Genomic Association between SNP Markers and Diseases in the “Curraleiro Pé-Duro” Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. DNA Sampling and Extraction
2.2. Genotyping and Estimation of Haplotypes
2.3. Obtaining Phenotypes and Epidemiological Variables
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Fioravanti, M.C.S.; Juliano, R.S.; Costa, G.L.; Abud, L.J.; Cardoso, V.S.; Carpio, M.G.; Costa, M.F.O. Conservación del bovino Curraleiro: Cuantificación del censo y caracterización de los criadores. Anim. Genet. Resour. 2011, 48, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Maggioli, M.F.; Lobo, J.R.; Fioravanti, M.C.S.; Kipnis, A.; Junqueira-Kipnis, A. Cellular immune response of Curraleiro Pé-duro and Nellore calves following Mycobacterium bovis-BCG vaccination. Pesq Vet. Bras. 2013, 33, 1403–1408. [Google Scholar] [CrossRef] [Green Version]
- Moraes, J.M.; Brito, L.A.B.; Moura, V.M.B.D.; Ribeiro, C.S.; Guimarães, V.Y.; Andrade, D.F.; Lobo, J.R.; Fioravanti, M.C.S. Immunophenotyping and quantitative evaluation of circulating lymphocytes of cattle of the Curraleiro breed. Pesq. Vet. Bras. 2009, 29, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Fioravanti, M.C.S.; Freitas, T.M.S.; Moura, M.I.; Costa, G.L.; Dias, J.M.; Guimarães, L.K.P.; Gómez, M.M.; Landi, V. Resistencia y resiliencia a las enfermedades en las razas de rumiantes locales: Un enfoque en América del Sur. Arch. Zootec. 2020, 69, 338–352. [Google Scholar] [CrossRef]
- Ismail, N.; Stevenson, H.L.; Walker, D.H. Role of tumor necrosis factor α (TNF-α) and interleukin-10 in the pathogenesis of severe murine monocytotropic ehrlichiosis: Increased resistance of TNF receptor p55- and p75-deficient mice to fatal ehrlichial infection. Infect. Immun. 2006, 74, 1846–1856. [Google Scholar] [CrossRef] [Green Version]
- Díaz, S.; Ripoli, M.V.; Peral García, P.; Giovambattista, G. Marcadores genéticos para resistencia y susceptibilidad a enfermedades infecciosas en animales domésticos. Analecta Vet. 2005, 25, 40–52. [Google Scholar]
- Feng, J.; Li, Y.; Hashad, M.; Schurr, E.; Gros, P.; Adams, L.G.; Templeton, J.W. Bovine natural resistance associated macrophage protein 1 (Nramp1) gene. Genome Res. 1996, 6, 956–964. [Google Scholar] [CrossRef] [Green Version]
- Lewin, H.A.; Bernoco, D. Evidence for BoLA-linked resistance and susceptibility to subclinical progression of bovine leukaemia virus infection. Anim. Genet. 1986, 17, 197–207. [Google Scholar] [CrossRef]
- Bermingham, M.L.; Bishop, S.C.; Woolliams, J.A.; Pong-Wong, R.; Allen, A.R.; McBride, S.H.; Ryder, J.J.; Wright, D.M.; Skuce, R.A.; McDowell, S.W.; et al. Genome-wide association study identifies novel loci associated with resistance to bovine tuberculosis. Heredity 2014, 112, 543–551. [Google Scholar] [CrossRef] [Green Version]
- Kadarmideen, H.N.; Ali, A.A.; Thomson, P.C.; Müller, B.; Zinsstag, J. Polymorphisms of the SLC11A1 gene and resistance to bovine tuberculosis in African Zebu cattle. Anim. Genet. 2011, 42, 656–658. [Google Scholar] [CrossRef]
- Sun, L.; Song, Y.; Riaz, H.; Yang, H.; Hua, G.; Guo, A.; Yang, L. Polymorphisms in toll-like receptor 1 and 9 genes and their association with tuberculosis susceptibility in Chinese Holstein cattle. Vet. Immunol. Immunopathol. 2012, 147, 195–201. [Google Scholar] [CrossRef]
- Grosse, W.M.; Grosse, W.M.; Kappes, S.M.; Laegreid, W.W.; Keele, J.W.; Chitko-McKown, C.G.; Heaton, M. Single nucleotide polymorphism (SNP) discovery and linkage mapping of bovine cytokine genes. Mamm. Genome 1999, 10, 1062–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivers, R.; Andrews, E.; González-Smith, A.; Donoso, G.; Oñate, A. Brucella abortus: Inmunidad, vacunas y estrategias de prevención basadas en ácidos nucleicos. Arch. Med. Vet. 2006, 38, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Vasselon, T.; Detmers, P.A. Toll receptors: A central element in innate immune responses. Infect. Immun. 2002, 70, 1033–1041. [Google Scholar] [CrossRef] [Green Version]
- Seabury, C.M.; Seabury, P.M.; Decker, J.E.; Schnabel, R.D.; Taylor, J.F.; Womack, J.E. Diversity and evolution of 11 innate immune genes in Bos taurus taurus and Bos taurus indicus cattle. Proc. Natl. Acad. Sci. USA 2010, 107, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Golding, B.; Scott, D.E.; Scharf, O.; Huang, L.Y.; Zaitseva, M.; Lapham, C.; Eller, N.; Golding, H. Immunity and protection against Brucella abortus. Microbes. Infect. 2001, 3, 43–48. [Google Scholar] [CrossRef]
- Nishi, S.M.; Viero, L.M.; Soares, R.M.; Maiorka, P.C.; Gennari, S.M. Emprego da RT-PCR em tempo real para a quantificação da expressão de genes associados à resposta imune em bezerros bovinos experimentalmente infectados por Neospora caninum. Rev. Bras. Parasitol. Vet. 2009, 18, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Faisal, S.M.; Varma, V.P.; Subathra, M.; Azam, S.; Sunkara, A.K.; Akif, M.; Baig, M.S.; Chang, Y.-F. Leptospira surface adhesin (Lsa21) induces Toll like receptor 2 and 4 mediated inflammatory responses in macrophages. Sci. Rep. 2016, 6, 39530. [Google Scholar] [CrossRef]
- Adler, H.; Jungi, T.W.; Pfister, H.; Strasser, M.; Sileghem, M.; Peterhans, E. Cytokine regulation by virus infection: Bovine viral diarrhea virus, a flavivirus, downregulates production of tumor necrosis factor α in macrophages in vitro. J. Virol. 1996, 70, 2650. [Google Scholar] [CrossRef] [Green Version]
- Rajput, M.K.S.; Darweesh, M.F.; Braun, L.J.; Mansour, S.M.G.; Chase, C.C.L. Comparative humoral immune response against cytopathic or non-cytopathic bovine viral diarrhea virus infection. Res. Vet. Sci. 2020, 129, 109–116. [Google Scholar] [CrossRef]
- Charleston, B.; Brackenbury, L.S.; Carr, B.V.; Fray, M.D.; Hope, J.C.; Howard, C.J.; Morrison, W.I. α/β and γ interferons are induced by infection with noncytopathic bovine viral diarrhea virus in vivo. J. Virol. 2002, 76, 923–927. [Google Scholar] [CrossRef] [Green Version]
- Bishop, S.C.; Woolliams, J.A. Genomics and disease resistance studies in livestock. Livest. Sci. 2014, 166, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Pinedo, P.J.; Buergelt, C.D.; Donovan, G.A.; Melendez, P.; Morel, L.; Wu, R.; Langaee, T.Y.; Rae, D.O. Candidate gene polymorphisms (BoIFNG, TLR4, SLC11A1) as risk factors for paratuberculosis infection in cattle. Prev. Vet. Med. 2009, 91, 189–196. [Google Scholar] [CrossRef]
- Robert, F.; Pelletier, J. Exploring the Impact of Single-Nucleotide Polymorphisms on Translation. Front. Genet. 2018, 9, 507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koopaee, H.K.; Koshkoiyeh, A.E. SNPs genotyping technologies and their applications in farm animals breeding programs: Review. Braz. Arch. Biol. Technol. 2014, 57, 87–95. [Google Scholar] [CrossRef] [Green Version]
- International HapMap Consortium. A haplotype map of the human genome. Nature 2005, 437, 1299–1320. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef] [Green Version]
- Porto Neto, L.R.; Bunch, R.J.; Harrison, B.E.; Prayaga, K.C.; Barendse, W. Haplotypes that include the integrin α 11 gene are associated with tick burden in cattle. BMC Genet. 2010, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Pighetti, G.M.; Elliott, A.A. Gene Polymorphisms: The Keys for Marker Assisted Selection and Unraveling Core Regulatory Pathways for Mastitis Resistance. J. Mammary Gland Biol. Neoplasia 2011, 16, 421–432. [Google Scholar] [CrossRef]
- Takeshima, S.-N.; Sasaki, S.; Meripet, P.; Sugimoto, Y.; Aida, Y. Single nucleotide polymorphisms in the bovine MHC region of Japanese Black cattle are associated with bovine leukemia virus proviral load. Retrovirology 2017, 14, 24. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.; Holme, D.J. KASP Version 4.0 SNP Genotyping Manual. 2011. Available online: https://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/PDFs/KASP_SNP_Genotyping_Manual.pdf (accessed on 16 March 2018).
- Cesconeto, R.J.; Joost, S.; Mcmanus, C.M.; Paiva, S.R.; Cobuci, J.A.; Braccini, J. Landscape genomic approach to detect selection signatures in locally adapted Brazilian swine genetic groups. Ecol. Evol. 2017, 7, 9544–9556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez, P.; Ruiz-Larrañaga, O.; Garrido, J.M.; Iriondo, M.; Manzano, C.; Agirre, M.; Estonba, A.; Juste, R.A. Genetic association analysis of paratuberculosis forms in holstein-friesian cattle. Vet. Med. Int. 2014, 2014, 321327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, M.; Smith, N.J.; Donnelly, P. A New Statistical Method for Haplotype Reconstruction from Population Data. Am. J. Hum. Genet. 2001, 68, 978–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, M.; Scheet, P. Accounting for Decay of Linkage Disequilibrium in Haplotype Inference and Missing-Data Imputation. Am. J. Hum. Genet. 2005, 76, 449–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Development Core Team: Vienna, Austria, 2011; Volume 1, Available online: http://www.R-project.org (accessed on 15 September 2018).
- Fisher, C.A.; Bhattarai, E.K.; Osterstock, J.B.; Dowd, S.E.; Seabury, P.M.; Vikram, M.; Whitlock, R.H.; Schukken, Y.H.; Schnabel, R.D.; Taylor, J.F.; et al. Evolution of the bovine TLR gene family and member associations with Mycobacterium avium subspecies paratuberculosis infection. PLoS ONE 2011, 6, e27744. [Google Scholar] [CrossRef]
- Jann, O.C.; King, A.; Corrales, N.L.; Anderson, S.I.; Jensen, K.; Ait-ali, T.; Tang, H.; Wu, C.; Cockett, N.E.; Archibald, A.L.; et al. Comparative genomics of Toll-like receptor signalling in five species. BMC Genom. 2009, 10, 216. [Google Scholar] [CrossRef] [Green Version]
- Mulla, M.J.; Myrtolli, K.; Tadesse, S.; Stanwood, N.L.; Gariepy, A.; Guller, S.; Norwitz, E.R.; Abrahams, V.M. Cutting-edge report: TLR10 plays a role in mediating bacterial peptidoglycan-induced trophoblast apoptosis. Am. J. Reprod. Immunol. 2013, 69, 449–453. [Google Scholar] [CrossRef] [Green Version]
- Brown, W.C.; Woods, V.M.; Chitko-McKown, C.G.; Hash, S.M.; Rice-Ficht, A.C. Interleukin-10 is expressed by bovine type 1 helper, type 2 helper, and unrestricted parasite-specific T-cell clones and inhibits proliferation of all three subsets in an accessory-cell-dependent manner. Infect. Immun. 1994, 62, 4697–4708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, C.M.B.; Sakata, R.K.; Issy, A.M.; Gerola, L.R.; Salomão, R. Citocinas e dor. Rev. Bras. Anestesiol. 2011, 61, 260–265. [Google Scholar] [CrossRef] [Green Version]
- Gregori, S.; Goudy, K.S.; Roncarolo, M.G. The cellular and molecular mechanisms of immuno-suppression by human type 1 regulatory T cells. Front. Immunol. 2012, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Matsui, M.; Rouleau, V.; Bruyère-Ostells, L.; Goarant, C. Gene expression profiles of immune mediators and histopathological findings in animal models of leptospirosis: Comparison between susceptible hamsters and resistant mice. Infect. Immun. 2011, 79, 4480–4492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsui, M.; Roche, L.; Soupé-Gilbert, M.-E.; Hasan, M.; Monchy, D.; Goarant, C. High level of IL-10 expression in the blood of animal models possibly relates to resistance against leptospirosis. Cytokine 2017, 96, 144–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, A.R.; Minozzi, G.; Glass, E.J.; Skuce, R.A.; McDowell, S.W.; Woolliams, J.A.; Bishop, S.C. Bovine tuberculosis: The genetic basis of host susceptibility. Proc. Biol. Sci. 2010, 277, 2737–2745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
dSNPs Accession | Var | Location of the Gene | Position | Alleles | IUPAC | BTA | MAF (%) |
---|---|---|---|---|---|---|---|
rs41594962 | I | integrin subunit α 11 | 15137028 | C/T | Y | 10 | 0.320 |
rs42395522 | S | interleukin 10 subun. α receptor | 29101724 | A/G | R | 15 | 0.494 |
rs8193069 | M | toll-like receptor 4 | 108838685 | C/T | Y | 8 | 0.196 |
rs42395525 | S | interleukin 10 subun. α receptor | 29102009 | C/T | Y | 15 | 0.347 |
rs17872126 | I | bos taurus proline rich 3 (prr3), mrna | 28223274 | C/T | Y | 23 | 0.396 |
rs55617272 | M | toll-like receptor 3 | 15240722 | G/A | R | 27 | 0.104 |
rs55617351 | NC | toll-like receptor 8 | 141005664 | T/C | Y | X | 0.333 |
rs42395524 | S | interleukin 10 subun. α receptor | 29101838 | T/T | Y | 15 | monomorphic |
rs42395526 | S | interleukin 10 subun. α receptor | 29102042 | G/A | R | 15 | 0.494 |
rs42852439 | M | toll-like receptor 3 | 15241437 | T/G | K | 27 | 0.372 |
rs43710288 | M | nod like receptor 2 | 19210671 | A/T | W | 18 | 0.168 |
rs29026690 | I | lymphocyte antigen 6 family member | 27421348 | C/T | Y | 23 | 0.077 |
rs207532826 | NC | toll-like receptor 8 | 141004386 | T/T | K | X | monomorphic |
rs43616884 | D | fem-1 homologg b | 15094573 | G/A | R | 10 | 0.309 |
rs110491977 | M | toll-like receptor 2 | 3952585 | C/T | Y | 17 | 0.021 |
rs55617286 | M | toll-like receptor 10 | 59672820 | C/G | S | 6 | 0.150 |
rs43702941 | M | toll-like receptor 6 | 59706074 | C/T | Y | 6 | 0.319 |
rs55617325 | M | toll-like receptor 10 | 59672512 | T/A | W | 6 | 0.285 |
rs108954324 | M | interferon γ | 45830291 | G/T | K | 5 | 0.080 |
rs43710290 | 3U | nod-like receptor 2 | 19212600 | C/T | Y | 18 | 0.060 |
rs29025980 | I | fem-1 homologg b | 15082638 | G/A | R | 10 | 0.222 |
rs43706433 | M | toll-like receptor 2 | 3952556 | C/T | Y | 17 | 0.365 |
rs55617437 | M | toll-like receptor 10 | 59673169 | C/T | Y | 6 | 0.209 |
rs108949553 | I | integrin subunit α 11 | 15153881 | G/A | R | 10 | 0.334 |
Prop. | Brucella% (n) | Leptospira% (n) | Neospora% (n) | VLB% (n) | IBR% (n) | BVD% (n) | Total |
---|---|---|---|---|---|---|---|
G1 | 0 (0) | 50.7 (36) | 15.49 (11) | 19.72 (14) | 50.7 (36) | 35.21 (25) | 71 |
G2 | 0 (0) | 56 (14) | 8 (2) | 0 (0) | 40 (10) | 32 (8) | 25 |
G3 | 0 (0) | 29.55 (13) | 52.27 (23) | 43.18 (19) | 52.27 (23) | 11.36 (5) | 44 |
G4 | 1.52 (1) | 56.06 (37) | 10.61 (7) | 3.03 (2) | 81.82 (54) | 75.76 (50) | 66 |
G5 | 1.56 (1) | 10.94 (7) | 70.31 (45) | 7.81 (5) | 46.88 (30) | 14.06 (9) | 64 |
G6 | 10.53 (2) | 47.37 (9) | 68.42 (13) | 21.05 (4) | 84.21 (16) | 26.32 (5) | 19 |
G8 | 2.99 (2) | 59.7 (40) | 32.84 (22) | 20.9 (14) | 70.15 (47) | 22.39 (15) | 67 |
P1 | 0 (0) | 27.27 (24) | 62.5 (55) | 2.27 (2) | 56.82 (50) | 51.14 (45) | 88 |
P2 | 0 (0) | 41.18 (7) | 88.24 (15) | 5.88 (1) | 82.35 (14) | 52.94 (9) | 17 |
P3 | 0 (0) | 83.33 (15) | 100 (18) | 33.33 (6) | 66.67 (12) | 50 (9) | 18 |
P4 | 0 (0) | 50.00 (9) | 5.56 (1) | 16.67 (3) | 94.44 (17) | 16.67 (3) | 18 |
P5 | 0 (0) | 23.68 (9) | 7.89 (3) | 65.79 (25) | 78.95 (30) | 42.11 (16) | 38 |
P7 | 0 (0) | 4.08 (2) | 22.45 (11) | 8.16 (4) | 63.27 (31) | 30.61 (15) | 49 |
P8 | 0 (0) | 100 (5) | 40 (2) | 0 (0) | 60 (3) | 0 (0) | 5 |
P9 | 0 (0) | 100 (13) | 84.62 (11) | 30.77 (4) | 61.54 (8) | 76.92 (10) | 13 |
T1 | 0 (0) | 80.7 (46) | 28.07 (16) | 40.35 (23) | 61.4 (35) | 50.88 (29) | 57 |
T2 | 0 (0) | 11.11 (3) | 3.7 (1) | 40.74 (11) | 96.3 (26) | 74.07 (20) | 27 |
T3 | 0 (0) | 16.67 (1) | 16.67 (1) | 0 (0) | 16.67 (1) | 0 (0) | 6 |
T4 | 0 (0) | 20 (2) | 0 (0) | 90 (9) | 70 (7) | 60 (6) | 10 |
BTA | Polymorphism | Position | Gene | Haplotype or SNP | Genotype or Allele | Nucleotides |
---|---|---|---|---|---|---|
5 | rs108954324 | 45830291 | IFNG | 1 2 | 1 0 | T G |
6 | rs55617325 rs55617286 rs55617437 rs43702941 | 59672512 59672820 59673169 59706074 | TLR10 TLR10 TLR10 TLR6 | 1 2 3 4 5 6 7 | 0110 0100 0101 0001 1100 1101 1001 | CGAC CGTC CGTT CCTT TGTC TGTT TCTT |
8 | rs8193069 | 108838685 | TLR4 | 1 2 | 0 1 | C T |
10 | rs29025980 rs43616884 rs41594962 rs108949553 | 15082638 15094573 15137028 15153881 | FEM1B FEM1B ITGA11 ITGA11 | 1 2 3 4 5 6 7 | 0101 0001 0000 0010 1111 1000 1010 | GTGA GCGA GCGG GCAG ATAA ACGG ACAG |
15 | rs42395522 rs42395525 rs42395526 | 29101724 29102009 29102042 | IL10RA IL10RA IL10RA | 1 2 3 4 5 | 110 111 100 010 000 | GTG GTA GCG ATG ACG |
17 | rs43706433 rs110491977 | 3952556 3952585 | TLR2 TLR2 | 1 2 3 | 00 01 10 | CC CT TC |
18 | rs43710288 rs43710290 | 19210671 19212600 | NLR2 NLR2 | 1 2 3 | 10 00 01 | TC AC AT |
23 | rs29026690 rs17872126 | 27421348 28223274 | LY6G6F PRR3 | 1 2 3 4 | 00 01 10 11 | CC CT TC TT |
27 | rs55617272 rs42852439 | 15240722 15241437 | TLR3 TLR3 | 1 2 3 | 00 10 11 | TG GG GA |
X | rs55617351 | 141005664 | TLR8 | 1 2 | 1 0 | C T |
Pathogen | SNP | BTA | Position | p (>Chi-sq) |
---|---|---|---|---|
Brucella | rs8193069 | 8 | 108838685 | 0.007 |
rs42395526 | 15 | 29102042 | 0.002 | |
Leptospira | rs43706433 | 17 | 3952556 | 0.000 |
rs43702941 | 6 | 59706074 | 0.000 | |
rs55617325 | 6 | 59672512 | 0.002 | |
rs55617437 | 6 | 59673169 | 0.006 | |
rs42395525 | 15 | 29102009 | 0.001 | |
rs43710290 | 18 | 19212600 | 0.008 | |
rs42395526 | 15 | 29102042 | 0.002 | |
Neospora | rs110491977 | 17 | 3952585 | 0.009 |
rs43702941 | 6 | 59706074 | 0.037 | |
rs42395522 | 15 | 29101724 | 0.002 | |
rs55617351 | X | 141005664 | 0.000 | |
rs42852439 | 27 | 15241437 | 0.014 | |
rs55617272 | 27 | 15240722 | 0.000 | |
rs43710288 | 18 | 19210671 | 0.009 | |
rs108954324 | 5 | 45830291 | 0.022 | |
rs43710290 | 18 | 19212600 | 0.024 | |
rs29025980 | 10 | 15082638 | 0.000 | |
rs42395525 | 15 | 29102009 | 0.023 | |
rs42395526 | 15 | 29102042 | 0.000 | |
rs43616884 | 10 | 15094573 | 0.006 | |
VLB | rs43702941 | 6 | 59706074 | 0.031 |
rs42395526 | 15 | 29102042 | 0.010 | |
BoHV-1 | rs43710288 | 18 | 19210671 | 0.039 |
rs42395525 | 15 | 29102009 | 0.029 | |
rs42395526 | 15 | 29102042 | 0.027 | |
BVDV | rs110491977 | 17 | 3952585 | 0.013 |
rs43706433 | 17 | 3952556 | 0.000 | |
rs8193069 | 8 | 108838685 | 0.020 | |
rs43702941 | 6 | 59706074 | 0.001 | |
rs55617272 | 27 | 15240722 | 0.015 | |
rs41594962 | 10 | 15137028 | 0.000 | |
rs43710290 | 18 | 19212600 | 0.047 | |
rs29025980 | 10 | 15082638 | 0.043 | |
rs17872126 | 23 | 28223274 | 0.042 | |
rs42395526 | 15 | 29102042 | 0.005 |
Pathogen | BTA | Haplotype | p-Value |
---|---|---|---|
Brucella | 8 | 1 and 2 | <0.01 |
15 | 2 | <0.05 | |
27 | 3 | <0.05 | |
Leptospira | 5 | 1 and 2 | <0.05 |
6 | 1 and 5 | <0.05 | |
8 | 1 and 2 | <0.05 | |
10 | 5 | <0.05 | |
15 | 2 | <0.05 | |
17 | 1 and 3 | <0.01 | |
Neospora | 6 | 6 | <0.05 |
10 | 2 and 7 | <0.05 | |
15 | 1, 2, and 5 | <0.01 | |
17 | 1 and 2 | <0.01 | |
18 | 1 and 3 | <0.05 | |
27 | 1 and 3 | <0.01 | |
X | 1 and 2 | <0.01 | |
Leucosis | 6 | 4 and 5 | <0.05 |
15 | 1 and 2 | <0.01 | |
27 | 2 and 3 | <0.05 | |
IBR | 15 | 2 and 3 | <0.01 |
18 | 1 | <0.05 | |
BVD | 6 | 5 | <0.01 |
15 | 2 | <0.01 | |
17 | 1 and 3 | <0.01 | |
18 | 1 | <0.05 | |
23 | 2 | <0.05 | |
27 | 2 | <0.05 |
Pathogen | BTA | Hp | Negative (n) | Positive (n) | Suspect (n) | p | Odds | 95% CI | ||
---|---|---|---|---|---|---|---|---|---|---|
Brucella | 8 | 1 | 99.56% | (1132/1137) | 0.43% | (5/1137) | 0% (0/0) | 0.009 | 0.202 | 0.06–0.67 |
15 | 2 | 98.03% | (349/356) | 1.96% | (7/356) | 0% (0/0) | 0.015 | 4 | 1.30–13.4 | |
Leptospira | 6 | 1 | 49.87% | (200/401) | 48.37% | (194/401) | 0% (0/0) | <0.01 | 1.588 | 1.25–2.01 |
10 | 5 | 31.57% | (6/19) | 68.42% | (13/19) | 0% (0/0) | 0.012 | 3.298 | 1.24–8.77 | |
15 | 2 | 62.64% | (223/356) | 36.79% | (131/356) | 0% (0/0) | <0.01 | 0.717 | 0.55–0.92 | |
Neospora | 6 | 6 | 82.85% | (29/35) | 17.14% | (6/35) | 0% (0/0) | <0.01 | 0.325 | 0.13–0.80 |
10 | 2 | 3.33% | (1/30) | 56.66% | (17/30) | 0% (0/0) | 0.013 | 2.605 | 1.21–5.56 | |
10 | 7 | 54.82% | (159/290) | 44.82% | (130/290) | 0% (0/0) | <0.01 | 1.486 | 1.12–1.98 | |
15 | 1 | 75.00% | (96/128) | 24.21% | (31/128) | 0% (0/0) | <0.01 | 0.424 | 0.27–0.66 | |
15 | 5 | 66.85% | (476/712) | 32.16% | (229/712) | 0% (0/0) | <0.01 | 0.528 | 0.41–0.67 | |
17 | 2 | 30.00% | (9/30) | 70.00% | (21/30) | 0% (0/0) | <0.01 | 3.842 | 1.68–8.76 | |
18 | 3 | 75.90% | (63/83) | 22.89% | (19/83) | 0% (0/0) | 0.021 | 0.54 | 0.31–0.93 | |
18 | 1 | 55.08% | (130/236) | 44.06% | (104/236) | 0% (0/0) | <0.01 | 1.529 | 1.12–2.07 | |
27 | 1 | 66.62% | (587/881) | 32.34% | (285/881) | 0% (0/0) | <0.01 | 0.64 | 0.49–0.85 | |
27 | 3 | 48.63% | (71/146) | 51.36% | (75/146) | 0% (0/0) | 0.018 | 1.61 | 1.08–2.41 | |
VLB | 6 | 5 | 72.31% | (222/307) | 26.05% | (80/307) | 0.3% (1) | 0.020 | 1.43 | 1.06–1.92 |
15 | 1 | 67.18% | (86/128) | 32.81% | (42/128) | 0% (0) | 0.038 | 1.546 | 1.03–2.31 | |
15 | 2 | 81.46% | (290/356) | 15.16% | (54/356) | 0.2% (1) | <0.01 | 0.616 | 0.44–0.86 | |
27 | 3 | 85.61% | (125/146) | 13.69% | (20/146) | 0% (0) | 0.015 | 0.56 | 0.34–0.92 | |
BVDV | 6 | 5 | 58.30% | (179/307) | 31.92% | (98/307) | 7.2% (22) | <0.01 | 0.669 | 0.51–0.87 |
15 | 2 | 57.58% | (205/356) | 33.14% | (118/356) | 8.1% (29) | 0.013 | 0.731 | 0.57–0.93 | |
23 | 2 | 63.63% | (56/88) | 26.13% | (23/88) | 10.2% (9) | 0.030 | 0.611 | 0.38–0.96 | |
27 | 2 | 45.35% | (171/377) | 45.09% | (170/377) | 8.7% (33) | 0.015 | 1.347 | 1.05–1.71 | |
BoHV-1 | 15 | 2 | 38.48% | (137/356) | 60.39% | (215/356) | 0.8% (3) | 0.028 | 0.744 | 0.57–0.96 |
Pathogen | Variable | Odds Ratio | p-Value of ANOVA Test | p-Value Adjust by Bonferroni |
---|---|---|---|---|
Brucellla | c8_h1 | 0.1787 | 0.0013 | 0.0048 × 10−1 |
c15_h2 | 4.9529 | 0.0019 | 0.0083 | |
No brucellosis vaccine | - | 0.0134 | 0.06 | |
Leptospira | Only one breed | 0.0430 | 2.17 × 10−12 | 4.2 × 10−6 |
No flooded area | 0.0594 | <2.2 × 10−16 | 1.1 × 10−8 | |
No abortion | 4.4 × 108 | 6.10 × 10−10 | 1.9 × 10−5 | |
No leptospira vaccine | 4.2774 | 0.0116 | <2 × 10−16 | |
No brucellosis vaccine | 2.0939 | 0.0241 | 9.4 × 10−6 | |
No presence of rodents | 32.8446 | 3.94 × 10−10 | 5.6 × 10−8 | |
Neospora | c10_h7 | 1.5233 | 0.0006 | 0.0013 |
c17_h2 | 1.1390 | 0.03 | 0.0014 × 10−1 | |
c18_h1 | 1.5397 | 0.1317 × 10−4 | 0.0085 | |
No flooded area | 0.1320 | 3.037 × 10−14 | 2.7 × 10−12 | |
No leptospira vaccine | 0.0167 | 0.0038 | 0.042 | |
No presence of rodents | 0.0184 | 1.207 × 10−12 | 6.0 × 10−12 | |
No veterinary assistance | 0.2543 | <2.2 × 10−16 | <2 × 10−16 | |
Leukosis | c27_h2 | 1.7692 | 0.0019 | 0.063 |
Only one breed | 0.1337 | 6.99 × 10−7 | 1.0 × 10−1 | |
No quarantine | 4.0114 | 0.2749 | 3.5 × 10−6 | |
No abortion | - | 3.76 × 10−12 | 0.12 | |
No leptospira vaccine | - | 8.62 × 10−11 | 1.5 × 10−7 | |
No brucellosis vaccine | 1.7503 | 0.5709 | 4.5 × 10−5 | |
No presence of rodents | - | 0.0007 | 3.3 × 10−11 | |
No veterinary assistance | 4.1974 | 3.99 × 10−10 | <2 × 10−16 | |
IBR | No quarantine | 2.4422 | 0.0006 | 5.3 × 10−5 (positive × not applicable) |
No on-farm slaughter | 0.1467 | 5.06 × 10−15 | 4.3 × 10−12 | |
No leptospira vaccine | 2.5933 | 5.18 × 10−5 | 0.57 | |
BVD | No quarantine | 0.3711 | <2.2 × 10−16 | <2 × 10−16 |
No on-farm slaughter | 0.1848 | 5.87 × 10−16 | <2 × 10−16 | |
No leptospira vaccine | 10.8361 | 1.15 × 10−14 | 0.01 | |
No presence of rodents | 5.8510 | 9.74 × 10−8 | 1.6 × 10−7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, T.M.S.; Dias, J.M.; Guimarães, L.K.P.; Peixoto, S.V.; Silva, R.H.S.d.; Badr, K.R.; Moura, M.I.; Carmo, A.S.d.; Landi, V.; Fioravanti, M.C.S. Genomic Association between SNP Markers and Diseases in the “Curraleiro Pé-Duro” Cattle. Genes 2021, 12, 806. https://doi.org/10.3390/genes12060806
Freitas TMS, Dias JM, Guimarães LKP, Peixoto SV, Silva RHSd, Badr KR, Moura MI, Carmo ASd, Landi V, Fioravanti MCS. Genomic Association between SNP Markers and Diseases in the “Curraleiro Pé-Duro” Cattle. Genes. 2021; 12(6):806. https://doi.org/10.3390/genes12060806
Chicago/Turabian StyleFreitas, Thais Miranda Silva, Juliana Moraes Dias, Luanna Kim Pires Guimarães, Sáudio Vieira Peixoto, Rayanne Henrique Santana da Silva, Kareem Rady Badr, Maria Ivete Moura, Adriana Santana do Carmo, Vincenzo Landi, and Maria Clorinda Soares Fioravanti. 2021. "Genomic Association between SNP Markers and Diseases in the “Curraleiro Pé-Duro” Cattle" Genes 12, no. 6: 806. https://doi.org/10.3390/genes12060806
APA StyleFreitas, T. M. S., Dias, J. M., Guimarães, L. K. P., Peixoto, S. V., Silva, R. H. S. d., Badr, K. R., Moura, M. I., Carmo, A. S. d., Landi, V., & Fioravanti, M. C. S. (2021). Genomic Association between SNP Markers and Diseases in the “Curraleiro Pé-Duro” Cattle. Genes, 12(6), 806. https://doi.org/10.3390/genes12060806