Successful Genetic Screening and Creating Awareness of Familial Hypercholesterolemia and Other Heritable Dyslipidemias in the Netherlands
Abstract
:1. Non-Communicable Diseases–Cardiovascular Diseases
2. Familial Hypercholesterolemia
3. Lipids and Dyslipidemia
4. The Dutch FH Screening Project
5. Screening beyond FH; Inclusion of 24 Additional Genes of the Cholesterol Metabolism
6. Lessons from NGS Dyslipidemia Panel
7. Heritable Hypertriglyceridemia
8. Future Directions
9. Discovery of Genes Led to Therapeutic Interventions
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization Noncommunicable Diseases. Fact Sheets 2021. Available online: www.who.int (accessed on 26 July 2021).
- Eurostat Statistics. Cardiovascular Diseases Statistics July 2018. Available online: www.ec.europa.eu (accessed on 26 July 2021).
- Khera, A.V.; Wonn, H.H.; Peloso, G.M.; Lawson, K.M.; Bartz, T.M.; Deng, X.; van Leeuwen, E.M.; Natarajan, P.; Emdin, C.A.; Bick, A.G.; et al. Diagnostic Yield and Clinical Utility of Sequencing Familial Hypercholesterolemia Genes in Patients with Severe Hypercholesterolemia. J. Am. Coll. Cardiol. 2016, 67, 2578–2589. [Google Scholar] [CrossRef] [PubMed]
- Watts, G.F.; Sullivan, D.R.; Van Bockxmeer, F.M.; Poplawski, N.; Hamilton-Craig, I.; Clifton, P.; O’Brien, R.; George, P.M.; Burnett, J.R. A Model of Care for Familial Hypercholesterolaemia: Key Role for Clinical Biochemistry. Clin. Biochem. Rev. 2012, 33, 25–31. [Google Scholar]
- Goldstein, J.L.; Hobbs, H.H.; Brown, M.S. Familial Hypercholesterolemia. In The Metabolic and Molecular Bases of Inherited Disease; Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, B., Eds.; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Cuchel, M.; Bruckert, E.; Ginsberg, H.N.; Raal, F.J.; Santos, R.D.; Hegele, R.A.; Kuivenhoven, J.A.; Nordestgaard, B.G.; Descamps, O.S.; Steinhagen-Thiessen, E.; et al. Homozygous familial hypercholesterolaemia: New insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 2014, 35, 2146–2157. [Google Scholar] [CrossRef] [PubMed]
- Beheshti, S.; Madsen, C.; Varbo, A.; Nordestgaard, B. Worldwide prevalence of familial hypercholesterolemia: Meta-analyses of 11 million subjects. Atherosclerosis 2020, 315, e20–e21. [Google Scholar] [CrossRef]
- Hu, P.; Dharmayat, K.I.; Stevens, C.A.T.; Sharabiani, M.T.A.; Jones, R.S.; Watts, G.F.; Genest, J.; Ray, K.K.; Vallejo-Vaz, A. Prevalence of Familial Hypercholesterolemia among the General Population and Patients with Atherosclerotic Cardiovascular Disease: A Systematic Review and Meta-Analysis. Circulation 2020, 141, 1742–1759. [Google Scholar] [CrossRef]
- Wiegman, A.; Gidding, S.S.; Watts, G.; Chapman, M.J.; Ginsberg, H.N.; Cuchel, M.; Ose, L.; Averna, M.; Boileau, C.; Borén, J.; et al. Familial hypercholesterolaemia in children and adolescents: Gaining decades of life by optimizing detection and treatment. Eur. Heart J. 2015, 36, 2425–2437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cholesterol Treatment Trialists’ (CTT) Collaboration; Baigent, C.; Blackwell, L.; Emberson, J.; Holland, L.E.; Reith, C.; Bhala, N.; Peto, R.; Barnes, E.H.; Keech, A.; et al. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010, 376, 1670–1681. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, A.C.; Hopkins, P.N.; Toth, P.P.; Ballantyne, C.M.; Rader, D.J.; Robinson, J.G.; Daniels, S.R.; Gidding, S.S.; de Ferranti, S.D.; Ito, M.K.; et al. Familial hypercholesterolemia: Screening, diagnosis and management of pediatric and adult patients: Clinical guidance from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J. Clin. Lipidol. 2011, 5, 133–140. [Google Scholar] [CrossRef]
- Boekholdt, S.M.; Hovingh, G.K.; Mora, S.; Arsenault, B.J.; Amarenco, P.; Pedersen, T.R.; LaRosa, J.C.; Waters, D.D.; DeMicco, D.A.; Simes, R.J.; et al. Very low levels of atherogenic lipoproteins and the risk for cardiovascular events: A meta-analysis of statin trials. J. Am. Coll. Cardiol. 2014, 64, 485–494. [Google Scholar] [CrossRef] [Green Version]
- Rodenburg, J.; Vissers, M.N.; Wiegman, A.; van Trotsenburg, A.S.P.; van der Graaf, A.; de Groot, E.; Wijburg, F.A.; Kastelein, J.J.P.; Hutten, B.A. Statin treatment in children with familial hypercholesterolemia: The younger, the better. Circulation 2007, 116, 664–668. [Google Scholar] [CrossRef] [Green Version]
- Silverman, M.G.; Ference, B.A.; Im, K.; Wiviott, S.D.; Gigliano, R.P.; Grundy, S.M.; Braunwald, E.; Sabatine, M.S. Association Between Lowering LDL-C and Cardiovascular Risk Reduction among Different Therapeutic Interventions: A Systematic Review and Meta-analysis. JAMA 2016, 316, 1289–1297. [Google Scholar] [CrossRef] [Green Version]
- Reeskamp, L.F. Familial Hypercholesterolemia: Closing the Loop between Molecular Genetics and Personalized Medicine, in Vascular Medicine. Ph.D. Thesis, University of Amsterdam, Amsterdam, The Netherlands, 2021. [Google Scholar]
- Horton, J.D.; Cohen, J.C.; Hobbs, H.H. PCSK9: A convertase that coordinates LDL catabolism. J. Lipid Res. 2009, 50, S172–S177. [Google Scholar] [CrossRef] [Green Version]
- Luirink, I.K.; Wiegman, A.; Kusters, D.M.; Hof, M.H.; Groothoff, J.W.; De Groot, E.; Kastelein, J.J.; Hutten, B.A. 20-Year Follow-up of Statins in Children with Familial Hypercholesterolemia. N. Engl. J. Med. 2019, 381, 1547–1556. [Google Scholar] [CrossRef] [PubMed]
- Miller, Y.; Tsimikas, S. Lipoprotein Oxidation and Modification, in Clinical Lipidology; Elsevier Inc.: Amsterdam, The Netherlands, 2009; pp. 93–110. [Google Scholar]
- Wood, D.; De Backer, G.; Faergeman, O.; Graham, I.; Mancia, G.; Pyörälä, K. Prevention of coronary heart disease in clinical practice: Recommendations of the Second Joint Task Force of European and other Societies on Coronary Prevention. Atherosclerosis 1998, 140, 199–270. [Google Scholar] [CrossRef]
- Tarugi, P.; Averna, M. Hypobetalipoproteinemia: Genetics, biochemistry, and clinical spectrum. Adv. Clin. Chem. 2011, 54, 81–107. [Google Scholar]
- Vergeer, M.; Holleboom, A.G.; Kastelein, J.J.; Kuivenhoven, J.A. The HDL hypothesis: Does high-density lipoprotein protect from atherosclerosis? J. Lipid Res. 2010, 51, 2058–2073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiegman, A.; Rodenburg, J.; de Jongh, S.; Defesche, J.C.; Bakker, H.D.; Kastelein, J.J.; Sijbrands, E.J. Family history and cardiovascular risk in familial hypercholesterolemia: Data in more than 1000 children. Circulation 2003, 107, 1473–1478. [Google Scholar] [CrossRef] [Green Version]
- Goldbourt, U.; Yaari, S.; Medalie, J.H. Isolated Low HDL Cholesterol as a Risk Factor for Coronary Heart Disease Mortality. Arter. Thromb. Vasc. Biol. 1997, 17, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Sheperd, J. Raising HDL-cholesterol and lowering CHD risk: Does intervention work? Eur. Heart J. 2005, 7, F15–F22. [Google Scholar] [CrossRef] [Green Version]
- Zanoni, P.; Khetarpal, S.A.; Larach, D.B.; Hancock-Cerutti, W.F.; Millar, J.S.; Cuchel, M.; DerOhannessian, S.; Kontush, A.; Surendran, P.; Saleheen, D.; et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science 2016, 351, 1166–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armitage, J.; Holmes, M.V.; Preiss, D. Cholesteryl Ester Transfer Protein Inhibition for Preventing Cardiovascular Events: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 73, 477–487. [Google Scholar] [CrossRef]
- Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Novel Insights from Human Studies on the Role of High-Density Lipoprotein in Mortality and Noncardiovascular Disease. Arterioscler. Thromb. Vasc. Biol. 2020, 41, 128–140. [Google Scholar] [CrossRef]
- Laufs, U.; Parhofer, K.G.; Ginsberg, H.N.; Hegele, R.A. Clinical review on triglycerides. Eur. Heart J. 2020, 41, 99–109c. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, P.W.; Grundy, S.M. The metabolic syndrome: A practical guide to origins and treatment: Part II. Circulation 2003, 108, 1537–1540. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, A.B.; Frikke-Schmidt, R.; Nordestgaard, B.G.; Tybjærg-Hansen, A. Loss-of-Function Mutations inAPOC3and Risk of Ischemic Vascular Disease. N. Engl. J. Med. 2014, 371, 32–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollin, T.I.; Damcott, C.M.; Shen, H.; Ott, S.H.; Shelton, J.; Horenstein, R.B.; Post, W.; McLenithan, J.C.; Bielak, L.F.; Peyser, P.A.; et al. A Null Mutation in Human APOC3 Confers a Favorable Plasma Lipid Profile and Apparent Cardioprotection. Science 2008, 322, 1702–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N. Engl. J. Med. 2014, 371, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Koeijvoets, K.C.; Wiegman, A.; Rodenburg, J.; Defesche, J.C.; Kastelein, J.J.; Sijbrands, E.J. Effect of low-density lipoprotein receptor mutation on lipoproteins and cardiovascular disease risk: A parent–offspring study. Atherosclerosis 2005, 180, 93–99. [Google Scholar] [CrossRef]
- Reeskamp, L.; Tromp, T.R.; Defesche, J.C.; Grefhorst, A.; Stroes, E.S.; Hovingh, G.K.; Zuurbier, L. Next-generation sequencing to confirm clinical familial hypercholesterolemia. Eur. J. Prev. Cardiol. 2020, 2047487320942996. [Google Scholar] [CrossRef] [PubMed]
- Besseling, J.; Sjouke, B.; Kastelein, J.J. Screening and treatment of familial hypercholesterolemia—Lessons from the past and opportunities for the future (based on the Anitschkow Lecture 2014). Atherosclerosis 2015, 241, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Umans-Eckenhausen, M.A.; Defesche, J.C.; Sijbrands, E.; Scheerder, R.L.; Kastelein, J.J. Review of first 5 years of screening for familial hypercholesterolaemia in the Netherlands. Lancet 2001, 357, 165–168. [Google Scholar] [CrossRef]
- Wilson, J.M.; Jungner, Y.G. Principles and practice of mass screening for disease. Bol. Pficina Sanit. Panam. 1968, 65, 281–393. [Google Scholar]
- Sjouke, B.; Hovingh, G.K.; Kastelein, J.J.; Stefanutti, C. Homozygous autosomal dominant hypercholesterolaemia: Prevalence, diagnosis, and current and future treatment perspectives. Curr. Opin. Lipidol. 2015, 26, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Pepplinkhuizen, S.; Ibrahim, S.; Vink, R.; Groot, B.; Stroes, E.S.; Bax, W.A.; Cornel, J.H. Electronic health records to facilitate continuous detection of familial hypercholesterolemia. Atherosclerosis 2020, 310, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Wald, D.S.; Bestwick, J.P.; Morris, J.; Whyte, K.; Jenkins, L.; Wald, N.J. Child–Parent Familial Hypercholesterolemia Screening in Primary Care. N. Engl. J. Med. 2016, 375, 1628–1637. [Google Scholar] [CrossRef]
- Abifadel, M.; Varret, M.; Rabès, J.-P.; Allard, D.; Ouguerram, K.; Devillers, M.; Cruaud, C.; Benjannet, S.; Wickham, L.; Erlich, D.; et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 2003, 34, 154–156. [Google Scholar] [CrossRef] [PubMed]
- Barale, C.; Melchionda, E.; Morotti, A.; Russo, I. PCSK9 Biology and Its Role in Atherothrombosis. Int. J. Mol. Sci. 2021, 22, 5880. [Google Scholar] [CrossRef]
- Feingold, K.R. Introduction to Lipids and Lipoproteins. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dungan, K., Grossman, A., Hershman, J.M., Hofland, J., Kaltsas, G., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Lewis, G.F.; Xiao, C.; Hegele, R.A. Hypertriglyceridemia in the Genomic Era: A New Paradigm. Endocr. Rev. 2015, 36, 131–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fouchier, S.W.; Kastelein, J.J.P.; Defesche, J.C. Update of the molecular basis of familial hypercholesterolemia in The Netherlands. Hum. Mutat. 2005, 26, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Van der Graaf, A.; Fouchier, S.W.; Vissers, M.N.; Defesche, J.C.; Wiegman, A.; Sankatsing, R.R.; Hutten, B.A.; Trip, M.D.; Kastelein, J.J.P. Familial defective apolipoprotein B and familial hypobetalipoproteinemia in one family: Two neutralizing mutations. Ann. Intern. Med. 2008, 148, 712–714. [Google Scholar] [CrossRef] [Green Version]
- Reeskamp, L.; Volta, A.; Zuurbier, L.; Defesche, J.C.; Hovingh, G.K.; Grefhorst, A. ABCG5 and ABCG8 genetic variants in familial hypercholesterolemia. J. Clin. Lipidol. 2020, 14, 207–217.e7. [Google Scholar] [CrossRef] [PubMed]
- Marduel, M.; Ouguerram, K.; Serre, V.; Bonnefont-Rousselot, D.; Marques-Pinheiro, A.; Erik Berge, K.; Devillers, M.; Luc, G.; Lecerf, J.; Tosolini, L.; et al. Description of a large family with autosomal dominant hypercholesterolemia associated with the APOE p.Leu167del mutation. Hum. Mutat. 2013, 34, 83–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wintjens, R.; Bozon, D.; Belabbas, K.; Mbou, F.; Girardet, J.-P.; Tounian, P.; Jolly, M.; Boccara, F.; Cohen, A.; Karsenty, A.; et al. Global molecular analysis and APOE mutations in a cohort of autosomal dominant hypercholesterolemia patients in France. J. Lipid Res. 2016, 57, 482–491. [Google Scholar] [CrossRef] [Green Version]
- Fong, V.; Patel, S.B. Recent advances in ABCG5 and ABCG8 variants. Curr. Opin. Lipidol. 2021, 32, 117–122. [Google Scholar] [CrossRef]
- Brinton, E.A.; Hopkins, P.N.; Hegele, R.A.; Geller, A.S.; Polisecki, E.Y.; Diffenderfer, M.R.; Schaefer, E.J. The association between hypercholesterolemia and sitosterolemia, and report of a sitosterolemia kindred. J. Clin. Lipidol. 2018, 12, 152–161. [Google Scholar] [CrossRef]
- Cenarro, A.; Etxebarria, A.; De Castro-Orós, I.; Stef, M.; Bea, A.M.; Palacios, L.; Mateo-Gallego, R.; Benito-Vicente, A.; Ostolaza, H.; Tejedor, T.; et al. The p.Leu167del Mutation in APOE Gene Causes Autosomal Dominant Hypercholesterolemia by Down-regulation of LDL Receptor Expression in Hepatocytes. J. Clin. Endocrinol. Metab. 2016, 101, 2113–2121. [Google Scholar] [CrossRef] [Green Version]
- Khovidhunkit, W.; Chartyingcharoen, P.; Siriwong, S.; Limumpornpetch, P.; Plengpanich, W. Resequencing CETP, LIPC and LIPG genes in Thai subjects with hyperalphalipoproteinemia. Am. J. Cardiol. 2012, 110, 62–66. [Google Scholar] [CrossRef]
- Rashidi, O.M.; Nazar, F.A.; Alama, M.N.; Awan, Z.A. Interpreting the Mechanism of APOE (p.Leu167del) Mutation in the Incidence of Familial Hypercholesterolemia; An In-silico Approach. Open Cardiovasc. Med. J. 2017, 11, 84–93. [Google Scholar] [CrossRef]
- Buonuomo, P.S.; Rabacchi, C.; Macchiaiolo, M.; Trenti, C.; Fasano, T.; Tarugi, P.; Bartuli, A.; Bertolini, S.; Calandra, S. Incidental finding of severe hypertriglyceridemia in children. Role of multiple rare variants in genes affecting plasma triglyceride. J. Clin. Lipidol. 2017, 11, 1329–1337.e3. [Google Scholar] [CrossRef]
- Hegele, R.A.; Little, J.A.; Vezina, C.; Maguire, G.F.; Tu, L.; Wolever, T.S.; Jenkins, D.J.; Connelly, P. Hepatic lipase deficiency. Clinical, biochemical, and molecular genetic characteristics. Arterioscler. Thromb. J. Vasc. Biol. 1993, 13, 720–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tani, M.; Horvath, K.V.; Lamarche, B.; Couture, P.; Burnett, J.R.; Schaefer, E.J.; Asztalos, B.F. High-density lipoprotein subpopulation profiles in lipoprotein lipase and hepatic lipase deficiency. Atherosclerosis 2016, 253, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Boer, J.M.; Kuivenhoven, J.A.; Feskens, E.; Schouten, E.G.; Havekes, L.M.; Seidell, J.; Kastelein, J.J.; Kromhout, D. Physical activity modulates the effect of a lipoprotein lipase mutation (D9N) on plasma lipids and lipoproteins. Clin. Genet. 1999, 56, 158–163. [Google Scholar] [CrossRef]
- Reymer, P.W.; Gagné, E.; Groenemeyer, B.E.; Zhang, H.; Forsyth, I.; Jansen, H.; Seidell, J.; Kromhout, D.; Lie, K.E.; Kastelein, J.; et al. A lipoprotein lipase mutation (Asn291Ser) is associated with reduced HDL cholesterol levels in premature atherosclerosis. Nat. Genet. 1995, 10, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Sullivan, D.R.; Hare, D.L.; Colquhoun, D.M.; Bates, T.R.; Ryan, J.D.; Bishop, W.; Burnett, J.R.; Bell, D.A.; Simons, L.A.; et al. Gaps in the Care of Familial Hypercholesterolaemia in Australia: First Report From the National Registry. Heart Lung Circ. 2021, 30, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Dron, J.S.; Wang, J.; McIntyre, A.D.; Iacocca, M.A.; Robinson, J.F.; Ban, M.R.; Cao, H.; Hegele, R.A. Six years’ experience with LipidSeq: Clinical and research learnings from a hybrid, targeted sequencing panel for dyslipidemias. BMC Med. Genom. 2020, 13, 23. [Google Scholar] [CrossRef] [PubMed]
- Trinder, M.; Li, X.; DeCastro, M.L.; Cermakova, L.; Sadananda, S.; Jackson, L.M.; Azizi, H.; Mancini, G.J.; Francis, G.A.; Frohlich, J.; et al. Risk of Premature Atherosclerotic Disease in Patients with Monogenic versus Polygenic Familial Hypercholesterolemia. J. Am. Coll. Cardiol. 2019, 74, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Reeskamp, L.F.; Balvers, M.; Peter, J.; van de Kerkhof, L.; Klaaijsen, L.N.; Motazacker, M.M.; Grefhorst, A.; van Riel, N.A.; Hovingh, G.K.; Defesche, J.C.; et al. Intronic variant screening with targeted next-generation sequencing reveals first pseudoexon in LDLR in familial hypercholesterolemia. Atherosclerosis 2021, 321, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Cupido, A.J.; Tromp, T.R.; Hovingh, G.K. The clinical applicability of polygenic risk scores for LDL-cholesterol: Considerations, current evidence and future perspectives. Curr. Opin. Lipidol. 2021, 32, 112–116. [Google Scholar] [CrossRef]
- Trinder, M.; Francis, G.A.; Brunham, L.R. Association of Monogenic vs Polygenic Hypercholesterolemia with Risk of Atherosclerotic Cardiovascular Disease. JAMA Cardiol. 2020, 5, 390–399. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Forgetta, V.; Zhou, S.; Bhatnagar, S.R.; Paré, G.; Richards, J.B. Polygenic Risk Score for Low-Density Lipoprotein Cholesterol Is Associated with Risk of Ischemic Heart Disease and Enriches for Individuals With Familial Hypercholesterolemia. Circ. Genom. Precis. Med. 2021, 14, 003106. [Google Scholar] [CrossRef]
- Chan, D.; Pang, J.; Hooper, A.J.; Bell, D.A.; Burnett, J.R.; Watts, G.F. Effect of Lipoprotein(a) on the Diagnosis of Familial Hypercholesterolemia: Does It Make a Difference in the Clinic? Clin. Chem. 2019, 65, 1258–1266. [Google Scholar] [CrossRef]
- Langsted, A.; Kamstrup, P.R.; Benn, M.; Tybjærg-Hansen, A.; Nordestgaard, B.G. High lipoprotein(a) as a possible cause of clinical familial hypercholesterolaemia: A prospective cohort study. Lancet Diabetes Endocrinol. 2016, 4, 577–587. [Google Scholar] [CrossRef]
- Clarke, R.; Peden, J.F.; Hopewell, J.C.; Kyriakou, T.; Goel, A.; Heath, S.; Parish, S.; Barlera, S.; Franzosi, M.G.; Rust, S.; et al. Genetic Variants Associated with Lp(a) Lipoprotein Level and Coronary Disease. N. Engl. J. Med. 2009, 361, 2518–2528. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Feng, X.; Zhou, Y. PCSK9 Variants in Familial Hypercholesterolemia: A Comprehensive Synopsis. Front. Genet. 2020, 11, 1020. [Google Scholar] [CrossRef]
- Hovingh, G.K.; Davidson, M.H.; Kastelein, J.J.; O’Connor, A.M. Diagnosis and treatment of familial hypercholesterolaemia. Eur. Heart J. 2013, 34, 962–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.C.; Boerwinkle, E.; Mosley, T.H.; Hobbs, H.H. Sequence Variations inPCSK9, Low LDL, and Protection against Coronary Heart Disease. N. Engl. J. Med. 2006, 354, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Hooper, A.J.; Marais, A.D.; Tanyanyiwa, D.M.; Burnett, J.R. The C679X mutation in PCSK9 is present and lowers blood cholesterol in a Southern African population. Atherosclerosis 2007, 193, 445–448. [Google Scholar] [CrossRef]
- Paton, D. PCSK9 inhibitors: Monoclonal antibodies for the treatment of hypercholesterolemia. Drugs Today 2016, 52, 183. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.; White, S.; Borodovsky, A.; Bettencourt, B.R.; Strahs, A.; Clausen, V.; Wijngaard, P.; Horton, J.D.; Taubel, J.; Brooks, A.; et al. A Highly Durable RNAi Therapeutic Inhibitor of PCSK9. N. Engl. J. Med. 2017, 376, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raal, F.J.; Kallend, D.; Ray, K.; Turner, T.; Koenig, W.; Wright, R.S.; Wijngaard, P.L.; Curcio, D.; Jaros, M.J.; Leiter, L.A.; et al. Inclisiran for the Treatment of Heterozygous Familial Hypercholesterolemia. N. Engl. J. Med. 2020, 382, 1520–1530. [Google Scholar] [CrossRef]
- Dewey, F.E.; Gusarova, V.; Dunbar, R.; O’Dushlaine, C.; Schurmann, C.; Gottesman, O.; McCarthy, S.; Van Hout, C.V.; Bruse, S.; Dansky, H.M.; et al. Genetic and Pharmacologic Inactivation of ANGPTL3 and Cardiovascular Disease. N. Engl. J. Med. 2017, 377, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gusarova, V.; Banfi, S.; Gromada, J.; Cohen, J.C.; Hobbs, H.H. Inactivation of ANGPTL3 reduces hepatic VLDL-triglyceride secretion. J. Lipid Res. 2015, 56, 1296–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaudet, D.; Gipe, D.A.; Pordy, R.; Ahmad, Z.; Cuchel, M.; Shah, P.K.; Chyu, K.-Y.; Sasiela, W.J.; Chan, K.-C.; Brisson, D.; et al. ANGPTL3 Inhibition in Homozygous Familial Hypercholesterolemia. N. Engl. J. Med. 2017, 377, 296–297. [Google Scholar] [CrossRef] [PubMed]
- Raal, F.J.; Rosenson, R.S.; Reeskamp, L.F.; Hovingh, G.K.; Kastelein, J.J.; Rubba, P.; Ali, S.; Banerjee, P.; Chan, K.-C.; Gipe, D.A.; et al. Evinacumab for Homozygous Familial Hypercholesterolemia. N. Engl. J. Med. 2020, 383, 711–720. [Google Scholar] [CrossRef] [PubMed]
- EMA. Available online: https://www.ema.europa.eu (accessed on 26 July 2021).
- Witztum, J.L.; Geary, R.S.; O’Dea, L. Volanesorsen, Familial Chylomicronemia Syndrome, and Thrombocytopenia. Reply. N. Engl. J. Med. 2019, 381, 2584. [Google Scholar] [CrossRef]
Phenotype/Disorder | Gene | Symbol | Ref Seq | Remarks |
---|---|---|---|---|
autosomal dominant hypercholesterolemia | low-density lipoprotein receptor | LDLR | NM_000527.4 | dominant LOF variants |
apolipoprotein B | APOB | NM_000384.2 | dominant LOF variants in exon 26 or 29; familial defective APOB-100 | |
proprotein convertase subtilisin/kexin type 9 | PCSK9 | NM_174936.3 | dominant GOF variants | |
autosomal recessive hypercholesterolemia | LDL-receptor adaptor protein-1 | LDLRAP1 | NM_015627.2 | recessive LOF variants |
lysosomal acid lipase | LIPA | NM_000235.3 | recessive LOF; Wolman disease/cholesterolester storage disease | |
ATP-binding cassette G5 | ABCG5 | NM_022436.2 | recessive LOF variants; sitosterolemia | |
ATP-binding cassette G8 | ABCG8 | NM_022437.2 | recessive LOF variants; sitosterolemia | |
hypolipoproteinemia | apolipoprotein B | APOB | NM_000384.2 | dominant LOF variants first halve of gene (gene dosage effect): hypobetalipoproteinemia |
proprotein convertase subtilisin/kexin type 9 | PCSK9 | NM_174936.3 | dominant LOF variants; hypocholesterolemia | |
angiopoietin-like 3 | ANGPTL3 | NM_014495.3 | dominant LOF variants (gene dosage effect); combined hypolipidemia | |
apolipoprotein C3 | APOC3 | NM_000040.1 | dominant LOF variants | |
microsomal triglyceride transfer protein | MTP | NM_000253.3 | recessive LOF variants; abetalipoproteinemia | |
inducible degrader of the LDL-receptor | IDOL | NM_013262.3 | alias: MYLIP, dominant LOF variants | |
hypertriglyceridemia | lipoprotein lipase | LPL | NM_000237.2 | dominant LOF variants, heterozygous need provoked by life style |
apolipoprotein C2 | APOC2 | NM_000483.4 | recessive LOF variants | |
apolipoprotein A5 | APOA5 | NM_052968.4 | dominant LOF variants | |
GPI anchored HDL binding protein 1 | GPIHBP1 | NM_178172.5 | recessive LOF variants | |
lipase maturation factor 1 | LMF1 | NM_022773.2 | recessive LOF variants | |
glycerol-3-phosphate dehydrogenase-1 | GPD1 | NM_005276.4 | recessive LOF variants; transient infantile | |
dysbetalipoproteinemia | apolipoprotein E | APOE | NM_000041.3 | recessive and dominant variants; need provoked by life style |
hypoalphalipoproteinemia | ATP-binding cassette A1 | ABCA1 | NM_005502.3 | LOF variants dominant: hypoalphalipoproteinemia; probably not fully penetrant, recessive: Tangier disease |
lecithin-cholesterol acyltransferase | LCAT | NM_000229.1 | LOF variants dominant: hypoalphalipoproteinemia, recessive: Fish Eye disease | |
apolipoprotein A1 | APOA1 | NM_000039.1 | dominant LOF variants | |
hyperalphalipoproteinemia | scavenger receptor B1 | SCARB1 | NM_005505.4 | dominant LOF variants |
cholesteryl ester transfer protein | CETP | NM_000078.2 | dominant LOF variants | |
lipase G | LIPG | NM_006033.3 | dominant LOF variants, alias: endothelial lipase | |
lipase C | LIPC | NM_000236.2 | dominant LOF variants, alias: hepatic lipase, can also increase TG | |
cerebrotendinous xanthomatosis (CTX) | cytochrome P450, family 27A, polypeptide 1 | CYP27A1 | NM_000784.3 | recessive LOF variants |
chylomicron retention disease | secretion associated Ras related GTPase 1B | SAR1B | NM_016103.3 | recessive LOF variants; Anderson disease |
drug response | cytochrome P450, family 7A, polypeptide 1 | CYP7A1 | NM_000780.3 | recessive LOF variants; statin resistance |
solute carrier organic anion transporter 1B1 | SLCO1B1 | NM_006446.4 | dominant LOF variants; statin intolerance/decreased clearance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuurbier, L.C.; Defesche, J.C.; Wiegman, A. Successful Genetic Screening and Creating Awareness of Familial Hypercholesterolemia and Other Heritable Dyslipidemias in the Netherlands. Genes 2021, 12, 1168. https://doi.org/10.3390/genes12081168
Zuurbier LC, Defesche JC, Wiegman A. Successful Genetic Screening and Creating Awareness of Familial Hypercholesterolemia and Other Heritable Dyslipidemias in the Netherlands. Genes. 2021; 12(8):1168. https://doi.org/10.3390/genes12081168
Chicago/Turabian StyleZuurbier, Linda C., Joep C. Defesche, and Albert Wiegman. 2021. "Successful Genetic Screening and Creating Awareness of Familial Hypercholesterolemia and Other Heritable Dyslipidemias in the Netherlands" Genes 12, no. 8: 1168. https://doi.org/10.3390/genes12081168
APA StyleZuurbier, L. C., Defesche, J. C., & Wiegman, A. (2021). Successful Genetic Screening and Creating Awareness of Familial Hypercholesterolemia and Other Heritable Dyslipidemias in the Netherlands. Genes, 12(8), 1168. https://doi.org/10.3390/genes12081168