Single Nucleotide Polymorphisms of Immunity-Related Genes and Their Effects on Immunophenotypes in Different Pig Breeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Bioinformatics and Primer Design
2.3. Genomic DNA Isolation
2.4. Amplification-Refractory Mutation System-Polymerase Chain Reaction and Restriction Enzyme Digestion
2.5. Isolation of PBMCs and Immunofluorescent Staining
2.6. Antibodies
2.7. Statistical Analysis
3. Results
3.1. Genotype Distribution of Single Nucleotide Polymorphisms in Cytokine Genes in Association with Different Pig Breeds and Correlation with Their Immunophenotypes
3.2. Genotype Distribution of Single Nucleotide Polymorphisms in Chemokines Genes in Association with Different Pig Breeds and Correlation with Their Immunophenotypes
3.3. Genotype Distribution of Single Nucleotide Polymorphisms in Toll-Like Receptor Genes in Association with Different Pig Breeds and Correlation with Immunophenotypes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Lonergan, S.M.; Huff-Lonergan, E.; Rowe, L.J.; Kuhlers, D.L.; Jungst, S.B. Selection for lean growth efficiency in Duroc pigs influences pork quality1. J. Anim. Sci. 2001, 79, 2075–2085. [Google Scholar] [CrossRef] [Green Version]
- Wilkie, B.; Mallard, B. Selection for high immune response: An alternative approach to animal health maintenance? Vet. Immunol. Immunopathol. 1999, 72, 231–235. [Google Scholar] [CrossRef]
- Groenen, M.A.M.; Archibald, A.L.; Uenishi, H.; Tuggle, C.K.; Takeuchi, Y.; Rothschild, M.F.; Rogel-Gaillard, C.; Park, C.; Milan, D.; Megens, H.-J.; et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 2012, 491, 393–398. [Google Scholar] [CrossRef]
- Flori, L.; Gao, Y.; Laloe, D.; Lemonnier, G.; Leplat, J.J.; Teillaud, A.; Cossalter, A.M.; Laffitte, J.; Pinton, P.; de Vaureix, C.; et al. Immunity traits in pigs: Substantial genetic variation and limited covariation. PLoS ONE 2011, 6, e22717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballester, M.; Ramayo-Caldas, Y.; González-Rodríguez, O.; Pascual, M.; Reixach, J.; Díaz, M.; Blanc, F.; López-Serrano, S.; Tibau, J.; Quintanilla, R. Genetic parameters and associated genomic regions for global immunocompetence and other health-related traits in pigs. Sci. Rep. 2020, 10, 18462. [Google Scholar] [CrossRef]
- Knap, P.W.; Bishop, S.C. Relationships between genetic change and infectious disease in domestic livestock. BSAP Occas. Publ. 2000, 27, 65–80. [Google Scholar] [CrossRef] [Green Version]
- Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int Rev. Immunol. 2011, 30, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Mogensen, T.H.; Paludan, S.R. Molecular pathways in virus-induced cytokine production. Microbiol. Mol. Biol. Rev. 2001, 65, 131–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindahl, P.; Gresser, I.; Leary, P.; Tovey, M. Interferon Treatment of Mice: Enhanced Expression of Histocompatibility Antigens on Lymphoid Cells. Proc. Natl. Acad. Sci. USA 1976, 73, 1284–1287. [Google Scholar] [CrossRef] [Green Version]
- Curtsinger, J.M.; Valenzuela, J.O.; Agarwal, P.; Lins, D.; Mescher, M.F. Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J. Immunol. 2005, 174, 4465–4469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt, E.; Hoehn, P.; Huels, C.; Goedert, S.; Palm, N.; Rüde, E.; Germann, T. T helper type 1 development of naive CD4+ T cells requires the coordinate action of interleukin-12 and interferon-γ and is inhibited by transforming growth factor-β. Eur. J. Immunol. 1994, 24, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Henry, J.; Miller, M.M.; Pontarotti, P. Structure and evolution of the extended B7 family. Immunol. Today 1999, 20, 285–288. [Google Scholar] [CrossRef]
- Gu, L.; Okada, Y.; Clinton, S.K.; Gerard, C.; Sukhova, G.K.; Libby, P.; Rollins, B.J. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell 1998, 2, 275–281. [Google Scholar] [CrossRef]
- Inaba, K.; Inaba, M.; Romani, N.; Aya, H.; Deguchi, M.; Ikehara, S.; Muramatsu, S.; Steinman, R.M. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 1992, 176, 1693–1702. [Google Scholar] [CrossRef]
- Bellone, G.; Astarita, P.; Artusio, E.; Silvestri, S.; Mareschi, K.; Turletti, A.; Buttiglieri, S.; Emanuelli, G.; Matera, L. Bone marrow stroma-derived prolactin is involved in basal and platelet-activating factor-stimulated in vitro erythropoiesis. Blood 1997, 90, 21–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robert, F.; Pelletier, J. Exploring the Impact of Single-Nucleotide Polymorphisms on Translation. Front. Genet. 2018, 9, 507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, S.; Zhou, D.C.; Oh, C.; Jayasinghe, R.G.; Zhao, Y.; Yoon, C.J.; Wyczalkowski, M.A.; Bailey, M.H.; Tsou, T.; Gao, Q.; et al. Discovery of driver non-coding splice-site-creating mutations in cancer. Nat. Commun. 2020, 11, 5573. [Google Scholar] [CrossRef]
- Shaul, O. How introns enhance gene expression. Int. J. Biochem. Cell Biol. 2017, 91, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Carmel, L.; Chorev, M. The Function of Introns. Front. Genet. 2012, 3, 55. [Google Scholar] [CrossRef] [Green Version]
- Bidwell, J.; Keen, L.; Gallagher, G.; Kimberly, R.; Huizinga, T.; McDermott, M.F.; Oksenberg, J.; McNicholl, J.; Pociot, F.; Hardt, C.; et al. Cytokine gene polymorphism in human disease: On-line databases. Genes Immun. 1999, 1, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Rubin, C.-J.; Megens, H.-J.; Barrio, A.M.; Maqbool, K.; Sayyab, S.; Schwochow, D.; Wang, C.; Carlborg, Ö.; Jern, P.; Jørgensen, C.B.; et al. Strong signatures of selection in the domestic pig genome. Proc. Natl. Acad. Sci. USA 2012, 109, 19529–19536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.J.; Humphries, S.E. Cytokine and cytokine receptor gene polymorphisms and their functionality. Cytokine Growth Factor Rev. 2009, 20, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Rittersma, S.Z.; Kremer Hovinga, J.A.; Koch, K.T.; Boekholdt, S.M.; van Aken, B.E.; Scheepmaker, A.; Bax, M.; Schotborgh, C.E.; Piek, J.J.; Tijssen, J.G.; et al. Relationship between in vitro lipopolysaccharide-induced cytokine response in whole blood, angiographic in-stent restenosis, and toll-like receptor 4 gene polymorphisms. Clin. Chem. 2005, 51, 516–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clop, A.; Huisman, A.; van As, P.; Sharaf, A.; Derdak, S.; Sanchez, A. Identification of genetic variation in the swine toll-like receptors and development of a porcine TLR genotyping array. Genet. Sel. Evol. 2016, 48, 28. [Google Scholar] [CrossRef] [Green Version]
- Uenishi, H.; Shinkai, H. Porcine Toll-like receptors: The front line of pathogen monitoring and possible implications for disease resistance. Dev. Comp. Immunol. 2009, 33, 353–361. [Google Scholar] [CrossRef]
- Morozumi, T.; Uenishi, H. Polymorphism distribution and structural conservation in RNA-sensing Toll-like receptors 3, 7, and 8 in pigs. Biochim. Biophys. Acta 2009, 1790, 267–274. [Google Scholar] [CrossRef]
- Chen, Y.C.; Hsu, J.T.; Chien, C.C.; Leu, Y.C.; Chyr, C.Y.; Lin, D.Y.; Lin, E.C.; Chen, C.H.; Wang, P.H. Investigation of genetic relationships among Taiwan black pigs and other pig breeds in Taiwan based on microsatellite markers. Anim. Biotechnol. 2012, 23, 278–290. [Google Scholar] [CrossRef]
- Galina-Pantoja, L.; Siggens, K.; Van Schriek, M.G.M.; Heuven, H.C.M. Mapping markers linked to porcine salmonellosis susceptibility. Anim. Genet. 2009, 40, 795–803. [Google Scholar] [CrossRef]
- Reiner, G.; Fischer, R.; Hepp, S.; Berge, T.; Köhler, F.; Willems, H. Quantitative trait loci for white blood cell numbers in swine. Anim. Genet. 2008, 39, 163–168. [Google Scholar] [CrossRef]
- Zhang, C.; Plastow, G. Genomic Diversity in Pig (Sus scrofa) and its Comparison with Human and other Livestock. Curr. Genomics 2011, 12, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Bergman, I.M.; Rosengren, J.K.; Edman, K.; Edfors, I. European wild boars and domestic pigs display different polymorphic patterns in the Toll-like receptor (TLR) 1, TLR2, and TLR6 genes. Immunogenetics 2010, 62, 49–58. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, H.; Borg, B.B.; Su, X.; Rhodes, S.L.; Yang, K.; Tong, X.; Tang, G.; Howell, C.D.; Rosen, H.R.; et al. A functional SNP of interferon-γ gene is important for interferon-α-induced and spontaneous recovery from hepatitis C virus infection. Proc. Natl. Acad. Sci. USA 2007, 104, 985–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pena i SubirÀ, R.N.; Chung, C.J.; Cha, S.-H.; Grimm, A.L.; Ajithdoss, D.; Rzepka, J.; Chung, G.; Yu, J.; Davis, W.C.; Ho, C.-S. Pigs that recover from porcine reproduction and respiratory syndrome virus infection develop cytotoxic CD4+CD8+ and CD4+CD8− T-cells that kill virus infected cells. PLoS ONE 2018, 13, e0203482. [Google Scholar] [CrossRef] [Green Version]
- Pauly, T.; Elbers, K.; König, M.; Lengsfeld, T.; Saalmüller, A.; Thiel, H.-J. Classical swine fever virus-specific cytotoxic T lymphocytes and identification of a T cell epitope. J. Gen. Virol. 1995, 76, 3039–3049. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.S.; Liu, C.F.; Lee, M.S.; Chen, T.F.; Su, T.M.; Yen, N.T.; Liao, C.W.; Hwang, Y.J.; Chang, H.L.; Chen, Y.S. Investigation on the reproductive and growth perfor- mance of TLRI Black Pigs. J. Taiwan Livest. 2003, 36, 317–325. [Google Scholar]
- Chomarat, P.; Dantin, C.; Bennett, L.; Banchereau, J.; Palucka, A.K. TNF skews monocyte differentiation from macrophages to dendritic cells. J. Immunol. 2003, 171, 2262–2269. [Google Scholar] [CrossRef] [PubMed]
- Clay, H.; Volkman, H.E.; Ramakrishnan, L. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 2008, 29, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Hornell, T.M.; Beresford, G.W.; Bushey, A.; Boss, J.M.; Mellins, E.D. Regulation of the class II MHC pathway in primary human monocytes by granulocyte-macrophage colony-stimulating factor. J. Immunol. 2003, 171, 2374–2383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thye, T.; Nejentsev, S.; Intemann, C.D.; Browne, E.N.; Chinbuah, M.A.; Gyapong, J.; Osei, I.; Owusu-Dabo, E.; Zeitels, L.R.; Herb, F.; et al. MCP-1 promoter variant -362C associated with protection from pulmonary tuberculosis in Ghana, West Africa. Hum. Mol. Genet. 2009, 18, 381–388. [Google Scholar] [CrossRef]
- Wang, T.; Dai, H.; Wan, N.; Moore, Y.; Dai, Z. The role for monocyte chemoattractant protein-1 in the generation and function of memory CD8+ T cells. J. Immunol. 2008, 180, 2886–2893. [Google Scholar] [CrossRef] [Green Version]
- Napolitani, G.; Rinaldi, A.; Bertoni, F.; Sallusto, F.; Lanzavecchia, A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol. 2005, 6, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Cargill, E.J.; Womack, J.E. Detection of polymorphisms in bovine toll-like receptors 3, 7, 8, and 9. Genomics 2007, 89, 745–755. [Google Scholar] [CrossRef] [Green Version]
- Bidwell, J.; Keen, L.; Gallagher, G.; Kimberly, R.; Huizinga, T.; McDermott, M.F.; Oksenberg, J.; McNicholl, J.; Pociot, F.; Hardt, C.; et al. Cytokine gene polymorphism in human disease: On-line databases, supplement 1. Genes Immun. 2001, 2, 61–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haukim, N.; Bidwell, J.; Smith, A.; Keen, L.; Gallagher, G.; Kimberly, R.; Huizinga, T.; McDermott, M.; Oksenberg, J.; McNicholl, J. Cytokine gene polymorphism in human disease: On-line databases, supplement 2. Genes Immun. 2002, 3, 313–330. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Huda, S.; Sinha Babu, S.P. Toll-like receptor polymorphism in host immune response to infectious diseases: A review. Scand. J. Immunol. 2019, 90, e12771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Gomes, R.; Costa, V.; Santos, P.; Charneca, R.; Zhang, Y.P.; Liu, X.H.; Wang, S.Q.; Bento, P.; Nunes, J.L.; et al. How immunogenetically different are domestic pigs from wild boars: A perspective from single-nucleotide polymorphisms of 19 immunity-related candidate genes. Immunogenetics 2013, 65, 737–748. [Google Scholar] [CrossRef] [Green Version]
- Keel, B.N.; Nonneman, D.J.; Lindholm-Perry, A.K.; Oliver, W.T.; Rohrer, G.A. Porcine single nucleotide polymorphisms and their functional effect: An update. BMC Res. Notes 2018, 11, 860. [Google Scholar] [CrossRef]
- Kumar, S.; Banks, T.W.; Cloutier, S. SNP Discovery through Next-Generation Sequencing and Its Applications. Int. J. Plant. Genomics 2012, 2012, 831460. [Google Scholar] [CrossRef]
SNP No. | SNPs | PCR Annealing (°C) | PCR Product (bp) | Restriction Enzyme |
---|---|---|---|---|
SNP1 | IFN-α (-235) | 54 | 212 | * |
SNP2 | IFN-γ (382) | 53 | 507 | * |
SNP3 | IFN-γ (490) | 50 | 836 | SspI |
SNP4 | TNF-α (366) | 54 | 352 | BtsCI |
SNP5 | TNF-α (755) | 53 | 174 | * |
SNP6 | TNF-α (1219) | 59 | 550 | * |
SNP7 | GM-CSF (193) | 53 | 1046 | ApaLI |
SNP8 | GM-CSF (245) | 55 | 437 | BccI |
SNP9 | GM-CSF (741) | 53 | 421 | * |
SNP10 | GM-CSF (753) | 53 | 1046 | BsoBI |
SNP11 | GM-CSF (782) | 54 | 469 | TseI |
SNP12 | MCP-1 (273) | 54 | 252 | * |
SNP13 | MCP-1 (336) | 52 | 443 | BtsI |
SNP14 | MCP-1 (351) | 52 | 443 | Bsp1286I |
SNP15 | MCP-1 (360) | 52 | 443 | MseI |
SNP16 | MCP-1 (383) | 52 | 443 | BtsCI |
SNP17 | TLR 3 (95) | 53 | 926 | * |
SNP18 | TLR 3 (159) | 55 | 857 | * |
SNP19 | TLR 3 (405) | 55 | 616 | * |
SNP20 | TLR 3 (800) | 53 | 221 | * |
SNP21 | TLR 4 (-13) | 54 | 406 | * |
SNP22 | TLR 7 (-332) | 47 | 331 | * |
SNP23 | TLR 7 (66) | 55 | 562 | * |
SNP24 | TLR 7 (357) | 55 | 272 | * |
SNP25 | TLR 7 (1413) | 59 | 899 | * |
SNP26 | TLR 7 (1633) | 55 | 677 | * |
SNP27 | TLR 7 (2034) | 55 | 346 | * |
SNP28 | TLR 7 (22,996) | 47 | 459 | * |
SNP29 | TLR 8 (14) | 47 | 739 | * |
SNP30 | TLR 8 (41) | 55 | 1029 | * |
SNP31 | TLR 8 (124) | 52 | 628 | * |
SNP32 | TLR 8 (176) | 55 | 577 | * |
SNP33 | TLR 8 (265) | 56 | 807 | * |
SNP34 | TLR 8 (534) | 56 | 402 | * |
SNP35 | TLR 8 (570) | 59 | 377 | * |
SNP36 | TLR 9 (872) | 55 | 681 | * |
SNP37 | TLR 9 (905) | 55 | 653 | MSPA1I |
SNP38 | TLR 9 (1126) | 57 | 506 | * |
SNP39 | TLR 9 (1186) | 55 | 367 | * |
Cytokine Polymorphism | Genotype Frequencies among Breed | |||||
---|---|---|---|---|---|---|
Genotype | Taiwan Black n (%) | Duroc n (%) | Landrace n (%) | Yorkshire n (%) | Landrace Yorkshire n (%) | p-Value a |
SNP1: IFN-α (−235) | n = 27 | n = 27 | n = 30 | n = 26 | n = 77 | |
A/A | 10 (37.04) | 0 | 2 (6.67) | 0 | 22 (28.57) | |
A/G | 3 (11.11) | 20 (74.07) | 26 (86.67) | 25 (96.15) | 35 (45.45) | <0.0001 |
G/G | 14 (51.85) | 7 (25.93) | 2 (6.67) | 1 (3.85) | 20 (25.97) | |
Allele frequency p-value b | 0.57 | 0.63 | 0.5 | 0.51 | 0.49 | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | <0.0001 | 0.002 | <0.0001 | <0.0001 | 0.428 | |
SNP2: IFN-γ (382) | n = 27 | n = 27 | n = 30 | n = 26 | n = 77 | |
C/C | 3 (11.1) | 12 (44.44) | 10 (33.33) | 1 (3.85) | 29 (37.66) | |
C/T | 23 (85.2) | 15 (55.56) | 17 (56.67) | 12 (46.15) | 48 (62.34) | <0.0001 |
T/T | 1 (3.7) | 0 | 3 (10) | 13 (50) | 0 | |
Allele frequency p-value b | 0.46 | 0.28 | 0.38 | 0.73 | 0.28 | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | 0.0002 | 0.456 | 0.276 | 0.378 | 0.001 | |
SNP3: IFN-γ (490) | n = 24 | n = 27 | n = 30 | n = 26 | n = 77 | |
G/G | 9 (37.5) | 0 | 12 (40) | 10 (38.46) | 6 (7.89) | |
G/T | 9 (37.5) | 13 (48.15) | 15 (50) | 14 (53.85) | 47 (61.84) | <0.0001 |
T/T | 6 (25) | 14 (51.85) | 3 (10) | 2 (7.69) | 23 (30.26) | |
Allele frequency p-value b | 0.44 | 0.76 | 0.35 | 0.35 | 0.61 | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | 0.243 | 0.099 | 0.588 | 0.333 | 0.008 | |
SNP4: TNF-α (366) | n = 24 | n = 25 | n = 30 | n = 26 | n = 75 | |
A/A | 12 (50) | 12 (48) | 0 | 0 | 17 (22.67) | |
A/G | 9 (37.5) | 3 (12) | 2 (6.67) | 3 (11.54) | 7 (9.33) | <0.0001 |
G/G | 3 (12.5) | 10 (40) | 28 (93.33) | 23 (88.46) | 51 (68) | |
Allele frequency p-value b | 0.31 | 0.46 | 0.97 | 0.94 | 0.73 | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | 0.532 | <0.0001 | 0.85 | 0.754 | <0.0001 | |
SNP5: TNF-α (755) | n = 27 | n = 27 | n = 30 | n = 26 | n = 77 | |
C/C | 3 (11.11) | 1 (3.7) | 12 (40) | 12 (46.15) | 13 (16.88) | |
C/T | 10 (37.04) | 16 (59.26) | 16 (53.33) | 13 (50) | 62 (80.52) | <0.0001 |
T/T | 14 (51.85) | 10 (37.04) | 2 (6.67) | 1 (3.85) | 2 (2.6) | |
Allele frequency p-value b | 0.7 | 0.67 | 0.33 | 0.29 | 0.43 | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | 0.561 | 0.083 | 0.273 | 0.266 | <0.0001 | |
SNP6: TNF-α (1219) | n = 26 | n = 27 | n = 30 | n = 26 | n = 77 | |
A/A | 10 (38.46) | 0 | 0 | 0 | 2 (2.6) | |
A/G | 15 (57.69) | 26 (96.3) | 7 (23.33) | 6 (23.08) | 67 (87.01) | <0.0001 |
G/G | 1 (3.85) | 1 (3.7) | 23 (76.67) | 20 (76.92) | 8 (10.39) | |
Allele frequency p-value b | 0.33 | 0.52 | 0.88 | 0.88 | 0.54 | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | 0.112 | <0.0001 | 0.469 | 0.505 | <0.0001 | |
SNP7: GM-CSF (193) | n = 21 | n = 27 | n = 30 | n = 25 | n = 76 | |
C/C | 0 | 0 | 11 (36.67) | 3 (12) | 4 (5.63) | |
C/T | 1 (4.76) | 9 (33.33) | 14 (46.67) | 8 (32) | 35 (49.3) | <0.0001 |
T/T | 20 (95.24) | 18 (66.67) | 5 (16.67) | 14 (56) | 32 (45.07) | |
Allele frequency p-value b | 0.98 | 0.83 | 0.4 | 0.72 | 0.7 | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | 0.911 | 0.29 | 0.87 | 0.302 | 0.158 | |
SNP8: GM-CSF (245) | n = 19 | n = 27 | n = 30 | n = 26 | n = 45 | |
C/C | 2 (10.53) | 4 (14.81) | 0 | 1 (3.85) | 1 (2.22) | |
C/T | 10 (52.63) | 4 (14.81) | 22 (73.33) | 1(3.85) | 26 (57.78) | <0.0001 |
T/T | 7 (36.84) | 19 (70.37) | 8 (26.67) | 24 (92.31) | 18 (40) | |
Allele frequency p-value b | 0.63 | 0.78 | 0.63 | 0.94 | 0.69 | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | 0.568 | 0.002 | 0.001 | 0.0009 | 0.019 | |
SNP10: GM-CSF (753) | n = 21 | n = 27 | n = 30 | n = 26 | n = 47 | |
C/C | 3 (14.29) | 6 (22.22) | 7 (23.33) | 3 (11.54) | 27 (57.45) | |
C/T | 9 (42.86) | 16(59.26) | 19 (63.33) | 23 (88.46) | 0 | <0.0001 |
T/T | 9 (42.86) | 5(18.52) | 4 (13.33) | 0 | 20 (42.55) | |
Allele frequency p-value b | 0.64 | 0.48 | 0.45 | 0.44 | 0.43 | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | 0.759 | 0.427 | 0.125 | <0.0001 | <0.0001 | |
SNP11: GM-CSF (782) | n = 23 | n = 27 | n = 30 | n = 26 | n = 75 | |
C/C | 20 (86.96) | 17 (62.96) | 6 (20) | 14 (53.85) | 22 (29.33) | |
C/T | 3 (13.04) | 10 (37.04) | 14 (46.67) | 10 (38.46) | 35 (46.67) | <0.0001 |
T/T | 0 | 0 | 10 (33.33) | 2 (7.69) | 18 (24) | |
Allele frequency p-value b | 0.07 | 0.19 | 0.57 | 0.27 | 0.47 | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | 0.737 | 0.237 | 0.785 | 0.908 | 0.579 |
Cytokine Polymorphism | Immunity Parameters (%) | Genotype | ||
---|---|---|---|---|
1 | 2 | 3 | ||
SNP1: IFN-α(-235) | A/A | A/G | G/G | |
CD8 | 25.68 ± 3.22 a | 20.27 ± 1.18 a | 32.86 ± 2.42 b | |
CD4:CD8 ratio | 1.39 ± 0.22 ab | 1.66 ± 0.14 a | 1.07 ± 0.09 b | |
MHCII | 23.79 ± 2.45 a | 31.86 ± 1.32 b | 23.75 ± 1.95 a | |
SNP2: IFN-γ (382) | C/C | C/T | T/T | |
CD4 | 27.96 ± 2.61 a | 26.8 ± 1.22 a | 17.72 ± 2.30 b | |
SNP3: IFN-γ (490) | G/G | G/T | T/T | |
CD8 | 28.55 ± 2.79 a | 47.43 ± 4.5 b | 22.9 ± 1.95 a | |
MHCII | 33.21 ± 2.48 a | 55.88 ± 4.18 b | 24.06 ± 1.76 c | |
SNP4: TNF-α (366) | A/A | A/G | G/G | |
CD8 | 26.13 ± 2.87 a | 28.57 ± 3.33 a | 22.24 ± 1.25 b | |
MHCII | 29.06 ± 2.23 a | 23.07 ± 2.26 b | 29.83 ± 1.39 a | |
SNP5: TNF-α (755) | C/C | C/T | T/T | |
CD4 | 29.19 ± 3.01 a | 26.79 ± 1.29 ab | 20.31 ± 1.75 a | |
CD8 | 26.8 ± 1.98 a | 20.99 ± 1.28 b | 34.05 ± 3.29 | |
CD4:CD8 ratio | 1.2 ± 0.14 a | 1.73 ± 0.13 b | 0.74 ± 0.09 a | |
MHCII | 36.68 ± 2.20 a | 25.55 ± 1.25 b | 32.29 ± 2.38 a | |
SNP6: TNF-α (1219) | A/A | A/G | G/G | |
CD8 | 41.04 ± 3.22 a | 21.34 ± 1.35 b | 25.85 ± 1.88 b | |
CD4:CD8 ratio | 0.65 ± 0.12 | 1.6 ± 0.11 | 1.42 ± 0.21 | |
MHCII | 31.83 ± 2.62 a | 25.14 ± 1.25 b | 35.64 ± 1.86 a | |
SNP8: GM-CSF (245) | C/C | C/T | T/T | |
CD4 | 21.31 ± 4.08 a | 30.75 ± 2.06 b | 23.36 ± 1.74 a | |
CD8 | 19.58 ± 3.62 a | 29.41 ± 2.07 b | 22.35 ± 1.30 a | |
MHCII | 14.23 ± 4.28 a | 30.14 ± 1.93 b | 31.19 ± 1.63 b | |
SNP10: GM-CSF (753) | C/C | C/T | T/T | |
CD4 | 31.78 ± 2.29 a | 24.13 ± 1.88 b | 23.81 ± 2.34 b | |
MHCII | 21.07 ± 2.29 a | 35.9 ± 1.52 b | 29.15 ± 2.84 b | |
SNP11: GM-CSF (782) | C/C | C/T | T/T | |
CD8 | 25.86 ± 1.85 a | 24.29 ± 1.60 a | 18.26 ± 2.81 b | |
CD4:CD8 ratio | 1.23 ± 0.10 a | 1.47 ± 0.16 a | 2.18 ± 0.33 b |
Chemokine Polymorphism | Genotype Frequencies among Breed | |||||
---|---|---|---|---|---|---|
Genotype | Taiwan Black n (%) | Duroc n (%) | Landrace n (%) | Yorkshire n (%) | Landrace Yorkshire n (%) | p-Value a |
SNP15: MCP-1 (360) | n = 27 | n = 27 | n = 30 | n = 26 | n = 77 | |
C/C | 25 (92.59) | 6 (22.22) | 7 (23.33) | 3 (11.54) | 27 (35.06) | |
C/T | 2 (7.41) | 1 (3.7) | 3 (10) | 0 | 0 | <0.0001 |
T/T | 0 | 20 (74.07) | 20 (66.67) | 23 (88.46) | 50 (64.94) | |
Allele frequency p-value b | 0.04 | 0.76 | 0.72 | 0.88 | 0.65 | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | 0.841 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
SNP16: MCP-1 (383) | n = 27 | n = 27 | n = 30 | n = 26 | n = 77 | |
A/A | 23 (85.19) | 16 (59.26) | 27 (90) | 21 (80.77) | 77 (100) | |
A/G | 2 (7.41) | 10 (37.04) | 0 | 5 (19.23) | 0 | <0.0001 |
G/G | 2 (7.41) | 1 (3.7) | 3 (10) | 0 | 0 | |
Allele frequency p-value b | 0.11 | 0.22 | 0.1 | 0.1 | - | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | 0.001 | 0.71 | <0.0001 | 0.587 | - |
Chemokine Polymorphism | Immune Parameter (%) | Genotype | ||
---|---|---|---|---|
1 | 2 | 3 | ||
SNP13: MCP-1 (336) | A/A | A/C | C/C | |
MHCII | 7.45 ± 0.55 a | 28.49 ± 1.01 b | 38.48 ± 6.75 c | |
SNP15: MCP-1 (360) | C/C | C/T | T/T | |
CD4 | 28.92 ± 1.70 ab | 32.86 ± 9.92 a | 23.98 ± 1.31 a | |
CD8 | 31.26 ± 2.07 a | 32.46 ± 6.49 a | 18.92 ± 1.00 b | |
CD4:CD8 ratio | 1.18 ± 0.09 a | 1.11 ± 0.23 a | 1.7 ± 0.15 b | |
MHCII | 23.97 ± 1.59 a | 39.7 ± 11.81 b | 31.33 ±1.19 b | |
SNP16:MCP-1 (383) | A/A | A/G | G/G | |
CD8 | 24.66 ± 1.22 a | 16.94 ± 1.71 b | 32.46 ± 6.49 c |
TLR Polymorphism | Genotype Frequencies among Breed | |||||
---|---|---|---|---|---|---|
Genotype | Taiwan Black n (%) | Duroc n (%) | Landrace n (%) | Yorkshire n (%) | Landrace Yorkshire n (%) | p-Value a |
SNP17: TLR3 (95) | n = 25 | n = 26 | n = 30 | n = 26 | n = 77 | |
A/A | 10 (40) | 4 (15.38) | 10 (33.33) | 0 | 5 (6.49) | |
A/G | 4 (16) | 1 (3.85) | 0 | 0 | 4 (5.19) | <0.0001 |
G/G | 11 (44) | 21 (80.77) | 20 (66.67) | 26 (100) | 68 (88.31) | |
Allele frequency p-value b | 0.52 | 0.83 | 0.67 | 1 | 0.91 | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | 0.0006 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
SNP20: TLR3 (800) | n = 27 | n = 26 | n = 30 | n = 26 | n = 77 | |
C/T | 8 (29.63) | 25 (96.15) | 29 (96.67) | 25 (96.15) | 69 (89.61) | <0.0001 |
T/T | 19 (70.37) | 1 (3.85) | 1 (3.33) | 1 (3.85) | 8 (10.39) | |
Allele frequency p-value b | 0.85 | 0.52 | 0.52 | 0.52 | 0.55 | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | 0.366 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
SNP23: TLR7 (66) | n = 27 | n = 26 | n = 30 | n = 13 | n = 77 | |
C/T | 3 (11.11) | 0 | 4 (13.33) | 1 (3.85) | 32 (41.56) | <0.0001 |
T/T | 24 (88.89) | 26 (100) | 26 (86.67) | 12 (96.15) | 45 (58.44) | |
Allele frequency p-value b | 0.94 | 1 | 0.93 | 0.96 | 0.79 | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | 0.759 | - | 0.695 | 0.885 | 0.021 | |
SNP24: TLR7 (357) | n = 26 | n = 27 | n = 29 | n = 26 | n = 77 | |
A/G | 12 (46.15) | 22 (84.62) | 20 (68.97) | 13 (50) | 67 (87.01) | <0.0001 |
G/G | 14 (53.85) | 4 (15.38) | 9 (31.03) | 13 (50) | 10 (12.99) | |
Allele frequency p-value b | 0.77 | 0.58 | 0.66 | 0.75 | 0.56 | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | 0.126 | <0.0001 | 0.004 | 0.08 | <0.0001 | |
SNP25: TLR7 (1413) | n = 23 | n = 26 | n = 30 | n = 27 | n = 77 | |
C/T | 2 (8.7) | 13 (50) | 25 (83.33) | 13 (46.15) | 35 (45.45) | <0.0001 |
T/T | 21 (91.3) | 13 (50) | 5 (16.67) | 14 (53.85) | 42 (54.55) | |
Allele frequency p-value b | 0.96 | 0.75 | 0.58 | 0.76 | 0.77 | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | 0.827 | 0.089 | <0.0001 | 0.099 | 0.009 | |
SNP27: TLR7 (2034) | n = 27 | n = 26 | n = 29 | n = 26 | n = 77 | |
A/A | 11 (40.74) | 0 | 0 | 1 (3.85) | 0 | <0.0001 |
A/G | 16 (59.26) | 26 (100) | 29 (100) | 25 (96.15) | 77 (100) | |
Allele frequency p-value b | 0.3 | 0.5 | 0.5 | 0.48 | 0.5 | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | 0.028 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
SNP30: TLR8 (41) | n = 27 | n = 26 | n = 30 | n = 26 | n = 77 | |
G/G | 0 | 0 | 1 (3.33) | 0 | 3 (3.9) | |
G/T | 7 (25.93) | 0 | 11 (36.67) | 24 (92.31) | 29 (37.66) | <0.0001 |
T/T | 20 (74.07) | 26 (100) | 18 (60) | 2 (7.69) | 45 (58.44) | |
Allele frequency p-value b | 0.87 | 1 | 0.78 | 0.54 | 0.77 | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | 0.438 | - | 0.66 | <0.0001 | 0.525 | |
SNP34: TLR8 (534) | n = 27 | n = 26 | n = 30 | n = 26 | n = 77 | |
A/A | 1 (3.7) | 0 | 0 | 0 | 1 (1.3) | |
A/C | 26 (96.3) | 26 (100) | 30 (100) | 26 (100) | 52 (67.53) | <0.0001 |
C/C | 0 | 0 | 0 | 0 | 24 (31.17) | |
Allele frequency p-value b | 0.48 | 0.5 | 0.5 | 0.5 | 0.65 | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
SNP35: TLR8 (570) | n = 27 | n = 27 | n = 30 | n = 26 | n = 77 | |
A/A | 14 (51.85) | 0 | 0 | 0 | 1 (1.3) | <0.0001 |
A/T | 13 (48.15) | 26 (100) | 30 (100) | 26 (100) | 76 (98.7) | |
Allele frequency p-value b | 0.24 | 0.5 | 0.5 | 0.5 | 0.49 | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | 0.099 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
SNP39: TLR9 (1186) | n = 27 | n = 27 | n = 30 | n = 26 | n = 27 | |
C/C | 7 (25.93) | 0 | 0 | 0 | 0 | <0.0001 |
C/T | 20 (74.07) | 27 (100) | 30 (100) | 26 (100) | 27 (100) | |
Allele frequency p-value b | 0.37 | 0.5 | 0.5 | 0.5 | 0.5 | |
Genotype distribution p-value c | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
HWE p-value d | 0.002 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
TLR Polymorphism | Immune Parameter (%) | Genotype | ||
---|---|---|---|---|
1 | 2 | 3 | ||
SNP17: TLR 3 (95) | A/A | A/G | G/G | |
CD8 | 28.25 ± 2.66 ab | 33.29 ± 6.00 a | 22.44 ± 1.22 b | |
CD4:CD8 ratio | 1.02 ± 0.12 a | 0.9 ± 0.16 a | 1.63 ± 0.12 b | |
SNP18: TLR 3 (159) | C/C | C/T | T/T | |
CD4:CD8 ratio | 1.64 ± 0.21 a | 1.82 ± 0.23 a | 1.28 ± 0.07 b | |
SNP21: TLR 4 (-13) | A/A | A/G | G/G | |
CD8 | 15.85 ± 1.54 a | 22.46 ± 1.36 a | 15.64 ± 1.32 a | |
MHCII | 23.31 ± 1.82 a | 37.23 ± 1.49 b | 17.59 ± 1.45 c | |
SNP34: TLR 8 (534) | A/A | A/C | C/C | |
CD4 | 36.25 ± 11.05 a | 24.34 ± 1.00 b | 39.27 ± 4.18 a | |
CD8 | 32.85 ± 11.05 a | 22.53 ± 1.11 b | 35.65 ± 3.77 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, A.Y.-A.; Huang, C.-W.; Liu, S.-H.; Liu, A.-C.; Chaung, H.-C. Single Nucleotide Polymorphisms of Immunity-Related Genes and Their Effects on Immunophenotypes in Different Pig Breeds. Genes 2021, 12, 1377. https://doi.org/10.3390/genes12091377
Chen AY-A, Huang C-W, Liu S-H, Liu A-C, Chaung H-C. Single Nucleotide Polymorphisms of Immunity-Related Genes and Their Effects on Immunophenotypes in Different Pig Breeds. Genes. 2021; 12(9):1377. https://doi.org/10.3390/genes12091377
Chicago/Turabian StyleChen, Ann Ying-An, Chao-Wei Huang, Shyh-Hwa Liu, An-Chi Liu, and Hso-Chi Chaung. 2021. "Single Nucleotide Polymorphisms of Immunity-Related Genes and Their Effects on Immunophenotypes in Different Pig Breeds" Genes 12, no. 9: 1377. https://doi.org/10.3390/genes12091377
APA StyleChen, A. Y.-A., Huang, C.-W., Liu, S.-H., Liu, A.-C., & Chaung, H.-C. (2021). Single Nucleotide Polymorphisms of Immunity-Related Genes and Their Effects on Immunophenotypes in Different Pig Breeds. Genes, 12(9), 1377. https://doi.org/10.3390/genes12091377