2004, 96, 926–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, X.; Angelis, C.; Veeraraghavan, J.; Osborne, K.; Schiff, R. Molecular mechanisms of endocrine resistance. In Estrogen Receptor and Breast Cancer; Humana Press: Cham, Germany, 2019; pp. 265–307. [Google Scholar]
- Schettini, F.; Pascual, T.; Conte, B.; Chic, N.; Brasó-Maristany, F.; Galván, P.; Martínez, O.; Adamo, B.; Vidal, M.; Muñoz, M.; et al. HER2-enriched subtype and pathological complete response in HER2-positive breast cancer: A systematic review and meta-analysis. Cancer Treat. Rev. 2020, 84, 101965. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurti, U.; Silverman, J.F. HER2 in breast cancer: A review and update. Adv. Anat. Pathol. 2014, 21, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Alcalá-Corona, S.A.; Espinal-Enríquez, J.; Anda-Jáuregui, G.; Hernández-Lemus, E. The hierarchical modular structure of HER2+ breast cancer network. Front. Physiol. 2018, 9, 1423. [Google Scholar] [CrossRef] [Green Version]
- Osborne, C.K.; Schiff, R. Mechanisms of endocrine resistance in breast cancer. Annu. Rev. Med. 2011, 62, 233–247. [Google Scholar] [CrossRef] [Green Version]
- De Marchi, T.; Foekens, J.A.; Umár, A.; Martens, J.W.M. Endocrine therapy resistance in estrogen receptor (ER)-positive breast cancer. Drug Discov. Today 2016, 21, 1181–1188. [Google Scholar] [CrossRef]
- Pandey, P.K.; Udayakumar, T.S.; Lin, X.; Sharma, D.; Shapiro, P.S.; Fondell, J.D. Activation of TRAP/mediator subunit TRAP220/Med1 is regulated by mitogen-activated protein kinase-dependent phosphorylation. Mol. Cell. Biol. 2005, 25, 10695–10710. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Germer, K.; Wu, T.; Wang, J.; Luo, J.; Wang, S.-C.; Wang, Q.; Zhang, X. Cross-talk between HER2 and MED1 regulates tamoxifen resistance of human breast cancer cells. Cancer Res. 2012, 72, 5625–5634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.J.; Cui, J.J.; Leonard, M.; Nephew, K.; Li, Y.; Zhang, X. Silencing MED1 sensitizes breast cancer cells to pure anti-estrogen fulvestrant in vitro and in vivo. PLoS ONE 2013, 8, e70641. [Google Scholar] [CrossRef] [PubMed]
- Nagalingam, A.; Tighiouart, M.; Ryden, L.; Joseph, L.; Landberg, G.; Saxena, N.J.; Sharma, D. Med1 plays a critical role in the development of tamoxifen resistance. Carcinogenesis 2012, 33, 918–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagpal, N.; Sharma, S.; Maji, S.; Durante, G.; Ferracin, M.; Thakur, J.K.; Kulshreshthla, R. Essential role of MED1 in the transcriptional regulation of ER-dependent oncogenic miRNAs in breast cancer. Sci. Rep. 2018, 8, 11805. [Google Scholar] [CrossRef] [PubMed]
- Murtaza, M.; Dawson, S.-J.; Tsui, D.W.Y.; Gale, D.; Forshew, T.; Piskorz, A.M.; Parkinson, C.; Chin, S.-F.; Kingsbury, Z.; Wong, A.S.C.; et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 2013, 497, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Mouillet, J.-F.; Chu, T.; Nelson, D.M.; Mishima, T.; Sadovsky, Y. MiR-205 silences MED1 in hypoxic primary human trophoblasts. FASEB J. 2010, 24, 2030–2039. [Google Scholar] [CrossRef] [Green Version]
- Hulf, T.; Sibbritt, T.; Wiklund, E.D.; Patterson, K.; Song, J.Z.; Stirzaker, C.; Qu, W.; Nair, S.; Horvath, L.G.; Armstrong, N.J.; et al. Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer. Oncogene 2013, 32, 2891–2899. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Zhao, B.; Wei, D.; Wang, W.; Cui, Y.; Qian, L.; Liu, G. miR-146a improves hepatic lipid and glucose metabolism by targeting MED1. Int. J. Mol. Med. 2020, 45, 543–555. [Google Scholar] [CrossRef] [Green Version]
- Avgerinos, K.I.; Spyrou, N.; Mantzoros, C.S.; Dalamaga, M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism 2019, 92, 121–135. [Google Scholar] [CrossRef]
- Nagalingam, A.; Siddharth, S.; Parida, S.; Muniraj, N.; Avtanski, D.; Kuppusamy, P.; Elsey, J.; Arbiser, J.L.; Gyorffy, B.; Sharma, D. Hyperleptinemia in obese state renders luminal breast cancers refractory to tamoxifen by coordinating a crosstalk between Med1, miR205 and ErbB. NPJ Breast Cancer 2021, 7, 105. [Google Scholar] [CrossRef]
- Sedgeman, L.R.; Beysen, C.; Allen, R.M.; Ramirez Solano, M.A.; Turner, S.M.; Vickers, K.C. Liver and Biliary Tract Physiology/Pathophysiology: Intestinal bile acid sequestration improves glucose control by stimulating hepatic miR-182-5p in type 2 diabetes. Am. J. Physiol.-Gastrointest. Liver Physiol. 2018, 315, G810. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Shen, P.; Huang, M.; Cai, Q.; Li, J. MicroRNA-18a inhibits cell growth and induces apoptosis in osteosarcoma by targeting MED27. Int. J. Oncol. 2018, 53, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Park, S.-J.; Yim, Y.; Kim, J.; Choi, C.; Won, C.; Min, D.-H. Recent advances in RNA therapeutics and RNA delivery systems based on nanoparticles. Adv. Ther. 2018, 1, 1800065. [Google Scholar] [CrossRef]
- Dasgupta, I.; Chatterjee, A. Recent advances in miRNA delivery systems. Methods Protoc. 2021, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Z.; Gemeinhart, R.A. Progress in microRNA delivery. J. Control. Release 2013, 172, 962–974. [Google Scholar] [CrossRef] [Green Version]
- De Lima, M.C.P.; Simoes, S.; Pires, P.; Faneca, H.; Düzgünes, N. Cationic lipid–DNA complexes in gene delivery: From biophysics to biological applications. Adv. Drug Deliv. Rev. 2001, 47, 277–294. [Google Scholar] [CrossRef]
- Hsu, S.-H.; Yu, B.; Wang, X.; Lu, Y.; Schmidt, C.R.; Lee, R.J.; Lee, J.; Jacob, S.T.; Ghoshal, K. Cationic lipid nanoparticles for therapeutic delivery of siRNA and miRNA to murine liver tumor. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 1169–1180. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.-L.; Majzoub, R.N.; Shirazi, R.S.; Ewert, K.K.; Chen, Y.-J.; Liang, K.S.; Safinya, C.R. Endosomal escape and transfection efficiency of PEGylated cationic liposome—DNA complexes prepared with an acid-labile PEG-lipid. Biomaterials 2012, 33, 4928–4935. [Google Scholar] [CrossRef] [Green Version]
- Silva, B.F.B.; Majzoub, R.N.; Chan, C.-L.; Li, Y.; Olsson, U.; Safinya, C.R. PEGylated cationic liposome–DNA complexation in brine is pathway-dependent. Biochim. Biophys. Acta BBA-Biomembr. 2014, 1838, 398–412. [Google Scholar] [CrossRef] [Green Version]
- De Antonellis, P.; Liguori, L.; Falanga, A.; Carotenuto, M.; Ferrucci, V.; Andolfo, I.; Scognamiglio, I.; Virgilio, A.; De Rosa, G.; Galeone, A.; et al. MicroRNA 199b-5p delivery through stable nucleic acid lipid particles (SNALPs) in tumorigenic cell lines. Naunyn-Schmiedeberg Arch. Pharmacol. 2013, 386, 287–302. [Google Scholar] [CrossRef] [Green Version]
- Van Der Pol, E.; Böing, A.N.; Harrison, P.; Sturk, A.; Nieuwland, R.N. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 2012, 64, 676–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Niel, G.; D’angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Abels, E.R.; Breakefield, X.O. Introduction to extracellular vesicles: Biogenesis, RNA cargo selection, content, release, and uptake. Cell. Mol. Neurobiol. 2016, 36, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Bebelman, M.P.; Smit, M.J.; Pegtel, D.M.; Baglio, S.R. Biogenesis and function of extracellular vesicles in cancer. Pharmacol. Ther. 2018, 188, 1–11. [Google Scholar] [CrossRef]
- Ma, Y.; Dong, S.; Li, X.; Kim, B.Y.S.; Yang, Z.; Jiang, W. Extracellular vesicles: An emerging nanoplatform for cancer therapy. Front. Oncol. 2020, 10, 3340. [Google Scholar] [CrossRef]
- Herrmann, I.K.; Wood, M.J.A.; Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 2021, 16, 748–759. [Google Scholar] [CrossRef]
- Ohno, S.-I.; Takanashi, M.; Sudo, K.; Ueda, S.; Ishikawa, A.; Matsuyama, N.; Fujita, K.; Mizutani, T.; Ohgi, T.; Ochiya, T. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther. 2013, 21, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Didiot, M.-C.; Hall, L.M.; Coles, A.H.; Haraszti, R.A.; Godinho, B.M.; Chase, K.; Sapp, E.; Ly, S.; Alterman, J.F.; Hassler, M.R.; et al. Exosome-mediated delivery of hydrophobically modified siRNA for huntingtin mRNA silencing. Mol. Ther. 2016, 24, 1836–1847. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, X.; Xiang, X.; Grizzle, W.; Sun, D.; Zhang, S.; Axtell, R.C.; Ju, S.; Mu, J.; Zhang, L.; Steinman, L.; et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther. 2011, 19, 1769–1779. [Google Scholar] [CrossRef]
- Pomatto, M.A.C.; Bussolati, B.; D’Antico, S.; Ghiotto, S.; Tetta, C.; Brizzi, M.F.; Camussi, G. Improved loading of plasma-derived extracellular vesicles to encapsulate antitumor miRNAs. Mol. Ther. -Methods Clin. Dev. 2019, 13, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Kamerkar, S.; LeBleu, V.S.; Sugimoto, H.; Yang, S.; Ruivo, C.F.; Melo, S.A.; Lee, J.J.; Kalluri, R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 2017, 546, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Lee, H.; Zhu, Z.; Minhas, J.K.; Jin, Y. Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. Am. J. Physiol. -Lung Cell. Mol. Physiol. 2017, 312, L110–L121. [Google Scholar] [CrossRef] [PubMed]
- Melzer, C.; Rehn, V.; Yang, Y.; Bähre, H.; Von Der Ohe, J.; Hass, R. Taxol-loaded MSC-derived exosomes provide a therapeutic vehicle to target metastatic breast cancer and other carcinoma cells. Cancers 2019, 11, 798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimaldi, A.M.; Salvatore, M.; Incoronato, M. miRNA-Based Therapeutics in Breast Cancer: A Systematic Review. Front. Oncol. 2021, 11, 668464. [Google Scholar] [CrossRef]
MicroRNA Cluster | Chromosomal Location | MicroRNAs in the Cluster | Model Systems |
---|---|---|---|
miR-221/222 | Xp11.3 | miR-221, miR-222 | Human tissue sample and cell lines (MCF7, MDA-MB-231, MDA-MB-453, and SKBR3) |
miR-23a/27a/24-2 | 19p13.12 | miR-23a, miR-27a, miR-24-2 | Human tissue sample |
miR-23b/27b/24-1 | 9q22.23 | miR-23b, miR-27b, miR-24-1 | Human tissue sample |
miR-106b/25 | 7q22.1 | miR-106b, miR-93 and miR-25 | Human tissue sample and cell line (MCF-7) |
miR-106a/363 | Xp26.2 | miR-106a, miR-18b, miR-20b, miR-19b-2, miR-92-2, miR-363 | Human tissue sample and cell line (JIMT-1 and KPL-4) |
miR-200c/141 | 12p13.31 | miR-200c, miR-141 | Cell lines (MCF-7, BT474 and T47D) |
miR-301b/130b | 22q11.21 | miR-301b, miR-130b | Human tissue sample |
miR-532/502 | Xp11.23 | miR-532-5p, miR-188-3p, miR-362-3p, miR-362-5p, miR-501-3p, miR-660-3p, miR-502-3p, miR-502-5p | Human tissue sample |
miR-191/425 | 3p21.31 | miR-191-5p, miR-191-3p, miR-425-5p, miR-425-3p | Cell line (MDA-MB-231-luc) |
miR-371/373 | 19q13.4 | miR-371, miR-372, miR-373 | Human tissue samples |
MicroRNA Cluster | Chromosomal Location | MicroRNAs in the Cluster | Model Systezms |
---|---|---|---|
miR-199a/214 | 1q24 | miR-199a-5p, miR-199a-3p and miR-214 | Cell line (T47D and MDA-MB-231) |
miR-212/132 | 17p13.3 | miR-132, miR-212 | Human tissue samples |
miR-143/145 | 5q33 | miR-145, miR-143 | Cell line (MCF-7, SK-BR-3, and MDA-MB-231) and human tissue samples |
miR-497/195 | 17p13.1 | miR-195, miR-497 | Cell lines (BOY and T24) |
miR-200b/200a/429 | 1p36.33 | miR-200b, miR-200a, miR-429 | Cell line (MDA-MB-231 LM2) |
miR-302/367 | 4q25 | miR-367, 302d, 302c-5p, 302c-3p, 302a-5p, 302-3p, 302b-5p, 302b-3p | Cell line (MDA-MB-231 and SK-BR-3) |
miR-15a/16 | 13q14.2 | miR-15a, miR-16-1 | Cell line (MCF-7 and MDA-MB-231) |
Intrinsic Subtype | Gene Profile | Molecular Findings | IHC Phenotype | Histologic Subtypes | Integrative Cluster | DNA Architecture | Survival |
---|---|---|---|---|---|---|---|
Luminal A | High expression of luminal epithelial genes and ER-related genes | Mutations PI3KCA, MAPK3K1, and GATA3; CCDN1 amplification; no corresponding activation of PI3K pathway | ER+, PR ≥ 20%, HER−, Ki67low | Tubular Carcinoma, low-grade IDC-NST, classic ILC | IntClust 2 | 11q13/14 amplification; firestorm pattern of high-level copy number gains | Poor |
IntClust 3 | Low genomic instability | Good | |||||
IntClust 4 | CNA devoid | Good | |||||
IntClust 6 | High genomic instability 8p12 amplification | Intermediate | |||||
IntClust 7 | 16p gain, 16q loss, 8q amplification | Good | |||||
IntClust 8 | 1q gain, 16q loss | Good | |||||
Luminal B | Lower expression of luminal eplithelium and ER-related genes, but higher level of proliferation and HER2− related genes that luminal A | Similar to luminal A but with a higher prevalence of TP53 and RB pathways inactivation as well as Myc-related and FOXM1 related transcription | ER+, PR < 20%/or HER2+/or Ki67high | IDC-NST, micropapillary carcinoma, pleomorphic ILC | IntClust 1 | High genomic instability; 17q23 amplification; GATA3 mutation | Intermediate |
IntClust 2 | See above | ||||||
IntClust 5 | HER2 amplification | Poor | |||||
IntClust 6 | See above | ||||||
IntClust 9 | 8q gain, 20q amplification | Intermediate | |||||
HER2-OE | High expression of HER2-related genes; low expression of ER-related genes | HER2 amplicon and EGFR/HER2 signal protein signature | ER−, PR−, HER2+ | High-grade IDC-NST, pleomorphic ILC | IntClust 5 | See above | |
Basal like | High expression of basal epithelial and proliferation genes; low expression of HER2-related and ER-related genes | Mutations in TP53; losses in RB1 and BRCA1; amplification of MYC; high PI3K/AKT pathway activation | ER−, PR−, HER− | High-grade UDC-NST metaplastic carcinoma, medullary carcinoma, adenoid cystic carcinoma | IntClust 10 | 5q loss, 8q gain, 10p gain, 12p gain; high genomic alterations with sawtooth pattern | Poor |
IntClust 4 | See above |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maldonado, E.; Morales-Pison, S.; Urbina, F.; Jara, L.; Solari, A. Role of the Mediator Complex and MicroRNAs in Breast Cancer Etiology. Genes 2022, 13, 234. https://doi.org/10.3390/genes13020234
Maldonado E, Morales-Pison S, Urbina F, Jara L, Solari A. Role of the Mediator Complex and MicroRNAs in Breast Cancer Etiology. Genes. 2022; 13(2):234. https://doi.org/10.3390/genes13020234
Chicago/Turabian StyleMaldonado, Edio, Sebastian Morales-Pison, Fabiola Urbina, Lilian Jara, and Aldo Solari. 2022. "Role of the Mediator Complex and MicroRNAs in Breast Cancer Etiology" Genes 13, no. 2: 234. https://doi.org/10.3390/genes13020234
APA StyleMaldonado, E., Morales-Pison, S., Urbina, F., Jara, L., & Solari, A. (2022). Role of the Mediator Complex and MicroRNAs in Breast Cancer Etiology. Genes, 13(2), 234. https://doi.org/10.3390/genes13020234