Impact of Methionine Synthase Reductase Polymorphisms in Chronic Myeloid Leukemia Patients
Abstract
:Highlights
- Our objective was to determine the relationship between the methionine synthase reductase polymorphisms (MTRR and MTR) and the risk of developing chronic myeloid leukemia (CML) in Sudanese Patients.
- Here, we report that the heterozygous and homozygous mutant genotypes of MTRR polymorphisms were associated with a decreased risk of developing CML in the Sudanese population asa protective factor.
- Our findings will help to increase the understanding of MTRR A66G polymorphism and its association with CML risk in the Sudanese population.
Abstract
1. Introduction
2. Methodology
2.1. Genotype Analysis of MTRR A66G
2.2. Ethics
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soverini, S.; Mancini, M.; Bavaro, L.; Cavo, M.; Martinelli, G. Chronic myeloid leukemia: The paradigm of targeting oncogenic tyrosine kinase signaling and counteracting resistance for successful cancer therapy. Mol. Cancer 2018, 17, 49. [Google Scholar] [CrossRef] [PubMed]
- Jaitly, V.; Wang, W.; Hu, S. Philadelphia chromosome-negative acute myeloid leukemia with 11q23/MLL translocation in a patient with chronic myelogenous leukemia. Stem Cell Investig. 2015, 2, 13. [Google Scholar] [PubMed]
- Kang, Z.-J.; Liu, Y.-F.; Xu, L.-Z.; Long, Z.-J.; Huang, D.; Yang, Y.; Liu, B.; Feng, J.-X.; Pan, Y.-J.; Yan, J.-S.; et al. The Philadelphia chromosome in leukemogenesis. Chin. J. Cancer 2016, 35, 48. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, E.; Kantarjian, H. Chronic myeloid leukemia: 2014 update on diagnosis, monitoring, and management. Am. J. Hematol. 2014, 89, 547–556. [Google Scholar] [CrossRef]
- Hao, T.; Li-Talley, M.; Buck, A.; Chen, W. An emerging trend of rapid increase of leukemia but not all cancers in the aging population in the United States. Sci. Rep. 2019, 9, 12070. [Google Scholar] [CrossRef]
- Henke, O.; Mapendo, P.J.; Mkwizu, E.W.; le Coutre, P. Early molecular response in East African Philadelphia chromosome-positive chronic myeloid leukaemia patients treated with Imatinib and barriers to access treatment. Ecancermedicalscience 2020, 14, 1089. [Google Scholar] [CrossRef]
- Entesar, M.T.; Hiba, B.K.; Jeremy, M.; Abozer, Y.E. Evaluation of genetic polymorphisms of N-acetyltransferase 2 and relation with chronic myeloid leukemia. Asian Pac. J. Cancer Prev. 2020, 21, 3711–3717. [Google Scholar]
- Wiseman, M.J. Nutrition and cancer: Prevention and survival. Br. J. Nutr. 2019, 122, 481–487. [Google Scholar] [CrossRef]
- Kawakita, D.; Lee, Y.-C.A.; Gren, L.H.; Buys, S.S.; La Vecchia, C.; Hashibe, M. The impact of folate intake on the risk of head and neck cancer in the prostate, lung, colorectal, and ovarian cancer screening trial (PLCO) cohort. Br. J. Cancer 2018, 118, 299–306. [Google Scholar] [CrossRef]
- Minatel, B.C.; Sage, A.P.; Anderson, C.; Hubaux, R.; Marshall, E.A.; Lam, W.L.; Martinez, V.D. Environmental arsenic exposure: From genetic susceptibility to pathogenesis. Environ. Int. 2018, 112, 183–197. [Google Scholar] [CrossRef]
- Lewandowska, A.M.; Rudzki, M.; Rudzki, S.; Lewandowski, T.; Laskowska, B. Environmental risk factors for cancer-review paper. Ann. Agric. Environ. Med. 2019, 26, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S. Genetic variation as a modifier of association between therapeutic exposure and subsequent malignant neoplasms in cancer survivors. Cancer 2015, 121, 648–663. [Google Scholar] [CrossRef] [PubMed]
- Saracyn, M.; Płoski, R.; Niemczyk, S. Contemporary role of medical genetics in internal medicine. Arch. Med. Sci. 2013, 9, 594. [Google Scholar] [CrossRef] [PubMed]
- Peres, N.P.; Galbiatti-Dias, A.L.S.; Castanhole-Nunes, M.M.U.; da Silva, R.F.; Pavarino, É.C.; Goloni-Bertollo, E.M.; Ruiz-Cintra, M.T. Polymorphisms of folate metabolism genes in patients with cirrhosis and hepatocellular carcinoma. World J. Hepatol. 2016, 8, 1234. [Google Scholar] [CrossRef]
- de Lima, E.L.S.; da Silva, V.C.; da Silva, H.D.A.; Bezerra, A.M.; de Morais, V.L.L.; de Morais, A.L.; Cruz, R.V.; Barros, M.H.M.; Hassan, R.; de Freitas, A.C.; et al. MTR polymorphic variant A2756G and retinoblastoma risk in Brazilian children. Pediatr. Blood Cancer 2010, 54, 904–908. [Google Scholar] [CrossRef]
- Wu, X.; Zou, T.; Cao, N.; Ni, J.; Xu, W.; Zhou, T.; Wang, X. Plasma homocysteine levels and genetic polymorphisms in folate metablism are associated with breast cancer risk in chinese women. Hered. Cancer Clin. Pract. 2014, 12, 2. [Google Scholar] [CrossRef]
- Asante, I.; Chui, D.; Pei, H.; Zhou, E.; De Giovanni, C.; Conti, D.; Louie, S. Alterations in folate-dependent one-carbon metabolism as colon cell transition from normal to cancerous. J. Nutr. Biochem. 2019, 69, 1–9. [Google Scholar] [CrossRef]
- Fang, D.H.; Ji, Q.; Fan, C.H.; An, Q.; Li, J. Methionine synthase reductase A66G polymorphism and leukemia risk: Evidence from published studies. Leuk. Lymphoma 2014, 55, 1910–1914. [Google Scholar] [CrossRef]
- Wang, P.; Li, S.; Wang, M.; He, J.; Xi, S. Association of MTRR A66G polymorphism with cancer susceptibility: Evidence from 85 studies. J. Cancer 2017, 8, 266–277. [Google Scholar] [CrossRef]
- Pabalan, N.; Singian, E.; Tabangay, L.; Jarjanazi, H.; Singh, N. Associations of the A66G methionine synthase reductase polymorphism in colorectal cancer: A systematic review and meta-analysis: Supplementary issue: Biomarkers for colon cancer. Biomark. Cancer 2015, 7, BIC-S25251. [Google Scholar] [CrossRef]
- Gaughan, D.J.; Kluijtmans, L.A.; Barbaux, S.; McMaster, D.; Young, I.S.; Yarnell, J.W.; Etvans, A.; Whitehead, A.S. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis 2001, 157, 451–456. [Google Scholar] [CrossRef]
- Basir, A. Methionine synthase reductase-A66G and -C524T single nucleotide polymorphisms and prostate cancer: A case-control trial. Asian Pac. J. Cancer Prev. 2019, 20, 1445–1451. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, L.; Wang, J.; Qiu, L.; Mi, Y.; Ma, X.; Xiao, Z. Polymorphisms in folate-related genes: Impact on risk of adult acute lymphoblastic leukemia rather than pediatric in Han Chinese. Leuk. Lymphoma 2011, 52, 1770–1776. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.N.; Kim, Y.-K.; Lee, I.-K.; Yang, D.-H.; Lee, J.-J.; Shin, M.-H.; Park, K.-S.; Choi, J.-S.; Park, M.R.; Jo, D.Y.; et al. Association between polymorphisms of folate-metabolizing enzymes and hematological malignancies. Leuk. Res. 2009, 33, 82–87. [Google Scholar] [CrossRef]
- Aksoy-Sagirli, P.; Erdenay, A.; Kaytan-Saglam, E.; Kizir, A. Association of three single nucleotide polymorphisms in MTR and MTRR genes with lung cancer in a Turkish population. Genet. Test. Mol. Biomarkers 2017, 21, 428–432. [Google Scholar] [CrossRef]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef]
- Rai, V.; Yadav, U.; Kumar, P.; Yadav, S.K. Analysis of methionine synthase reductase polymorphism (A66G) in Indian Muslim population. Indian J. Hum. Genet. 2013, 19, 183. [Google Scholar] [CrossRef]
- Gra, O.A.; Glotov, A.S.; Kozhekbayeva, Z.M.; Makarova, O.V.; Nasedkina, T.V. Genetic polymorphism of GST, NAT2, and MTRR and susceptibility to childhood acute leukemia. Mol. Biol. 2008, 42, 187. [Google Scholar] [CrossRef]
- Nasri, K.; Midani, F.; Kallel, A.; Jemaa, N.B.; Aloui, M.; Boulares, M.; Lassoued, M.; Ben Halima, M.; Ben Wafi, S.; Soussi, M.; et al. Association of MTHFR C677T, MTHFR A1298C, and MTRR A66G polymorphisms with neural tube defects in Tunisian parents. Pathobiology 2019, 86, 190–200. [Google Scholar] [CrossRef]
- Zhao, T.; Gu, D.; Xu, Z.; Huo, X.; Shen, L.; Wang, C.; Tang, Y.; Wu, P.; He, J.; Gong, W.; et al. Polymorphism in one-carbon metabolism pathway affects survival of gastric cancer patients: Large and comprehensive study. Oncotarget 2015, 6, 9564. [Google Scholar] [CrossRef]
- Gong, J.M.; Shen, Y.; Shan, W.W.; He, Y.X. The association between MTHFR polymorphism and cervical cancer. Sci. Rep. 2018, 8, 7244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwak, S.Y.; Kim, U.K.; Cho, H.J.; Lee, H.K.; Kim, H.J.; Kim, N.K.; Hwang, S.G. Methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) gene polymorphisms as risk factors for hepatocellular carcinoma in a Korean population. Anticancer Res. 2008, 28, 2807–2811. [Google Scholar] [PubMed]
- Gast, A.; Bermejo, J.L.; Flohr, T.; Stanulla, M.; Burwinkel, B.; Schrappe, M.; Bartram, C.R.; Hemminki, K.; Kumar, R. Folate metabolic gene polymorphisms and childhood acute lymphoblastic leukemia: A case-control study. Leukemia 2007, 21, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Hairong, H.; Gonghao, H.; Taotao, W.; Jiangxia, C.; Wang, Y.; Zheng, X.; Dong, Y.; Lu, J. Methylenetetrahydrofolate reductase gene polymorphisms contribute to acute myeloid leukemia and chronic myeloid leukemia susceptibilities: Evidence from meta-analyses. Cancer Epidemiol. 2014, 38, 471–478. [Google Scholar]
- de Jonge, R.; Tissing, W.J.; Hooijberg, J.H.; Jansen, G.; Kaspers, G.J.; Lindemans, J.; Peters, G.J.; Pieters, R. Polymorphisms in folate-related genes and risk of pediatric acute lymphoblastic leukemia. Blood J. Am. Soc. Hematol. 2009, 113, 2284–2289. [Google Scholar] [CrossRef] [PubMed]
- Tebien, E.M.; Elderdery, A.Y.; Mills, J.; Khalil, H.B. Detection of Genetic polymorphisms of Methylene tetrahydrofolate reductase among Sudanese patients with chronic myeloid leukemia. Pak. J. Med. Health Sci. 2019, 13, 1325–1329. [Google Scholar]
- Hu, H.D.; Shen, C.; Meng, X.; Bai, J.; Chen, F.; Yu, Y.; Jin, Y.; Fu, S. Methionine synthase reductase A66G polymorphism contributes to tumor susceptibility: Evidence from 35 case–control studies. Mol. Biol. Rep. 2012, 39, 805–816. [Google Scholar]
- Suzuki, T.; Matsuo, K.; Hirose, K.; Hiraki, A.; Kawase, T.; Watanabe, M.; Yamashita, T.; Iwata, H.; Tajima, K. One-carbon metabolism-related gene polymorphisms and risk of breast cancer. Carcinogenesis 2008, 29, 356–362. [Google Scholar] [CrossRef]
- Yang, B.; Fan, S.; Zhi, X.; Wang, D.; Li, Y.; Wang, Y.; Wang, Y.; Wei, J.; Zheng, Q.; Sun, G. Associations of MTHFR C677T and MTRR A66G gene polymorphisms with metabolic syndrome: A case-control study in Northern China. Int. J. Mol. Sci. 2014, 15, 21687–21702. [Google Scholar] [CrossRef]
- Flores, K.G.; Stidley, C.A.; Mackey, A.J.; Picchi, M.A.; Stabler, S.P.; Siegfried, J.M.; Byers, T.; Berwick, M.; Belinsky, S.A.; Leng, S. Sex-specific association of sequence variants in CBS and MTRR with risk for promoter hypermethylation in the lung epithelium of smokers. Carcinogenesis 2012, 33, 1542–1547. [Google Scholar] [CrossRef]
Variables | MTRR AA | MTRR AG | MTRR GG | Total | p-Value |
---|---|---|---|---|---|
Age by years | |||||
(Mean ± SD) | 45.59 ± 12.3 | 43.64 ± 13.7 | 46.00 ± 10.7 | 45.06 ± 12.37 | 1.47 |
(Median) | 46 | 44 | 47 | 45 | 1.4 |
Gender (n)% | |||||
Males | 44 (22.0%) | 49 (24.5%) | 39 (19.5%) | 132 (66.0%) | 0.178 |
Females | 19 (9.5%) | 20 (10.0%) | 29 (14.5%) | 68 (34.0%) | 0.17 |
Genotype | CML N% | Controls N% | OR (95% CI) | p-Value |
---|---|---|---|---|
AA | 6331.5 | 1313.0 | Reference | |
AG | 6934.5 | 3939.0 | 0.365 (0.179–0.746) | 0.006 * |
GG | 6834.0 | 4848.0 | 0.292 (0.145–0.590) | 0.001 * |
AG + GG | 13,768.35 | 8787.0 | 0.146 (0.162–0.662) | 0.002 * |
A allele | 19,548.75 | 6532.5 | Reference | |
G allele | 20,551.25 | 13,567.5 | 0.506 (0.355–0.7292) | 0.000 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elderdery, A.Y.; Tebein, E.M.; Alenazy, F.O.; Elkhalifa, A.M.E.; Shalabi, M.G.; Abbas, A.M.; Alhassan, H.H.; Davuljigari, C.B.; Mills, J. Impact of Methionine Synthase Reductase Polymorphisms in Chronic Myeloid Leukemia Patients. Genes 2022, 13, 1729. https://doi.org/10.3390/genes13101729
Elderdery AY, Tebein EM, Alenazy FO, Elkhalifa AME, Shalabi MG, Abbas AM, Alhassan HH, Davuljigari CB, Mills J. Impact of Methionine Synthase Reductase Polymorphisms in Chronic Myeloid Leukemia Patients. Genes. 2022; 13(10):1729. https://doi.org/10.3390/genes13101729
Chicago/Turabian StyleElderdery, Abozer Y., Entesar M. Tebein, Fawaz O. Alenazy, Ahmed M. E. Elkhalifa, Manar G. Shalabi, Anass M. Abbas, Hassan H. Alhassan, Chand B. Davuljigari, and Jeremy Mills. 2022. "Impact of Methionine Synthase Reductase Polymorphisms in Chronic Myeloid Leukemia Patients" Genes 13, no. 10: 1729. https://doi.org/10.3390/genes13101729
APA StyleElderdery, A. Y., Tebein, E. M., Alenazy, F. O., Elkhalifa, A. M. E., Shalabi, M. G., Abbas, A. M., Alhassan, H. H., Davuljigari, C. B., & Mills, J. (2022). Impact of Methionine Synthase Reductase Polymorphisms in Chronic Myeloid Leukemia Patients. Genes, 13(10), 1729. https://doi.org/10.3390/genes13101729