The Difference in the Proportions of Deleterious Variations within and between Populations Influences the Estimation of FST
Abstract
1. Introduction
2. Materials and Methods
2.1. Estimating the Excess Fraction of Deleterious Variants Present within Population
2.2. Population Genome Data
2.3. FST Estimation
3. Results
3.1. The Effect of Purifying Selection on FST
3.2. Relationship between the FST Values at the Neutral and Constrained Genomic Regions
3.3. FST Estimates and Population Divergence
4. Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wright, S. The genetical structure of populations. Ann. Eugen. 1951, 15, 323–354. [Google Scholar] [CrossRef]
- Akey, J.M.; Zhang, G.; Zhang, K.; Jin, L.; Shriver, M.D. Interrogating a High-Density SNP Map for Signatures of Natural Selection. Genome Res. 2002, 12, 1805–1814. [Google Scholar] [CrossRef] [PubMed]
- Barreiro, L.B.; Laval, G.; Quach, H.; Patin, E.; Quintana-Murci, L. Natural selection has driven population differentiation in modern humans. Nat. Genet. 2008, 40, 340–345. [Google Scholar] [CrossRef]
- Beaumont, M.A.; Balding, D. Identifying adaptive genetic divergence among populations from genome scans. Mol. Ecol. 2004, 13, 969–980. [Google Scholar] [CrossRef]
- Bersaglieri, T.; Sabeti, P.C.; Patterson, N.; Vanderploeg, T.; Schaffner, S.F.; Drake, J.A.; Rhodes, M.; Reich, D.E.; Hirschhorn, J.N. Genetic Signatures of Strong Recent Positive Selection at the Lactase Gene. Am. J. Hum. Genet. 2004, 74, 1111–1120. [Google Scholar] [CrossRef]
- Chen, H.; Patterson, N.; Reich, D. Population differentiation as a test for selective sweeps. Genome Res. 2010, 20, 393–402. [Google Scholar] [CrossRef]
- Excoffier, L.; Hofer, T.; Foll, M. Detecting loci under selection in a hierarchically structured population. Heredity 2009, 103, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Keinan, A.; Mullikin, J.C.; Patterson, N.; Reich, D. Accelerated genetic drift on chromosome X during the human dispersal out of Africa. Nat. Genet. 2009, 41, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Sams, A.; Hawks, J. Patterns of Population Differentiation and Natural Selection on the Celiac Disease Background Risk Network. PLoS ONE 2013, 8, e70564. [Google Scholar] [CrossRef]
- Vitti, J.J.; Grossman, S.R.; Sabeti, P.C. Detecting Natural Selection in Genomic Data. Annu. Rev. Genet. 2013, 47, 97–120. [Google Scholar] [CrossRef]
- Wu, D.-D.; Zhang, Y.-P. Positive selection drives population differentiation in the skeletal genes in modern humans. Hum. Mol. Genet. 2010, 19, 2341–2346. [Google Scholar] [CrossRef][Green Version]
- Xue, Y.; Zhang, X.; Huang, N.; Daly, A.; Gillson, C.J.; MacArthur, D.G.; Yngvadottir, B.; Nica, A.C.; Woodwark, C.; Chen, Y.; et al. Population Differentiation as an Indicator of Recent Positive Selection in Humans: An Empirical Evaluation. Genetics 2009, 183, 1065–1077. [Google Scholar] [CrossRef]
- Nei, M. Analysis of Gene Diversity in Subdivided Populations. Proc. Natl. Acad. Sci. USA 1973, 70, 3321–3323. [Google Scholar] [CrossRef] [PubMed]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [PubMed]
- Hudson, R.R.; Slatkin, M.; Maddison, W.P. Estimation of levels of gene flow from DNA sequence data. Genetics 1992, 132, 583–589. [Google Scholar] [CrossRef]
- Gregorius, H.-R.; Roberds, J.H. Measurement of genetical differentiation among subpopulations. Theor. Appl. Genet. 1986, 71, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 2008, 17, 4015–4026. [Google Scholar] [CrossRef] [PubMed]
- Weir, B.S.; Goudet, J. A Unified Characterization of Population Structure and Relatedness. Genetics 2017, 206, 2085–2103. [Google Scholar] [CrossRef]
- Kitada, S.; Nakamichi, R.; Kishino, H. Understanding population structure in an evolutionary context: Population-specific FST and pairwise FST. G3 2021, 11, jkab316. [Google Scholar] [CrossRef]
- Berner, D. Allele Frequency Difference AFD—An Intuitive Alternative to FST for Quantifying Genetic Population Differentiation. Genes 2019, 10, 308. [Google Scholar] [CrossRef]
- Whitlock, M.C.; McCauley, D.E. Indirect measures of gene flow and migration: FST not equal to 1/(4Nm + 1). Heredity 1999, 82 Pt 2, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Frankham, R.; Ballou, J.D.; Briscoe, D.A. Introduction to Conservation Genetics; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Spies, I.; Hauser, L.; Jorde, P.E.; Knutsen, H.; Punt, A.E.; Rogers, L.A.; Stenseth, N.C. Inferring genetic connectivity in real populations, exemplified by coastal and oceanic Atlantic cod. Proc. Natl. Acad. Sci. USA 2018, 115, 4945–4950. [Google Scholar] [CrossRef] [PubMed]
- Rougemont, Q.; Moore, J.S.; Leroy, T.; Normandeau, E.; Rondeau, E.B.; Withler, R.E.; Van Doornik, D.M.; Crane, P.A.; Naish, K.A.; Garza, J.C.; et al. Demographic history shaped geographical patterns of deleterious mutation load in a broadly distributed Pacific Salmon. PLoS Genet. 2020, 16, e1008348. [Google Scholar] [CrossRef] [PubMed]
- Bonhomme, M.; Chevalet, C.; Servin, B.; Boitard, S.; Abdallah, J.; Blott, S.; San Cristobal, M. Detecting Selection in Population Trees: The Lewontin and Krakauer Test Extended. Genetics 2010, 186, 241–262. [Google Scholar] [CrossRef]
- Nielsen, R. Molecular Signatures of Natural Selection. Annu. Rev. Genet. 2005, 39, 197–218. [Google Scholar] [CrossRef]
- Maruki, T.; Kumar, S.; Kim, Y. Purifying Selection Modulates the Estimates of Population Differentiation and Confounds Genome-Wide Comparisons across Single-Nucleotide Polymorphisms. Mol. Biol. Evol. 2012, 29, 3617–3623. [Google Scholar] [CrossRef]
- Jackson, B.C.; Campos, J.L.; Zeng, K. The effects of purifying selection on patterns of genetic differentiation between Drosophila melanogaster populations. Heredity 2015, 114, 163–174. [Google Scholar] [CrossRef]
- 1000 Genomes Project Consortium; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar]
- Kimura, M. Rare variant alleles in the light of the neutral theory. Mol. Biol. Evol. 1984, 1, 84–93. [Google Scholar] [CrossRef]
- Kircher, M.; Witten, D.M.; Jain, P.; O’Roak, B.J.; Cooper, G.M.; Shendure, J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014, 46, 310–315. [Google Scholar] [CrossRef]
- Bhatia, G.; Patterson, N.; Sankararaman, S.; Price, A.L. Estimating and interpreting FST: The impact of rare variants. Genome Res. 2013, 23, 1514–1521. [Google Scholar] [CrossRef] [PubMed]
- Ponting, C.P.; Hardison, R.C. What fraction of the human genome is functional? Genome Res. 2011, 21, 1769–1776. [Google Scholar] [CrossRef] [PubMed]
- Rands, C.M.; Meader, S.; Ponting, C.P.; Lunter, G. 8.2% of the Human Genome Is Constrained: Variation in Rates of Turnover across Functional Element Classes in the Human Lineage. PLoS Genet. 2014, 10, e1004525. [Google Scholar] [CrossRef] [PubMed]
- Andolfatto, P. Adaptive evolution of non-coding DNA in Drosophila. Nature 2005, 437, 1149–1152. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subramanian, S. The Difference in the Proportions of Deleterious Variations within and between Populations Influences the Estimation of FST. Genes 2022, 13, 194. https://doi.org/10.3390/genes13020194
Subramanian S. The Difference in the Proportions of Deleterious Variations within and between Populations Influences the Estimation of FST. Genes. 2022; 13(2):194. https://doi.org/10.3390/genes13020194
Chicago/Turabian StyleSubramanian, Sankar. 2022. "The Difference in the Proportions of Deleterious Variations within and between Populations Influences the Estimation of FST" Genes 13, no. 2: 194. https://doi.org/10.3390/genes13020194
APA StyleSubramanian, S. (2022). The Difference in the Proportions of Deleterious Variations within and between Populations Influences the Estimation of FST. Genes, 13(2), 194. https://doi.org/10.3390/genes13020194