A Pilot Study on the Prediction of Non-Contact Muscle Injuries Based on ACTN3 R577X and ACE I/D Polymorphisms in Professional Soccer Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohort and Data Collection
2.2. DNA Analyses
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reilly, T.; Bangsbo, J.; Franks, A. Anthropometric and physiological predispositions for elite soccer. J. Sport. Sci. 2000, 18, 669–683. [Google Scholar] [CrossRef]
- Bangsbo, J.; Mohr, M.; Krustrup, P. Physical and metabolic demands of training and match-play in the elite football player. J. Sport. Sci. 2006, 24, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Santiago, C.; Gonzalez-Freire, M.; Serratosa, L.; Morate, F.J.; Meyer, T.; Gomez-Gallego, F.; Lucia, A. ACTN3 genotype in professional soccer players. Br. J. Sport. Med. 2008, 42, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Match performance of high-standard soccer players with special reference to development of fatigue. J. Sport. Sci. 2003, 21, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.R.; Rebelo, A.; Marques, F.; Pereira, L.; Seabra, A.; Ascensao, A.; Magalhães, J. Biochemical impact of soccer: An analysis of hormonal, muscle damage, and redox markers during the season. Appl. Physiol. Nutr. Metab. 2014, 39, 432–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, H.; Bohn, S.K.; Raastad, T.; Paulsen, G.; Blomhoff, R.; Kadi, F. Differences in the inflammatory plasma cytokine response following two elite female soccer games separated by a 72-h recovery. Scand. J. Med. Sci. Sport. 2010, 20, 740–747. [Google Scholar] [CrossRef]
- Ekstrand, J.; Hagglund, M.; Walden, M. Injury incidence and injury patterns in professional football: The UEFA injury study. Br. J. Sport. Med. 2011, 45, 553–558. [Google Scholar] [CrossRef] [Green Version]
- McCall, A.; Carling, C.; Nedelec, M.; Davison, M.; Le Gall, F.; Berthoin, S.; Dupont, G. Risk factors, testing and preventative strategies for non-contact injuries in professional football: Current perceptions and practices of 44 teams from various premier leagues. Br. J. Sport. Med. 2014, 48, 1352–1357. [Google Scholar] [CrossRef]
- Hagglund, M.; Walden, M.; Ekstrand, J. Risk factors for lower extremity muscle injury in professional soccer: The UEFA Injury Study. Am. J. Sport. Med. 2013, 41, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Eirale, C.; Tol, J.L.; Farooq, A.; Smiley, F.; Chalabi, H. Low injury rate strongly correlates with team success in Qatari professional football. Br. J. Sport. Med. 2013, 47, 807–808. [Google Scholar] [CrossRef]
- Ostenberg, A.; Roos, H. Injury risk factors in female European football. A prospective study of 123 players during one season. Scand. J. Med. Sci. Sport. 2000, 10, 279–285. [Google Scholar] [CrossRef]
- Henderson, G.; Barnes, C.A.; Portas, M.D. Factors associated with increased propensity for hamstring injury in English Premier League soccer players. J. Sci. Med. Sport 2010, 13, 397–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engebretsen, A.H.; Myklebust, G.; Holme, I.; Engebretsen, L.; Bahr, R. Intrinsic risk factors for groin injuries among male soccer players: A prospective cohort study. Am. J. Sport. Med. 2010, 38, 2051–2057. [Google Scholar] [CrossRef] [PubMed]
- Hagglund, M.; Walden, M.; Ekstrand, J. Previous injury as a risk factor for injury in elite football: A prospective study over two consecutive seasons. Br. J. Sport. Med. 2006, 40, 767–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berman, Y.; North, K.N. A gene for speed: The emerging role of alpha-actinin-3 in muscle metabolism. Physiology 2010, 25, 250–259. [Google Scholar] [CrossRef]
- Yang, N.; MacArthur, D.G.; Gulbin, J.P.; Hahn, A.G.; Beggs, A.H.; Easteal, S.; North, K. ACTN3 genotype is associated with human elite athletic performance. Am. J. Hum. Genet. 2003, 73, 627–631. [Google Scholar] [CrossRef] [Green Version]
- MacArthur, D.G.; North, K.N. A gene for speed? The evolution and function of alpha-actinin-3. Bioessays 2004, 26, 786–795. [Google Scholar] [CrossRef]
- Juffer, P.; Furrer, R.; Gonzalez-Freire, M.; Santiago, C.; Verde, Z.; Serratosa, L.; Morate, F.J.; Rubio, J.C.; Martin, M.A.; Ruiz, J.R.; et al. Genotype distributions in top-level soccer players: A role for ACE? Int. J. Sport. Med. 2009, 30, 387–392. [Google Scholar] [CrossRef]
- Puthucheary, Z.; Skipworth, J.R.; Rawal, J.; Loosemore, M.; Van Someren, K.; Montgomery, H.E. The ACE gene and human performance: 12 years on. Sport. Med. 2011, 41, 433–448. [Google Scholar] [CrossRef]
- Papadimitriou, I.D.; Lucia, A.; Pitsiladis, Y.P.; Pushkarev, V.P.; Dyatlov, D.A.; Orekhov, E.F.; Artioli, G.; Guilherme, J.P.L.F.; Lancha, A.H., Jr.; Ginevičienė, V.; et al. ACTN3 R577X and ACE I/D gene variants influence performance in elite sprinters: A multi-cohort study. BMC Genom. 2016, 17, 285. [Google Scholar] [CrossRef]
- Kikuchi, N.; Min, S.K.; Ueda, D.; Igawa, S.; Nakazato, K. Higher frequency of the ACTN3 R allele + ACE DD genotype in Japanese elite wrestlers. J. Strength Cond. Res. 2012, 26, 3275–3280. [Google Scholar] [CrossRef] [PubMed]
- Cieszczyk, P.; Krupecki, K.; Maciejewska, A.; Sawczuk, M. The angiotensin converting enzyme gene I/D polymorphism in Polish rowers. Int. J. Sport. Med. 2009, 30, 624–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsianos, G.; Sanders, J.; Dhamrait, S.; Humphries, S.; Grant, S.; Montgomery, H. The ACE gene insertion/deletion polymorphism and elite endurance swimming. Eur. J. Appl. Physiol. 2004, 92, 360–362. [Google Scholar] [CrossRef] [PubMed]
- Baumert, P.; Lake, M.J.; Stewart, C.E.; Drust, B.; Erskine, R.M. Genetic variation and exercise-induced muscle damage: Implications for athletic performance, injury and ageing. Eur. J. Appl. Physiol. 2016, 116, 1595–1625. [Google Scholar] [CrossRef] [Green Version]
- Pickering, C.; Kiely, J. ACTN3: More than Just a Gene for Speed. Front. Physiol. 2017, 8, 1080. [Google Scholar] [CrossRef] [Green Version]
- Pimenta, E.M.; Coelho, D.B.; Cruz, I.R.; Morandi, R.F.; Veneroso, C.E.; de Azambuja Pussieldi, G.; Carvalho, M.R.S.; Garcia, E.; Fernández, J.A.D.P. The ACTN3 genotype in soccer players in response to acute eccentric training. Eur. J. Appl. Physiol. 2012, 112, 1495–1503. [Google Scholar] [CrossRef]
- Yamin, C.; Amir, O.; Sagiv, M.; Attias, E.; Meckel, Y.; Eynon, N.; Sagiv, M.; Amir, R.E. ACE ID genotype affects blood creatine kinase response to eccentric exercise. J. Appl. Physiol. 2007, 103, 2057–2061. [Google Scholar] [CrossRef] [Green Version]
- Clos, E.; Pruna, R.; Lundblad, M.; Artells, R.; Esquirol Caussa, J. ACTN3 single nucleotide polymorphism is associated with non-contact musculoskeletal soft-tissue injury incidence in elite professional football players. Knee Surg. Sport. Traumatol. Arthrosc. 2019, 27, 4055–4061. [Google Scholar] [CrossRef]
- Massidda, M.; Voisin, S.; Culigioni, C.; Piras, F.; Cugia, P.; Yan, X.; Eynon, N.; Calò, C.M. ACTN3 R577X Polymorphism Is Associated with the Incidence and Severity of Injuries in Professional Football Players. Clin. J. Sport Med. 2019, 29, 57–61. [Google Scholar] [CrossRef]
- Massidda, M.; Miyamoto-Mikami, E.; Kumagai, H.; Ikeda, H.; Shimasaki, Y.; Yoshimura, M.; Cugia, P.; Piras, F.; Scorcu, M.; Kikuchi, N.; et al. Association between the ACE I/D polymorphism and muscle injuries in Italian and Japanese elite football players. J. Sport. Sci. 2020, 38, 2423–2429. [Google Scholar] [CrossRef]
- Lim, T.; Santiago, C.; Pareja-Galeano, H.; Iturriaga, T.; Sosa-Pedreschi, A.; Fuku, N.; Pérez-Ruiz, M.; Yvert, T. Genetic variations associated with non-contact muscle injuries in sport: A systematic review. Scand. J. Med. Sci. Sport. 2021, 31, 2014–2032. [Google Scholar] [CrossRef] [PubMed]
- Larruskain, J.; Celorrio, D.; Barrio, I.; Odriozola, A.; Gil, S.M.; Fernandez-Lopez, J.R.; Nozal, R.; Ortuzar, I.; Lekue, J.A.; Aznar, J.M. Genetic Variants and Hamstring Injury in Soccer: An Association and Validation Study. Med. Sci. Sport. Exerc. 2018, 50, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Moreno, V.; Areces, F.; Ruiz-Vicente, D.; Ordovas, J.M.; Del Coso, J. Influence of the ACTN3 R577X genotype on the injury epidemiology of marathon runners. PLoS ONE 2020, 15, e0227548. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, N.; Miyamoto-Mikami, E.; Hirata, K.; Kimura, N.; Fuku, N. Association analysis of the ACTN3 R577X polymorphism with passive muscle stiffness and muscle strain injury. Scand. J. Med. Sci. Sport. 2018, 28, 1209–1214. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, K.I. The ACTN3 Gene is a Potential Biomarker for the Risk of Non-Contact Sports Injury in Female Athletes. J. Mol. Biomark. Diagn. 2015, s6, 1–7. [Google Scholar] [CrossRef]
- Fuller, C.W.; Ekstrand, J.; Junge, A.; Andersen, T.E.; Bahr, R.; Dvorak, J.; Hägglund, M.; McCrory, P.; Meeuwisse, W.H. Consensus statement on injury definitions and data collection procedures in studies of football (soccer) injuries. Br. J. Sport. Med. 2006, 40, 193–201. [Google Scholar] [CrossRef]
- Mills, M.; Yang, N.; Weinberger, R.; Vander Woude, D.L.; Beggs, A.H.; Easteal, S.; North, K. Differential expression of the actin-binding proteins, alpha-actinin-2 and -3, in different species: Implications for the evolution of functional redundancy. Hum. Mol. Genet. 2001, 10, 1335–1346. [Google Scholar] [CrossRef] [Green Version]
- Moraes, V.N.; Trape, A.; Ferezin, L.P.; Goncalves, T.C.P.; Monteiro, C.P.; Junior, C.R.B. Association of ACE ID and ACTN3 C>T genetic polymorphisms with response to a multicomponent training program in physical performance in women from 50 to 70 years. Sci. Sport. 2018, 5, 282–290. [Google Scholar] [CrossRef]
- Shanmugam, V.; Sell, K.W.; Saha, B.K. Mistyping ACE heterozygotes. PCR Methods Appl. 1993, 3, 120–121. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez-Hellin, J.; Baltazar-Martins, G.; Aguilar-Navarro, M.; Ruiz-Moreno, C.; Olivan, J.; Del Coso, J. Effect of ACTN3 R577X Genotype on Injury Epidemiology in Elite Endurance Runners. Genes 2021, 12, 76. [Google Scholar] [CrossRef]
- Del Coso, J.; Rodas, G.; Buil, M.A.; Sanchez-Sanchez, J.; Lopez, P.; Gonzalez-Rodenas, J.; Gasulla-Anglés, P.; López-Samanes, Á.; Hernández-Sánchez, S.; Iztueta, A.; et al. Association of the ACTN3 rs1815739 Polymorphism with Physical Performance and Injury Incidence in Professional Women Football Players. Genes 2022, 13, 1635. [Google Scholar] [CrossRef] [PubMed]
- Vincent, B.; Windelinckx, A.; Nielens, H.; Ramaekers, M.; Van Leemputte, M.; Hespel, P.; Thomis, M. Protective role of alpha-actinin-3 in the response to an acute eccentric exercise bout. J. Appl. Physiol. 2010, 109, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Deuster, P.A.; Contreras-Sesvold, C.L.; O’Connor, F.G.; Campbell, W.W.; Kenney, K.; Capacchione, J.F.; Landau, M.E.; Muldoon, S.M.; Rushing, E.J.; Heled, Y. Genetic polymorphisms associated with exertional rhabdomyolysis. Eur. J. Appl. Physiol. 2013, 113, 1997–2004. [Google Scholar] [CrossRef] [PubMed]
- Lee, F.X.; Houweling, P.J.; North, K.N.; Quinlan, K.G. How does alpha-actinin-3 deficiency alter muscle function? Mechanistic insights into ACTN3, the ‘gene for speed’. Biochim. Biophys. Acta 2016, 1863, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Seto, J.T.; Lek, M.; Quinlan, K.G.; Houweling, P.J.; Zheng, X.F.; Garton, F.; MacArthur, D.G.; Raftery, J.M.; Garvey, S.M.; Hauser, M.A.; et al. Deficiency of alpha-actinin-3 is associated with increased susceptibility to contraction-induced damage and skeletal muscle remodeling. Hum. Mol. Genet. 2011, 20, 2914–2927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Coso, J.; Salinero, J.J.; Lara, B.; Gallo-Salazar, C.; Areces, F.; Herrero, D.; Puente, C. Polygenic Profile and Exercise-Induced Muscle Damage by a Competitive Half-Ironman. J. Strength Cond. Res. 2020, 34, 1400–1408. [Google Scholar] [CrossRef]
- Del Coso, J.; Valero, M.; Salinero, J.J.; Lara, B.; Gallo-Salazar, C.; Areces, F. Optimum polygenic profile to resist exertional rhabdomyolysis during a marathon. PLoS ONE 2017, 12, e0172965. [Google Scholar]
- Vaughan, D.; Brogioli, M.; Maier, T.; White, A.; Waldron, S.; Rittweger, J.; Toigo, M.; Wettstein, J.; Laczko, E.; Flück, M. The Angiotensin Converting Enzyme Insertion/Deletion Polymorphism Modifies Exercise-Induced Muscle Metabolism. PLoS ONE 2016, 11, e0149046. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, H.E.; Clarkson, P.; Dollery, C.M.; Prasad, K.; Losi, M.A.; Hemingway, H.; Statters, D.; Jubb, M.; Girvain, M.; Varnava, A.; et al. Association of angiotensin-converting enzyme gene I/D polymorphism with change in left ventricular mass in response to physical training. Circulation 1997, 96, 741–747. [Google Scholar] [CrossRef]
- Fluck, M.; Kramer, M.; Fitze, D.P.; Kasper, S.; Franchi, M.V.; Valdivieso, P. Cellular Aspects of Muscle Specialization Demonstrate Genotype-Phenotype Interaction Effects in Athletes. Front. Physiol. 2019, 10, 526. [Google Scholar] [CrossRef] [Green Version]
- Sierra, A.P.R.; Lima, G.H.O.; da Silva, E.D.; Maciel, J.F.S.; Benetti, M.P.; de Oliveira, R.A.; Martins, P.F.D.O.; Kiss, M.A.P.; Ghorayeb, N.; Newsholme, P.; et al. Angiotensin-Converting Enzyme Related-Polymorphisms on Inflammation, Muscle and Myocardial Damage After a Marathon Race. Front. Genet. 2019, 10, 984. [Google Scholar] [CrossRef] [PubMed]
- Hofman, Z.; de Maat, S.; Hack, C.E.; Maas, C. Bradykinin: Inflammatory Product of the Coagulation System. Clin. Rev. Allergy Immunol. 2016, 51, 152–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, C.; Archer, D.T.; Hogg, B.; Bush, M.; Bradley, P.S. The evolution of physical and technical performance parameters in the English Premier League. Int. J. Sport. Med. 2014, 35, 1095–1100. [Google Scholar] [CrossRef]
- Bradley, P.; Scott, D. Physical Analysis of France 2019 Shows Increase in Speed and Intensity; Fifa; 2020. Available online: https://www.fifa.com/: (accessed on 1 August 2022).
- Arnason, A.; Sigurdsson, S.B.; Gudmundsson, A.; Holme, I.; Engebretsen, L.; Bahr, R. Risk factors for injuries in football. Am. J. Sport. Med. 2004, 32 (Suppl. S1), 5S–16S. [Google Scholar] [CrossRef]
- Gabbe, B.J.; Bennell, K.L.; Finch, C.F. Why are older Australian football players at greater risk of hamstring injury? J. Sci. Med. Sport 2006, 9, 327–333. [Google Scholar] [CrossRef] [PubMed]
ACTN3 R577X | p-Value * | ACE I/D | p-Value * | |||||
---|---|---|---|---|---|---|---|---|
RR | RX | XX | II | ID | DD | |||
n (%) | 34 (40) | 38 (45.8) | 11 (13.2) | 16 (19.3) | 34 (41) | 33 (39.7) | ||
Age (years) | 24 ± 3 | 26 ± 5 | 27 ± 5 | 0.030 | 28 ± 5 | 25 ± 5 | 24 ± 4 | 0.094 |
Height (cm) | 179 ± 6 | 179 ± 6 | 180 ± 5 | 0.844 | 180 ± 6 | 180 ± 7 | 179 ± 5 | 0.733 |
Weight (kg) | 75 ± 6 | 75 ± 6 | 72 ± 5 | 0.270 | 74 ± 5 | 75 ± 6 | 74 ± 5 | 0.887 |
Experience(years) | 6 ± 4 | 8 ± 5 | 9 ± 5 | 0.079 | 10 ± 5 | 7 ± 5 | 7 ± 5 | 0.059 |
Injury Occurrences | |||
---|---|---|---|
Non-Severe | Severe | p-Value | |
n | 89 | 10 | |
Age (years) | 26.5 ± 4.9 | 25.2 ± 4.8 | 0.426 |
Height (cm) | 180 ± 6 | 180 ± 4 | 0.905 |
Weight (kg) | 75 ± 6 | 71 ± 5 | 0.032 |
Experience (years) | 8 ± 4 | 8 ± 5 | 0.560 |
Genotype | Dominant Model | Recessive Model | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RR | RX | XX | RR + RX | XX | RR | XX + RX | Genotype | Dominant | Recessive | ||
Severity (n) | Severe | 1 | 3 | 6 | 4 | 6 | 1 | 9 | 0.001 | <0.001 | 0.182 |
Non-Severe | 26 | 53 | 10 | 80 | 9 | 26 | 63 | ||||
Injury/Season | 0.70 ± 1.01 | 1.18 ± 1.43 | 1.25 ± 0.86 | 0.96 ± 1.27 | 1.25 ± 0.86 | 0.70 ± 1.00 | 1.19 ± 1.33 | 0.213 | 0.496 | 0.079 |
Genotype | Dominant Model | Recessive Model | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
II | ID | DD | II | ID+DD | II+ID | DD | Genotype | Dominant | Recessive | ||
Severity (n) | Severe | 2 | 2 | 6 | 2 | 8 | 4 | 6 | 0.154 | 0.499 | 0.063 |
Non-Severe | 29 | 36 | 24 | 29 | 60 | 65 | 24 | ||||
Injury/Season | 1.59 ± 1.51 | 0.93 ± 1.19 | 0.77 ± 1.03 | 1.59 ± 1.51 | 0.85 ± 1.11 | 1.12 ± 1.34 | 0.78 ± 1.01 | 0.085 | 0.03 | 0.198 |
p-Value | Odds Ratio | 95% CI | ||
---|---|---|---|---|
Model 1 | ACTN3 | 0.010 | 5.141 | 1.472–17.961 |
Weight (kg) | 0.183 | 0.907 | 0.785–1.047 | |
Experience (years) | 0.959 | 0.996 | 0.848–1.169 | |
Model 2 | ACE | 0.080 | 3.437 | 0.862–13.701 |
Weight (kg) | 0.066 | 0.877 | 0.762–1.009 | |
Experience (years) | 0.818 | 0.983 | 0.846–1.141 | |
Model 3 | ACTN3 | 0.011 | 4.972 | 1.445–17.105 |
ACE | 0.081 | 3.748 | 0.850–16.533 | |
Weight (kg) | 0.889 | 0.910 | 0.776–1.067 | |
Experience (years) | 0.711 | 1.012 | 0.858–1.193 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Almeida, K.Y.; Cetolin, T.; Marrero, A.R.; Aguiar Junior, A.S.; Mohr, P.; Kikuchi, N. A Pilot Study on the Prediction of Non-Contact Muscle Injuries Based on ACTN3 R577X and ACE I/D Polymorphisms in Professional Soccer Athletes. Genes 2022, 13, 2009. https://doi.org/10.3390/genes13112009
de Almeida KY, Cetolin T, Marrero AR, Aguiar Junior AS, Mohr P, Kikuchi N. A Pilot Study on the Prediction of Non-Contact Muscle Injuries Based on ACTN3 R577X and ACE I/D Polymorphisms in Professional Soccer Athletes. Genes. 2022; 13(11):2009. https://doi.org/10.3390/genes13112009
Chicago/Turabian Stylede Almeida, Kathleen Y., Tiago Cetolin, Andrea Rita Marrero, Aderbal Silva Aguiar Junior, Pedro Mohr, and Naoki Kikuchi. 2022. "A Pilot Study on the Prediction of Non-Contact Muscle Injuries Based on ACTN3 R577X and ACE I/D Polymorphisms in Professional Soccer Athletes" Genes 13, no. 11: 2009. https://doi.org/10.3390/genes13112009
APA Stylede Almeida, K. Y., Cetolin, T., Marrero, A. R., Aguiar Junior, A. S., Mohr, P., & Kikuchi, N. (2022). A Pilot Study on the Prediction of Non-Contact Muscle Injuries Based on ACTN3 R577X and ACE I/D Polymorphisms in Professional Soccer Athletes. Genes, 13(11), 2009. https://doi.org/10.3390/genes13112009