Molecular Composition of Heterochromatin and Its Contribution to Chromosome Variation in the Microtus thomasi/Microtus atticus Species Complex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Individuals Analysed and Chromosome Preparations
2.2. Probes and FISH
3. Results
3.1. Hybridization Profile of Repetitive DNA Motifs in Autosomes
3.2. Hybridization Profile of Repetitive DNA Motifs in Sex Chromosome Variants
4. Discussion
4.1. Autosomal Karyotype Variation
4.2. Sex Chromosomes Variation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Raudsepp, T.; Lee, E.-J.; Kata, S.R.; Brinkmeyer, C.; Mickelson, J.R.; Skow, L.C.; Womack, J.E.; Chowdhary, B.P. Exceptional conservation of horse-human gene order on X chromosome revealed by high-resolution radiation hybrid mapping. Proc. Natl. Acad. Sci. USA 2004, 101, 2386–2391. [Google Scholar] [CrossRef] [Green Version]
- Bourque, G.; Pevzner, P.A.; Tesler, G. Reconstructing the genomic architecture of ancestral mammals: Lessons from human, mouse, and rat genomes. Genome Res. 2004, 14, 507–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachtrog, D. Y-chromosome evolution: Emerging insights into processes of Y-chromosome degeneration. Nature reviews. Genetics 2013, 14, 113–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, J.F.; Page, D.C. The Biology and Evolution of Mammalian Y Chromosomes. Annu. Rev. Genet. 2015, 49, 507–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musser, G.G.; Carleton, M.D. Superfamily Muroidea. In Mammal Species of the World: A Taxonomic and Geographic Reference; Wilson, D.E., Reeder, D.M., Eds.; JHU Press: Baltimore, MA, USA, 2005; pp. 894–1531. [Google Scholar]
- Romanenko, S.A.; Serdyukova, N.A.; Perelman, P.L.; Pavlova, S.V.; Bulatova, N.S.; Golenishchev, F.N.; Stanyon, R.; Graphodatsky, A.S. Intrachromosomal Rearrangements in Rodents from the Perspective of Comparative Region-Specific Painting. Genes 2017, 8, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romanenko, S.A.; Serdyukova, N.A.; Perelman, P.L.; Trifonov, V.A.; Golenishchev, F.N.; Bulatova, N.S.; Stanyon, R.; Graphodatsky, A.S. Multiple intrasyntenic rearrangements and rapid speciation in voles. Sci. Rep. 2018, 8, 14980. [Google Scholar] [CrossRef] [Green Version]
- Gornung, E.; Castiglia, R.; Rovatsos, M.; Marchal, J.A.; Díaz de la Guardia-Quiles, R.; Sanchez, A. Comparative cytogenetic study of two sister species of Iberian ground voles, Microtus (Terricola) duodecimcostatus and M. (T.) lusitanicus (rodentia, cricetidae). Cytogenet. Genome Res. 2011, 132, 144–150. [Google Scholar] [CrossRef]
- Vogel, W.; Jainta, S.; Rau, W.; Geerkens, C.; Baumstark, A.; Correa-Cerro, L.S.; Ebenhoch, C.; Just, W. Sex determination in Ellobius lutescens: The story of an enigma. Cytogenet. Cell Genet. 1998, 80, 214–221. [Google Scholar] [CrossRef]
- Acosta, M.J.; Marchal, J.A.; Romero-Fernández, I.; Megías-Nogales, B.; Modi, W.S.; Sánchez, A. Sequence Analysis and Mapping of the Sry Gene in Species of the Subfamily Arvicolinae (Rodentia). Sex. Dev. 2010, 4, 336–347. [Google Scholar] [CrossRef]
- Acosta, M.J.; Romero-Fernández, I.; Sánchez, A.; Marchal, J.A. Comparative analysis by chromosome painting of the sex chromosomes in arvicolid rodents. Cytogenet. Genome Res. 2011, 132, 47–54. [Google Scholar] [CrossRef]
- Borodin, P.M.; Basheva, E.A.; Torgasheva, A.A.; Dashkevich, O.A.; Golenishchev, F.N.; Kartavtseva, I.V.; Mekada, K.; Dumont, B.L. Multiple independent evolutionary losses of XY pairing at meiosis in the grey voles. Chromosome Res. 2012, 20, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Borodin, P.M.; Basheva, E.A.; Golenischev, F.N.; Dashkevich, O.A.; Kartavtseva, I.N.; Lisachov, A.P.; Torgasheva, A.A. Parallel occurrence of asynaptic sex chromosomes in gray voles (Microtus Schrank, 1798). Paleontol. J. 2013, 47, 1035–1040. [Google Scholar] [CrossRef]
- Burgos, M.; Jiménez, R.; Díaz de la Guardia, R. XY females in Microtus cabrerae (Rodentia, Microtidae): A case of possibly Y-linked sex reversal. Cytogenet. Cell Genet. 1988, 49, 275–277. [Google Scholar] [CrossRef] [PubMed]
- Lamelas, L.; Arroyo, M.; Fernández, F.J.; Marchal, J.A.; Sánchez, A. Structural and Evolutionary Relationships in the Giant Sex Chromosomes of Three Microtus Species. Genes 2018, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Marchal, J.A.; Acosta, M.J.; Bullejos, M.; Díaz de la Guardia, R.; Sánchez, A. Sex chromosomes, sex determination, and sex-linked sequences in Microtidae. Cytogenet. Genome Res. 2003, 101, 266–273. [Google Scholar] [CrossRef]
- Marchal, J.A.; Acosta, M.J.; Nietzel, H.; Sperling, K.; Bullejos, M.; Díaz de la Guardia, R.; Sánchez, A. X chromosome painting in Microtus: Origin and evolution of the giant sex chromosomes. Chromosome Res. 2004, 12, 767–776. [Google Scholar] [CrossRef]
- Marchal, J.A.; Acosta, M.J.; Bullejos, M.; Díaz de la Guardia, R.; Sánchez, A. A repeat DNA sequence from the Y chromosome in species of the genus Microtus. Chromosome Res. 2004, 12, 757–765. [Google Scholar] [CrossRef]
- Marchal, J.A.; Acosta, M.J.; Bullejos, M.; Diaz de la Guardia, R.; Sanchez, A. Origin and spread of the SRY gene on the X and Y chromosomes of the rodent Microtus cabrerae: Role of L1elements. Genomics 2008, 91, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Megías-Nogales, B.; Marchal, J.A.; Acosta, M.J.; Bullejos, M.; Díaz de la Guardia, R.; Sánchez, A. Sex chromosomes pairing in two Arvicolidae species: Microtus nivalis and Arvicola sapidus. Hereditas 2003, 138, 114–121. [Google Scholar] [CrossRef]
- Ohno, S.; Jainchill, J.; Stenius, C. The creeping vole (Microtus oregoni) as a gonosomic mosaic. I. The OY/XY constitution of the male. Cytogenetics 1963, 2, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Ohno, S.; Stenius, C.; Christian, L. The XO as the normal female of the creeping vole (Microtus oregoni). In Chromosomes Today 1; Darlington, C.D., Lewis, K.R., Eds.; Oliver & Boyd: London, UK, 1966; pp. 182–187. [Google Scholar]
- Rovatsos, M.T.; Marchal, J.A.; Romero-Fernández, I.; Arroyo, M.; Athanasopoulou, E.B.; Sánchez, A. Extensive sex chromosome polymorphism of Microtus thomasi/Microtus atticus species complex associated with cryptic chromosomal rearrangements and independent accumulation of heterochromatin. Cytogenet. Genome Res. 2017, 151, 198–207. [Google Scholar] [CrossRef]
- Sitnikova, N.A.; Romanenko, S.A.; O’Brien, P.C.; Perelman, P.L.; Fu, B.; Rubtsova, N.V.; Serdukova, N.A.; Golenishchev, F.N.; Trifonov, V.A.; Ferguson-Smith, M.A.; et al. Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). I. The genome homology of tundra vole, field vole, mouse and golden hamster revealed by comparative chromosome painting. Chromosome Res. 2007, 15, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Zakian, S.M.; Nesterova, T.B.; Cheryaukene, O.V.; Bochkarev, M.N. Heterochromatin as a factor affecting the inactivation of the X-chromosome in interspecific hybrid voles (Microtidae, Rodentia). Genet. Res. 1991, 58, 105–110. [Google Scholar] [CrossRef]
- Fredga, K.; Jaarola, M. The origin and distribution of the Lund Y chromosome in Microtus agrestis (Rodentia, Mammalia). Hereditas 1997, 126, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Mazurok, N.A.; Rubtsova, N.V.; Isaenko, A.A.; Pavlova, M.E.; Slobodyanyuk, S.Y.; Nesterova, T.B.; Zakian, S.M. Comparative chromosome and mitochondrial DNA analyses and phylogenetic relationships within common voles (Microtus, Arvicolidae). Chromosome Res. 2001, 9, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Castiglia, R.; Annesi, F.; Aloise, G.; Amori, G. Systematics of the Microtus savii complex (Rodentia, Cricetidae) via mitochondrial DNA analyses: Paraphyly and pattern of sex chromosome evolution. Mol. Phylogenet. Evol. 2008, 46, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Rubtsov, N.B.; Rubtsova, N.V.; Anopriyenko, O.V.; Karamysheva, T.V.; Shevchenko, A.I.; Mazurok, N.A.; Nesterova, T.B.; Zakian, S.M. Reorganization of the X chromosome in voles of the genus Microtus. Cytogenet. Genome Res. 2002, 99, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Romanenko, S.A.; Fedorova, Y.E.; Serdyukova, N.A.; Zaccaroni, M.; Stanyon, R.; Graphodatsky, A.S. Evolutionary rearrangements of X chromosomes in voles (Arvicolinae, Rodentia). Sci. Rep. 2020, 10, 13235. [Google Scholar] [CrossRef]
- Matthey, R. Les chromosomes sexuels géants de Microtus agrestis L. Cellule 1950, 53, 163–184. [Google Scholar]
- Burgos, M.; Jiménez, R.; Olmos, D.M.; Díaz de la Guardia, R. Heterogeneous heterochromatin and size variation in the sex chromosomes of Microtus cabrerae. Cytogenet. Cell Genet. 1988, 47, 75–79. [Google Scholar] [CrossRef]
- Burgos, M.; Olmos, D.M.; Jiménez, R.; Sánchez, A.; Díaz de la Guardia, R. Fluorescence banding in four species of Microtidae: An analysis of the evolutive changes of the constitutive heterochromatin. Genetica 1990, 81, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Modi, W.S. Heterogeneity in the concerted evolution process of a tandem satellite array in meadow mice (Microtus). J. Mol. Evol. 1993, 37, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Modi, W.S.; Serdyukova, N.A.; Vorobieva, N.V.; Graphodatsky, A.S. Chromosomal localization of six repeated DNA sequencesamong species of Microtus (Rodentia). Chromosom. Res. 2003, 11, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Acosta, M.J.; Marchal, J.A.; Mitsainas, G.P.; Rovatsos, M.T.; Fernández-Espartero, C.H.; Giagia-Athanasopoulou, E.B.; Sánchez, A. A new pericentromeric repeated DNA sequence in Microtus thomasi. Cytogenet. Genome Res. 2009, 124, 27–36. [Google Scholar] [CrossRef]
- Mitsainas, G.P.; Rovatsos, M.T.; Rizou, E.I.; Giagia-Athanasopoulou, E.B. Sex chromosome variability outlines the pathway to the chromosomal evolution in Microtus thomasi (Rodentia, Arvicolinae). Biol. J. Linn. Soc. 2009, 96, 685–695. [Google Scholar] [CrossRef] [Green Version]
- Rovatsos, M.T.; Mitsainas, G.P.; Paspali, G.; Oruci, S.; Giagia-Athanasopoulou, E.B. Geographical distribution and chromosomal study of the underground vole Microtus thomasi in Albania and Montenegro. Mamm. Biol. 2011, 76, 22–27. [Google Scholar] [CrossRef]
- Rovatsos, M.T.; Marchal, J.A.; Romero-Fernández, I.; Cano-Linares, M.; Fernández, F.J.; Giagia-Athanasopoulou, E.B.; Sánchez, A. Molecular and physical characterization of the complex pericentromeric heterochromatin of the vole species Microtus thomasi. Cytogenet. Genome Res. 2014, 144, 131–141. [Google Scholar] [CrossRef]
- Rovatsos, M.T.; Giagia-Athanasopoulou, E.B. Taxonomical status and phylogenetic relations between the “thomasi” and “atticus” chromosomal races of the underground vole Microtus thomasi (Rodentia, Arvicolinae). Mamm. Biol. 2012, 77, 6–12. [Google Scholar] [CrossRef]
- Giagia-Athanasopoulou, E.B.; Chondropoulos, B.P.; Fraguedakis-Tsolis, S.E. Robertsonian chromosomal variation in the subalpine voles Microtus (Terricola) (Rodentia, Arvicolidae) from Greece. Acta Theriol. 1995, 40, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Acosta, M.J.; Marchal, J.A.; Fernández-Espartero, C.; Romero-Fernández, I.; Rovatsos, M.T.; Giagia-Athanasopoulou, E.B.; Gornung, E.; Castiglia, R.; Sánchez, A. Characterization of the satellite DNA Msat-160 from species of Terricola (Microtus) and Arvicola (Rodentia, Arvicolinae). Genetica 2010, 138, 1085–1098. [Google Scholar] [CrossRef]
- Rovatsos, M.T.; Marchal, J.A.; Romero-Fernández, I.; Fernández, F.J.; Giagia-Athanosopoulou, E.B.; Sánchez, A. Rapid, independent, and extensive amplification of telomeric repeats in pericentromeric regions in karyotypes of arvicoline rodents. Chromosome Res. 2011, 19, 869–882. [Google Scholar] [CrossRef] [PubMed]
- Rovatsos, M.T.; Mitsainas, G.P.; Stamatopoulos, C.; Giagia-Athanasopoulou, E.B. First reports of XXY aneuploidy in natural populations of Thomas’ pine vole Microtus thomasi (Rodentia: Arvicolidae) from Greece. Mamm. Biol. 2008, 73, 342–349. [Google Scholar] [CrossRef]
- Hsu, T.C.; Patton, J.L. Bone marrow preparations for chromosome studies. In Comparative Mammalian Cytogenetics; Benirschke, K., Ed.; Springer: New York, NY, USA, 1969; pp. 454–460. [Google Scholar]
- Acosta, M.J.; Marchal, J.A.; Fernández-Espartero, C.; Bullejos, M.; Sánchez, A. Retroelements (Lines and Sines) in vole genomes: Differential distribution in the constitutive heterochromatin. Chromosome Res. 2008, 16, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Marchal, J.A.; Acosta, M.J.; Bullejos, M.; Puerma, E.; Díaz de la Guardia, R.; Sánchez, A. Distribution of l1-retroposons on the giant sex chromosomes of Microtus cabrerae (Arvicolidae, Rodentia): Functional and evolutionary implications. Chromosome Res. 2006, 14, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Frey, J.K.; Frey, B.J.; Moore, D.W. Karyotypes of the Long-Tailed Vole (Microtus longicaudus) in Isolated Mountain Ranges of the American Southwest. West. N. Am. Nat. 2009, 69, 388–390. [Google Scholar]
- Kartavtseva, I.; Sheremetyeva, I.N.; Korobitsina, K.V.; Nemkova, G.A.; Konovalova, E.V.; Korablev, V.V.; Voyta, L. Chromosomal forms of Microtus maximowiczii (Schrenck, 1859) (Rodentia, Cricetidae): Variability in 2n and NF in different geographic regions. Russ. J. Theriol. 2008, 7, 89–97. [Google Scholar] [CrossRef]
- Giagia, E.B.; Ondrias, J.C. Karyological analysis of the vole Pitymys atticus (Rodentia, Mammalia) from Greece. Biol. Gallo-Hellen 1973, 4, 205–212. [Google Scholar]
- Giagia, E.B. Karyotypes of “44-chromosomes” Pitymys species (Rodentia, Mammalia) and their distribution in southern Greece. Säugetierkund. Mitt. 1985, 32, 169–173. [Google Scholar]
- Giagia-Athanasopoulou, E.B.; Stamatopoulos, C. Geographical distribution and interpopulation variation in the karyotypes of Microtus (Terricola) thomasi (Rodentia, Arvicolidae) in Greece. Caryologia 1997, 50, 303–315. [Google Scholar] [CrossRef]
- Modi, W.S. Phylogenetic analyses of chromosomal banding patterns among the nearctic Arvicolidae (Mammalia: Rodentia). Syst. Zool. 1987, 36, 109–136. [Google Scholar] [CrossRef]
- Burgos, M.; Jiménez, R.; Díaz de la Guardia, R. Comparative study of G- and C-banded chromosomes of five species of Microtidae. A chromosomal evolution analysis. Genome 1988, 30, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Mitsainas, G.P.; Rovatsos, M.T.; Giagia-Athanasopoulou, E.B. Heterochromatin study and geographical distribution of Microtus species (Rodentia, Arvicolinae) from Greece. Mamm. Biol. 2010, 75, 261–269. [Google Scholar] [CrossRef]
- Chmátal, L.; Gabriel, S.I.; Mitsainas, G.P.; Martínez-Vargas, J.; Ventura, J.; Searle, J.B.; Schultz, R.M.; Lampson, M.A. Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Curr. Biol. 2014, 24, 2295–2300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akera, T.; Trimm, E.; Lampson, M.A. Molecular strategies of meiotic cheating by selfish centromeres. Cell 2019, 178, 1132–1144. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Kitano, J. The contribution of female meiotic drive to the evolution of neo-sex chromosomes. Evolution 2012, 66, 3198–3208. [Google Scholar] [CrossRef] [Green Version]
- Slijepcevic, P. Telomeres and mechanisms of Robertsonian fusion. Chromosoma 1998, 107, 136–140. [Google Scholar] [CrossRef]
- Searle, J.B.; Fedyk, S.; Fredga, K.; Hausser, J.; Volobouev, V.T. Nomenclature for the chromosomes of the common shrew (sorex araneus). Comp. Cytogenet. 2010, 4, 87–96. [Google Scholar] [CrossRef]
- Piálek, J.; Hauffe, H.C.; Searle, J.B. Chromosomal variation in the house mouse. Biol. J. Linn. Soc. Lond. 2005, 84, 535–563. [Google Scholar] [CrossRef] [Green Version]
- White, T.A.; Bordewich, M.; Searle, J.B. A network approach to study karyotypic evolution: The chromosomal races of the common shrew (Sorex araneus) and house mouse (Mus musculus) as model systems. Syst. Biol. 2010, 59, 262–276. [Google Scholar] [CrossRef] [Green Version]
Locality | Specimen | Chr. Racea | 2n | FN | Sex | pX-chr b | pY-chr b |
---|---|---|---|---|---|---|---|
M. thomasi | |||||||
Xirokampi, Greece | R14 | “thomasi” | 44 | 44 | male | X1 | Y1 |
Kalavryta, Greece | D41 | “peloponnesiacus” | 44 | 46 | female | X13 | |
Strofylia, Greece | R32 * | “peloponnesiacus” | 45 | 47 | male | X13 | Y1 |
Galaxidi, Greece | R33 | “thomasi” | 44 | 44 | male | X4 | Y4 |
Ano Tichio, Greece | R117 | hybrid “tichio” × “Rb subalpine” | 41 | 43 | male | X5 | Y7 |
Astakos, Greece | R22 | hybrid “thomasi” × “Rb subalpine” | 44 | 44 | male | X4 | Y7 |
Mpalntouma, Greece | D20 | hybrid “thomasi” × “Rb subalpine” | 43 | 44 | female | X14–X2 | |
Mpalntouma, Greece | 7889 | hybrid “Preveza” × “Rb subalpine” | 41 | 44 | male | X14 | Y4 |
Kastrosikia, Greece | R196 | “Preveza” | 40 | 42 | male | X11 | Y3 |
R18 | “Preveza” | 40 | 42 | male | X12 | Y9 | |
Tyrnavos, Greece | R30 | “thomasi” | 44 | 44 | male | X11 | Y6 |
Kali, Greece | R233 | “Kali” | 40 | 42 | male | X10 | Y4 |
Kali, Greece | R27 | “Kali” | 40 | 42 | female | X10–X10 | |
Aridea, Greece | R157 | “Aridea” | 38 | 42 | male | X7 | Y5 |
Aridea, Greece | R152 | “Aridea” | 38 | 42 | male | X7 | Y5 |
Edessa, Greece | R231 | “Edessa” | 38 | 40 | male | X6 | Y8 |
D35 | hybrid “Edessa” × “thomasi” | 41 | 42 | male | X1 | Y8 | |
Kakavia, Greece | R199 | “subalpine” | 42 | 42 | female | X11–X11 | |
Veria, Greece | R252 | “subalpine” | 42 | 42 | male | X9 | Y2 |
Ducat, Albania | R160 | “subalpine” | 42 | 42 | female | X12–X12 | |
Preze, Albania | R94 | “thomasi” | 44 | 44 | male | X11 | Y12 |
R101 | “thomasi” | 44 | 44 | male | X8 | Y12 | |
Donje Selo, Montenegro | R220 | “thomasi” | 44 | 44 | male | X8 | Y6 |
M. atticus | |||||||
Afidnes, Greece | R191 | “atticus” | 44 | 46 | male | X13 | Y10 |
Chalkida, Greece | R294 | “Evia” | 44 | 44 | male | X3 | Y1 |
Kimassi, Greece | R171 | “Evia” | 44 | 44 | male | X3 | Y11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rovatsos, M.; Marchal, J.A.; Giagia-Athanasopoulou, E.; Sánchez, A. Molecular Composition of Heterochromatin and Its Contribution to Chromosome Variation in the Microtus thomasi/Microtus atticus Species Complex. Genes 2021, 12, 807. https://doi.org/10.3390/genes12060807
Rovatsos M, Marchal JA, Giagia-Athanasopoulou E, Sánchez A. Molecular Composition of Heterochromatin and Its Contribution to Chromosome Variation in the Microtus thomasi/Microtus atticus Species Complex. Genes. 2021; 12(6):807. https://doi.org/10.3390/genes12060807
Chicago/Turabian StyleRovatsos, Michail, Juan Alberto Marchal, Eva Giagia-Athanasopoulou, and Antonio Sánchez. 2021. "Molecular Composition of Heterochromatin and Its Contribution to Chromosome Variation in the Microtus thomasi/Microtus atticus Species Complex" Genes 12, no. 6: 807. https://doi.org/10.3390/genes12060807
APA StyleRovatsos, M., Marchal, J. A., Giagia-Athanasopoulou, E., & Sánchez, A. (2021). Molecular Composition of Heterochromatin and Its Contribution to Chromosome Variation in the Microtus thomasi/Microtus atticus Species Complex. Genes, 12(6), 807. https://doi.org/10.3390/genes12060807