Plasma miRNA Profile in High Risk of Preterm Birth during Early and Mid-Pregnancy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Sample Preparation
2.3. MiRNA Isolation and Library Preparation for Sequencing
2.4. Illumina Sequencing
2.5. Clinical Data Analysis
2.6. Sequencing Data Analysis
3. Results
3.1. Characteristics of Objectives
3.2. Comparison of miRNA Profiles in plasma between Control and High Risk of Preterm Birth Groups
3.3. Target Prediction and Gene Ontology Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tosto, V.; Giardina, I.; Tsibizova, V.; Renzo, G.C.D. Preterm birth, from the biological knowledges to the prevention: An overview. Matern. Fetal Med. 2020, 2, 162–171. [Google Scholar] [CrossRef]
- Quinn, J.A.; Munoz, F.M.; Gonik, B.; Frau, L.; Cutland, C.; Mallett-Moore, T.; Kissou, A.; Wittke, F.; Das, M.; Nunes, T.; et al. Preterm birth: Case definition & guidelines for data collection, analysis, and presentation of immunisation safety data. Vaccine 2016, 34, 6047–6056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deindl, P.; Diemert, A. From structural modalities in perinatal medicine to the frequency of preterm birth. Semin. Immunopathol. 2020, 42, 377–383. [Google Scholar] [CrossRef]
- Reicher, L.; Fouks, Y.; Yogev, Y. Cervical Assessment for Predicting Preterm Birth-Cervical Length and Beyond. J. Clin. Med. 2021, 10, 627. [Google Scholar] [CrossRef]
- Nadeau, H.C.; Subramaniam, A.; Andrews, W.W. Infection and preterm birth. Semin. Fetal Neonatal Med. 2016, 21, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Rotondo, J.C.; Oton-Gonzalez, L.; Selvatici, R.; Rizzo, P.; Pavasini, R.; Campo, G.C.; Lanzillotti, C.; Mazziotta, C.; De Mattei, M.; Tognon, M.; et al. SERPINA1 Gene Promoter Is Differentially Methylated in Peripheral Blood Mononuclear Cells of Pregnant Women. Front. Cell Dev. Biol. 2020, 8, 550543. [Google Scholar] [CrossRef]
- Olsen, S.F.; Halldorsson, T.I.; Thorne-Lyman, A.L.; Strøm, M.; Gørtz, S.; Granstrøm, C.; Nielsen, P.H.; Wohlfahrt, J.; Lykke, J.A.; Langhoff-Roos, J.; et al. Plasma Concentrations of Long Chain N-3 Fatty Acids in Early and Mid-Pregnancy and Risk of Early Preterm Birth. EBioMedicine 2018, 35, 325–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baron, J.; Sheiner, E.; Abecassis, A.; Ashkenazi, E.; Shahaf, G.; Salem, S.Y.; Madar, T.; Twina, G.; Wiznitzer, A.; Holcberg, G.; et al. α1-antitrypsin insufficiency is a possible contributor to preterm premature rupture of membranes. J. Matern. Fetal Neonatal Med. 2012, 25, 934–937. [Google Scholar] [CrossRef]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Holzman, C.; Chen, B.; Wang, P.; Heng, Y.J.; Kibschull, M.; Lye, S.J.; Kasten, E.P. EBF1-Correlated Long Non-coding RNA Transcript Levels in 3rd Trimester Maternal Blood and Risk of Spontaneous Preterm Birth. Reprod. Sci. 2021, 28, 541–549. [Google Scholar] [CrossRef]
- Burris, H.H.; Just, A.C.; Haviland, M.J.; Neo, D.T.; Baccarelli, A.A.; Dereix, A.E.; Brennan, K.J.; Rodosthenous, R.S.; Ralston, S.J.; Hecht, J.L.; et al. Long noncoding RNA expression in the cervix mid-pregnancy is associated with the length of gestation at delivery. Epigenetics 2018, 13, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Hu, H.; Chen, Q.; Zhang, Y.; Chen, W.; Huang, Q.; Chen, X.; Li, J.; Zhong, M. Long non-coding RNA SNHG29 regulates cell senescence via p53/p21 signaling in spontaneous preterm birth. Placenta 2021, 103, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Zhao, C.; Xu, M.; Sui, X.; Sun, L.; Liu, Y.; Su, M.; Wang, H.; Yuan, Y.; Zhang, S.; et al. Serum lncRNAs in early pregnancy as potential biomarkers for the prediction of pregnancy-induced hypertension, including preeclampsia. Mol. Ther. Nucleic Acids 2021, 24, 416–425. [Google Scholar] [CrossRef]
- Ran, Y.; Yin, N.; Huang, D.; Zhao, Y.; Yang, J.; Zhang, H.; Qi, H. Identification and Characterization of Circular RNA as a Novel Regulator and Biomarker in Preterm Birth. Front. Bioeng. Biotechnol. 2020, 8, 566984. [Google Scholar] [CrossRef]
- Ran, Y.; Chen, R.; Huang, D.; Qin, Y.; Liu, Z.; He, J.; Mei, Y.; Zhou, Y.; Yin, N.; Qi, H. The landscape of circular RNA in preterm birth. Front. Immunol. 2022, 13, 879487. [Google Scholar] [CrossRef] [PubMed]
- Ogoyama, M.; Takahashi, H.; Suzuki, H.; Ohkuchi, A.; Fujiwara, H.; Takizawa, T. Non-Coding RNAs and Prediction of Preeclampsia in the First Trimester of Pregnancy. Cells 2022, 11, 2428. [Google Scholar] [CrossRef] [PubMed]
- Masete, M.; Dias, S.; Malaza, N.; Adam, S.; Pheiffer, C. A Big Role for microRNAs in Gestational Diabetes Mellitus. Front. Endocrinol. 2022, 13, 892587. [Google Scholar] [CrossRef]
- Elovitz, M.A.; Brown, A.G.; Anton, L.; Gilstrop, M.; Heiser, L.; Bastek, J. Distinct cervical microRNA profiles are present in women destined to have a preterm birth. Am. J. Obstet. Gynecol. 2014, 210, 221.e1–221.e11. [Google Scholar] [CrossRef]
- Mayor-Lynn, K.; Toloubeydokhti, T.; Cruz, A.C.; Chegini, N. Expression profile of microRNAs and mRNAs in human placentas from pregnancies complicated by preeclampsia and preterm labor. Reprod. Sci. 2011, 18, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Lu, K.; Huang, J.; Yang, Y.; Lu, D. Predicting the target genes of miRNAs in preterm via targetscore algorithm. Exp. Ther. Med. 2019, 17, 2085–2090. [Google Scholar] [CrossRef]
- Hromadnikova, I.; Kotlabova, K.; Ivankova, K.; Krofta, L. Expression profile of C19MC microRNAs in placental tissue of patients with preterm prelabor rupture of membranes and spontaneous preterm birth. Mol. Med. Rep. 2017, 16, 3849–3862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winger, E.E.; Reed, J.L.; Ji, X. Early first trimester peripheral blood cell microRNA predicts risk of preterm delivery in pregnant women: Proof of concept. PLoS ONE 2017, 12, e0180124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winger, E.E.; Reed, J.L.; Ji, X.; Gomez-Lopez, N.; Pacora, P.; Romero, R. MicroRNAs isolated from peripheral blood in the first trimester predict spontaneous preterm birth. PLoS ONE 2020, 15, e0236805. [Google Scholar] [CrossRef] [PubMed]
- Elovitz, M.A.; Anton, L.; Bastek, J.; Brown, A.G. Can microRNA profiling in maternal blood identify women at risk for preterm birth? Am. J. Obstet. Gynecol. 2015, 212, 782.e1–782.e5. [Google Scholar] [CrossRef]
- Cook, J.; Bennett, P.R.; Kim, S.H.; Teoh, T.G.; Sykes, L.; Kindinger, L.M.; Garrett, A.; Binkhamis, R.; MacIntyre, D.A.; Terzidou, V. First Trimester Circulating MicroRNA Biomarkers Predictive of Subsequent Preterm Delivery and Cervical Shortening. Sci. Rep. 2019, 10, 5861. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Lan, W.; Miller, D. Next-Generation Sequencing for MicroRNA Expression Profile. Methods Mol. Biol. 2017, 1617, 169–177. [Google Scholar] [CrossRef]
- Illarionov, R.A.; Kosyakova, O.V.; Vashukova, E.S.; Yurkina, N.O.; Bakleicheva, M.O.; Dolgova Yus Sushko, T.A.; Eremeeva, D.R.; Zainulina, M.S.; Yarmolinskaya, M.I.; Bespalova, O.N.; et al. Collection of samples from women at different stages of pregnancy to search for early biomarkers of preterm birth. Cardiovasc. Ther. Prev. 2020, 19, 2708. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Sticht, C.; De La Torre, C.; Parveen, A.; Gretz, N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS ONE 2018, 13, e0206239. [Google Scholar] [CrossRef]
- Wang, H.; Song, X.; Zhang, Q.; Li, Y.; Chen, Y.; Du, W.; Zhang, Z.; Jin, L. miR-203a-5p suppresses cervical cancer tumorigenesis and EMT via targeting MAPK1. Acta Med. Mediterr. 2020, 36, 3599. [Google Scholar]
- Soldo, V.; Cutura, N.; Zamurovic, M. Threatened miscarriage in the first trimester and retrochorial hematomas: Sonographic evaluation and significance. Clin. Exp. Obstet. Gynecol. 2013, 40, 548–550. [Google Scholar] [PubMed]
- Koullali, B.; Oudijk, M.A.; Nijman, T.A.; Mol, B.W.; Pajkrt, E. Risk assessment and management to prevent preterm birth. Semin. Fetal Neonatal Med. 2016, 21, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Barchitta, M.; Maugeri, A.; Quattrocchi, A.; Agrifoglio, O.; Agodi, A. The Role of miRNAs as Biomarkers for Pregnancy Outcomes: A Comprehensive Review. Int. J. Genom. 2017, 2017, 8067972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, C.; McCowan, L.M.; Patel, R.; Taylor, R.S.; Vickers, M.H. Maternal plasma miRNAs as biomarkers during mid-pregnancy to predict later spontaneous preterm birth: A pilot study. Sci. Rep. 2017, 11, 815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales-Prieto, D.M.; Ospina-Prieto, S.; Chaiwangyen, W.; Schoenleben, M.; Markert, U.R. Pregnancy-associated miRNA-clusters. J. Reprod. Immunol. 2013, 97, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.D.; Pillman, K.; Jankovic-Karasoulos, T.; McAninch, D.; Wan, Q.; Bogias, K.J.; McCullough, D.; Bianco-Miotto, T.; Breen, J.; Roberts, C.T. Large-scale transcriptome-wide profiling of microRNAs in human placenta and maternal plasma at early to mid gestation. RNA Biol. 2021, 18 (Suppl. S1), 507–520. [Google Scholar] [CrossRef]
- Hromadnikova, I.; Kotlabova, K.; Doucha, J.; Dlouha, K.; Krofta, L. Absolute and relative quantification of placenta-specific micrornas in maternal circulation with placental insufficiency-related complications. J. Mol. Diagn. 2012, 14, 160–167. [Google Scholar] [CrossRef]
- Wommack, J.C.; Trzeciakowski, J.P.; Miranda, R.C.; Stowe, R.P.; Ruiz, R.J. Micro RNA clusters in maternal plasma are associated with preterm birth and infant outcomes. PLoS ONE 2018, 13, e0199029. [Google Scholar] [CrossRef]
- Sun, M.; Chen, H.; Liu, J.; Tong, C.; Meng, T. MicroRNA-34a inhibits human trophoblast cell invasion by targeting MYC. BMC Cell Biol. 2015, 16, 21. [Google Scholar] [CrossRef] [Green Version]
- Doridot, L.; Houry, D.; Gaillard, H.; Chelbi, S.T.; Barbaux, S.; Vaiman, D. miR-34a expression, epigenetic regulation, and function in human placental diseases. Epigenetics 2014, 9, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.S.; Romero, R.; Pineles, B.; Tarca, A.L.; Montenegro, D.; Erez, O.; Mittal, P.; Kusanovic, J.P.; Mazaki-Tovi, S.; Espinoza, J.; et al. MicroRNA expression profiling of the human uterine cervix after term labor and delivery. Am. J. Obstet. Gynecol. 2010, 202, 80.e1–80.e8. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, J. Association of miR-34a-3p/5p, miR-141-3p/5p, and miR-24 in Decidual Natural Killer Cells with Unexplained Recurrent Spontaneous Abortion. Med. Sci. Monit. 2016, 22, 922–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umemura, K.; Ishioka, S.; Endo, T.; Ezaka, Y.; Takahashi, M.; Saito, T. Roles of microRNA-34a in the pathogenesis of placenta accreta. J. Obstet. Gynaecol. Res. 2013, 39, 67–74. [Google Scholar] [CrossRef]
- Sørensen, A.E.; van Poppel, M.N.M.; Desoye, G.; Simmons, D.; Damm, P.; Jensen, D.M.; Dalgaard, L.T.; The Dali Core Investigator Group. The Temporal Profile of Circulating miRNAs during Gestation in Overweight and Obese Women with or without Gestational Diabetes Mellitus. Biomedicines 2022, 10, 482. [Google Scholar] [CrossRef] [PubMed]
- Gillet, V.; Ouellet, A.; Stepanov, Y.; Rodosthenous, R.S.; Croft, E.K.; Brennan, K.; Abdelouahab, N.; Baccarelli, A.; Takser, L. miRNA Profiles in Extracellular Vesicles from Serum Early in Pregnancies Complicated by Gestational Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2019, 104, 5157–5169. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Yang, Y.; Wang, W.; Zhao, M.; Liu, H.; Li, D.; Hao, M. High-throughput deep screening and identification of four peripheral leucocyte microRNAs as novel potential combination biomarkers for preeclampsia. J. Perinatol. 2016, 36, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Lasabová, Z.; Vazan, M.; Zibolenova, J.; Svecova, I. Overexpression of miR-21 and miR-122 in preeclamptic placentas. Neuro Endocrinol. Lett. 2015, 36, 695–699. [Google Scholar]
- Vashukova, E.S.; Kozyulina, P.Y.; Illarionov, R.A.; Yurkina, N.O.; Pachuliia, O.V.; Butenko, M.G.; Postnikova, T.B.; Ivanova, L.A.; Eremeeva, D.R.; Zainulina, M.S.; et al. High-Throughput Sequencing of Circulating MicroRNAs in Plasma and Serum during Pregnancy Progression. Life 2021, 11, 1055. [Google Scholar] [CrossRef]
- Paquette, A.G.; Shynlova, O.; Wu, X.; Kibschull, M.; Wang, K.; Price, N.D.; Lye, S.J. MicroRNA-transcriptome networks in whole blood and monocytes of women undergoing preterm labour. J. Cell Mol. Med. 2019, 23, 6835–6845. [Google Scholar] [CrossRef]
- Burnum, K.E.; Hirota, Y.; Baker, E.S.; Yoshie, M.; Ibrahim, Y.M.; Monroe, M.E.; Anderson, G.A.; Smith, R.D.; Daikoku, T.; Dey, S.K. Uterine deletion of Trp53 compromises antioxidant responses in the mouse decidua. Endocrinology 2012, 153, 4568–4579. [Google Scholar] [CrossRef] [Green Version]
- Menon, R.; Debnath, C.; Lai, A.; Guanzon, D.; Bhatnagar, S.; Kshetrapal, P.K.; Sheller-Miller, S.; Salomon, C.; Garbhini Study Team. Circulating Exosomal miRNA Profile during Term and Preterm Birth Pregnancies: A Longitudinal Study. Endocrinology 2019, 160, 249–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terzidou, V. Preterm labor. Biochemical and endocrinological preparation for parturition. Best practice & research. Clin. Obstet. Gynaecol. 2007, 21, 729–756. [Google Scholar] [CrossRef]
- Tarca, A.L.; Fitzgerald, W.; Chaemsaithong, P.; Xu, Z.; Hassan, S.S.; Grivel, J.C.; Gomez-Lopez, N.; Panaitescu, B.; Pacora, P.; Maymon, E.; et al. The cytokine network in women with an asymptomatic short cervix and the risk of preterm delivery. Am. J. Reprod. Immunol. 2017, 78, e12686. [Google Scholar] [CrossRef] [Green Version]
- Knijnenburg, T.A.; Vockley, J.G.; Chambwe, N.; Gibbs, D.L.; Humphries, C.; Huddleston, K.C.; Klein, E.; Kothiyal, P.; Tasseff, R.; Dhankani, V.; et al. Genomic and molecular characterization of preterm birth. Proc. Natl. Acad. Sci. USA 2019, 116, 5819–5827. [Google Scholar] [CrossRef] [PubMed]
Characteristic | hrPTB (n = 13) | CTRL (n = 11) |
---|---|---|
Age, years | 32.6 ± 0.7 | 31.1 ± 1.7 |
Ethnicity | Russian (13/13) | Russian (11/11) |
BMI, kg/m2 | 22.8 ± 0.9 | 22.1 ± 0.8 |
Gestational age of sampling at first trimester, weeks | 11.8 ± 1.1 | 12 ± 1.0 |
Gestational age of sampling at second trimester, weeks | 22.9 ± 0.2 | 23.1 ± 0.3 |
Previous miscarriage | 8/13 | 3/11 |
Recurrent miscarriage | 4/13 | 0/11 |
History of preterm birth | 2/13 | 0/11 |
Short cervix (<25 mm) | 13/13 | 0/11 |
Treatment for a short cervix: the cervical pessary/cerclage | 6/13 | 0/11 |
Pain in the lower abdomen | 13/13 | 0/11 |
Tocolytic therapy | 13/13 | 0/11 |
Gestational ages of delivery, weeks | 37.2 ± 0.9 | 40.1 ± 0.2 |
Spontaneous preterm birth | 2/13 | 0/11 |
Induced preterm birth | 5/13 | 0/11 |
Term birth | 6/11 | 11/11 |
C-section | 9/13 | 2/11 |
Vaginal delivery | 4/13 | 9/11 |
Fetal weight, g | 3065 ± 193 | 3510 ± 128 |
Fetal height, cm | 49.4 ± 1.1 | 52.1 ± 0.4 |
Apgar score | 7.2 ± 0.11 | 8.2 ± 0.12 |
Intrauterine infection | 3/13 | 0/11 |
miRNA | log2(Fold Change) | Adjusted p-Value (FDR) |
---|---|---|
hsa-miR-487b-3p | −2.07 | 0.026 |
hsa-miR-493-3p | −2.04 | 0.02 |
hsa-miR-432-5p | −1.91 | 0.012 |
hsa-miR-323b-3p | −1.83 | 0.026 |
hsa-miR-369-3p | −1.71 | 0.017 |
hsa-miR-134-5p | −1.67 | 0.02 |
hsa-miR-431-5p | −1.63 | 0.02 |
hsa-miR-485-5p | −1.63 | 0.033 |
hsa-miR-382-5p | −1.62 | 0.012 |
hsa-miR-369-5p | −1.59 | 0.012 |
hsa-miR-485-3p | −1.57 | 0.012 |
hsa-miR-127-3p | −1.55 | 0.035 |
hsa-miR-122-5p | 1.81 | 0.046 |
hsa-miR-34a-5p | 1.94 | 0.004 |
hsa-miR-34c-5p | 3.81 | 0.02 |
GO ID | GO Term | Gene Number for Term | Adjusted p-Value |
---|---|---|---|
GO:0010629 | Negative regulation of gene expression | 14 | 0.0011 |
GO:0019221 | Cytokine-mediated signaling pathway | 16 | 0.0011 |
GO:0043066 | Negative regulation of apoptotic process | 21 | 0.0011 |
GO:0045766 | Positive regulation of angiogenesis | 11 | 0.0011 |
GO:0070102 | Interleukin-6-mediated signaling pathway | 5 | 0.0011 |
GO:2000773 | Negative regulation of cellular senescence | 5 | 0.0011 |
GO:0007219 | Notch signaling pathway | 9 | 0.0019 |
GO:0042542 | Response to hydrogen peroxide | 6 | 0.0019 |
GO:0006355 | Regulation of transcription, DNA-templated | 20 | 0.0024 |
GO:0030218 | Erythrocyte differentiation | 6 | 0.0024 |
GO:0007179 | Transforming growth factor β receptor signaling pathway | 9 | 0.0027 |
GO:0009615 | Response to virus | 8 | 0.0027 |
GO:0008284 | Positive regulation of cell population proliferation | 20 | 0.0051 |
GO:0018108 | Peptidyl-tyrosine phosphorylation | 8 | 0.0060 |
GO:0007162 | Negative regulation of cell adhesion | 5 | 0.0068 |
KEGG ID | KEGG Term | Gene Number for Term | Adjusted p-Value |
---|---|---|---|
hsa05206 | MiRNAs in cancer | 18 | 0.0036 |
hsa04110 | Cell cycle | 10 | 0.0072 |
hsa05120 | Epithelial cell signaling in Helicobacter pylori infection | 7 | 0.0108 |
hsa04115 | p53 signaling pathway | 7 | 0.0113 |
hsa04933 | AGE-RAGE signaling pathway in diabetic complications | 8 | 0.0113 |
hsa05205 | Proteoglycans in cancer | 12 | 0.0113 |
hsa01521 | EGFR tyrosine kinase inhibitor resistance | 9 | 0.0131 |
hsa04218 | Cellular senescence | 10 | 0.0136 |
hsa05219 | Bladder cancer | 5 | 0.0136 |
hsa04137 | Mitophagy | 6 | 0.0158 |
hsa04919 | Thyroid hormone signaling pathway | 8 | 0.0166 |
hsa05222 | Small cell lung cancer | 7 | 0.0166 |
hsa05230 | Central carbon metabolism in cancer | 6 | 0.0166 |
hsa04340 | Hedgehog signaling pathway | 5 | 0.0167 |
hsa05215 | Prostate cancer | 7 | 0.0167 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Illarionov, R.A.; Pachuliia, O.V.; Vashukova, E.S.; Tkachenko, A.A.; Maltseva, A.R.; Postnikova, T.B.; Nasykhova, Y.A.; Bespalova, O.N.; Glotov, A.S. Plasma miRNA Profile in High Risk of Preterm Birth during Early and Mid-Pregnancy. Genes 2022, 13, 2018. https://doi.org/10.3390/genes13112018
Illarionov RA, Pachuliia OV, Vashukova ES, Tkachenko AA, Maltseva AR, Postnikova TB, Nasykhova YA, Bespalova ON, Glotov AS. Plasma miRNA Profile in High Risk of Preterm Birth during Early and Mid-Pregnancy. Genes. 2022; 13(11):2018. https://doi.org/10.3390/genes13112018
Chicago/Turabian StyleIllarionov, Roman A., Olga V. Pachuliia, Elena S. Vashukova, Alexander A. Tkachenko, Anastasia R. Maltseva, Tatyana B. Postnikova, Yulia A. Nasykhova, Olesya N. Bespalova, and Andrey S. Glotov. 2022. "Plasma miRNA Profile in High Risk of Preterm Birth during Early and Mid-Pregnancy" Genes 13, no. 11: 2018. https://doi.org/10.3390/genes13112018
APA StyleIllarionov, R. A., Pachuliia, O. V., Vashukova, E. S., Tkachenko, A. A., Maltseva, A. R., Postnikova, T. B., Nasykhova, Y. A., Bespalova, O. N., & Glotov, A. S. (2022). Plasma miRNA Profile in High Risk of Preterm Birth during Early and Mid-Pregnancy. Genes, 13(11), 2018. https://doi.org/10.3390/genes13112018