Changes in Allele Frequencies When Different Genomic Coancestry Matrices Are Used for Maintaining Genetic Diversity
Abstract
1. Introduction
2. Materials and Methods
2.1. Generation of the Base Population
2.2. Management Strategies
2.3. Parameters Evaluated
3. Results
3.1. Expected Heterozygosity and Kullback–Leibler Divergence for Populations of Size N = 100
3.2. Expected Heterozygosity and Kullback–Leibler Divergence for Populations of Size N = 20
3.3. Effective Population Size
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frankham, R.; Ballou, J.D.; Briscoe, D.A.; Ballou, J.D. Introduction to Conservation Genetics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Meuwissen, T. Maximizing the response of selection with a predefined rate of inbreeding. J. Anim. Sci. 1997, 75, 934–940. [Google Scholar] [CrossRef]
- Grundy, B.; Villanueva, B.; Woolliams, J.A. Dynamic selection procedures for constrained inbreeding and their consequences for pedigree development. Genet. Res. 1998, 72, 159–168. [Google Scholar] [CrossRef]
- Fernández, J.; A Toro, M.; Caballero, A. Fixed contributions designs vs. minimization of global coancestry to control inbreeding in small populations. Genetics 2003, 165, 885–894. [Google Scholar] [CrossRef]
- Caballero, A.; Toro, M.A. Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genet. Res. 2000, 75, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Falconer, D.S.; Mackay, T.F.C. Introduction to quantitative genetics. In Introduction to Quantitative Genetics, 4th ed.; Longman: Harlow, UK, 1996. [Google Scholar]
- Lacy, R.C. Should we select genetic alleles in our conservation breeding programs? Zoo Biol. 2000, 19, 279–282. [Google Scholar] [CrossRef]
- Frankham, R. Genetic adaptation to captivity in species conservation programs. Mol. Ecol. 2008, 17, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Saura, M.; Pérez-Figueroa, A.; Fernández, J.; Toro, M.A.; Caballero, A. Preserving population allele frequencies in ex situ conservation programs. Conserv. Biol. 2008, 22, 1277–1287. [Google Scholar] [CrossRef] [PubMed]
- De Cara, M.A.R.; Fernández, J.; Toro, M.A.; Villanueva, B. Using genome-wide information to minimize the loss of diversity in conservation programs. J. Anim. Breed. Genet. 2011, 128, 456–464. [Google Scholar] [CrossRef]
- De Cara, M.; Ángeles, R.; Villanueva, B.; Toro, M.Á.; Fernández, J. Using genomic tools to maintain diversity and fitness in conservation programmes. Mol. Ecol. 2013, 22, 6091–6099. [Google Scholar] [CrossRef]
- Gómez-Romano, F.; Villanueva, B.; De Cara, M.Á.R.; Fernández, J. Maintaining genetic diversity using molecular coancestry: The effect of marker density and effective population size. Genet. Sel. Evol. 2013, 45, 38. [Google Scholar] [CrossRef]
- Fernández, J.; Toro, M.A.; Caballero, A. Managing Individuals’ Contributions to Maximize the Allelic Diversity Maintained in Small, Conserved Populations. Conserv. Biol. 2004, 18, 1358–1367. [Google Scholar] [CrossRef]
- De Cara, M.A.R.; Villanueva, B.; Toro, M.A.; Fernández, J. Purging deleterious mutations in conservation programs: Combining optimal contributions with inbred mattings. Heredity 2013, 110, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Eynard, S.E.; Windig, J.J.; Hiemstra, S.J.; Calus, M.P.L. Whole-genome sequence data uncover loss of genetic diversity due to selection. Genet. Sel. Evol. 2016, 48, 33. [Google Scholar] [CrossRef] [PubMed]
- Morales-González, E.; Saura, M.; Fernández, A.; Fernández, J.; Pong-Wong, R.; Cabaleiro, S.; Martínez, P.; Martín-García, A.; Villanueva, B. Evaluating different genomic coancestry matrices for managing genetic variability in turbot. Aquaculture 2020, 520, 734985. [Google Scholar] [CrossRef]
- Meuwissen, T.H.E.; Sonesson, A.K.; Gebregiwergis, G.; Woolliams, J.A. Management of Genetic Diversity in the Era of Genomics. Front. Genet. 2020, 11, 880. [Google Scholar] [CrossRef]
- Li, C.C.; Horvitz, D.G. Some methods of estimating the inbreeding coefficient. Am. J. Hum. Genet. 1953, 5, 107–117. [Google Scholar]
- VanRaden, P.M. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef]
- Yang, J.; Benyamin, B.; McEvoy, B.P.; Gordon, S.D.; Henders, A.K.; Nyholt, D.R.; Madden, P.A.; Heath, A.C.; Martin, N.G.; Montgomery, G.W.; et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 2010, 42, 565–569. [Google Scholar] [CrossRef]
- Gómez-Romano, F.; Villanueva, B.; Fernández, J.; Woolliams, J.A.; Pong-Wong, R. The use of genomic coancestry matrices in the optimisation of contributions to maintain genetic diversity at specific regions of the genome. Genet. Sel. Evol. 2016, 48, 1–17. [Google Scholar] [CrossRef]
- Nejati-Javaremi, A.; Smith, C.; Gibson, J.P. Effect of total allelic relationship on accuracy of evaluation and response to selection. J. Anim. Sci. 1997, 75, 1738–1745. [Google Scholar] [CrossRef]
- Toro, M.A.; Villanueva, B.; Fernández, J. The concept of effective population size loses its meaning in the context of optimal management of diversity using molecular markers. J. Anim. Breed. Genet. 2019, 137, 345–355. [Google Scholar] [CrossRef]
- Woolliams, J.A.; Berg, P.; Dagnachew, B.S.; Meuwissen, T.H.E. Genetic contributions and their optimisation. J. Anim. Breed. Genet. 2015, 132, 89–99. [Google Scholar] [CrossRef]
- Toro, M.; Barragán, C.; Óvilo, C.; Rodrigañez, J.; Rodriguez, C.; Silió, L. Estimation of coancestry in Iberian pigs using molecular markers. Conserv. Genet. 2002, 3, 309–320. [Google Scholar] [CrossRef]
- Forni, S.; Aguilar, I.; Misztal, I. Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genet. Sel. Evol. 2011, 43, 1. [Google Scholar] [CrossRef] [PubMed]
- Kullback, S. Information Theory and Statistics; Dover Publications: Mineola, New York, NY, USA, 1997. [Google Scholar]
- Fernández, J.; Caballero, A. Accumulation of deleterious mutations and equalization of parental contributions in the conservation of genetic resources. Heredity 2001, 86, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, B.; Fernández, A.; Saura, M.; Caballero, A.; Fernández, J. The value of genomic relationship matrices for estimating inbreeding. Genet. Sel. Evol. 2021. under review. [Google Scholar]
- Fernã¡ndez, J.; Toro, M.Ã.; Sonesson, A.K.; Villanueva, B.; Fernández, J. Optimizing the creation of base populations for aquaculture breeding programs using phenotypic and genomic data and its consequences on genetic progress. Front. Genet. 2014, 5, 414. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.; Roughsedge, T.; Woolliams, J.A.; Villanueva, B. Optimization of the sampling strategy for establishing a gene bank: Storing PrP alleles following a scrapie eradication plan as a case study. Anim. Sci. 2006, 82, 813–821. [Google Scholar] [CrossRef]
- Sonesson, A.K.; Janss, L.L.; Meuwissen, T.H. Selection against genetic defects in conservation schemes while controlling inbreeding. Genet. Sel. Evol. 2003, 35, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Charlier, C.; Coppieters, W.; Rollin, F.; Desmecht, D.; Agerholm, J.S.; Cambisano, N.; Carta, E.; Dardano, S.; Dive, M.; Fasquelle, C.; et al. Highly effective SNP-based association mapping and management of recessive defects in livestock. Nat. Genet. 2008, 40, 449–454. [Google Scholar] [CrossRef]
- Caballero, A.; Rodríguez-Ramilo, S.T. A new method for the partition of allelic diversity within and between subpopulations. Conserv. Genet. 2010, 11, 2219–2229. [Google Scholar] [CrossRef]
- James, J.W. The founder effect and response to artificial selection. Genet. Res. 1970, 16, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Hill, W.G.; Rasbash, J. Models of long term artificial selection in finite population. Genet. Res. 1986, 48, 41–50. [Google Scholar] [CrossRef] [PubMed]
SE | SO_LH * | SO_VR * | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
t | He | KL | NS | S | U | He | KL | NS | S | U | He | KL | NS | S | U | ||
1 | 19.17 | 0.06 | 100 | 51,035 | 50,894 | +0.14 | +0.14 | −39 | −2239 | −2246 | 0.00 | 0.00 | 0 | +8 | +18 | ||
2 | 19.12 | 0.12 | 100 | 49,873 | 49,737 | +0.21 | +0.23 | −36 | −3206 | −3229 | 0.00 | 0.00 | 0 | −22 | 0 | ||
3 | 19.07 | 0.18 | 100 | 48,852 | 48,729 | +0.28 | +0.30 | −35 | −3792 | −3847 | 0.00 | 0.00 | 0 | −61 | −52 | ||
4 | 19.03 | 0.24 | 100 | 47,946 | 47,828 | +0.35 | +0.37 | −35 | −4182 | −4261 | 0.00 | 0.00 | −1 | −113 | −101 | ||
5 | 18.98 | 0.30 | 100 | 47,108 | 47,003 | +0.41 | +0.43 | −33 | −4384 | −4499 | 0.00 | −0.01 | −1 | −162 | −157 | ||
10 | 18.73 | 0.57 | 100 | 43,777 | 43,691 | +0.68 | +0.68 | −30 | −4731 | −4975 | 0.00 | −0.03 | −2 | −399 | −401 | ||
15 | 18.51 | 0.82 | 100 | 41,311 | 41,217 | +0.89 | +0.86 | −28 | −4523 | −4855 | −0.01 | −0.06 | −5 | −595 | −587 | ||
20 | 18.27 | 1.06 | 100 | 39,313 | 39,229 | +1.08 | +0.99 | −26 | −4152 | −4567 | −0.01 | −0.09 | −6 | −714 | −720 | ||
30 | 17.82 | 1.50 | 100 | 36,231 | 36,140 | +1.40 | +1.16 | −24 | −3329 | −3896 | +0.01 | −0.18 | −9 | −906 | −899 | ||
40 | 17.38 | 1.90 | 100 | 33,854 | 33,759 | +1.67 | +1.24 | −22 | −2517 | −3215 | +0.03 | −0.26 | −11 | −995 | −970 | ||
50 | 16.95 | 2.28 | 100 | 31,940 | 31,848 | +1.92 | +1.27 | −21 | −1786 | −2594 | +0.05 | −0.35 | −12 | −1081 | −1036 |
SNPs | Unobserved Loci | |||||||
---|---|---|---|---|---|---|---|---|
t | SE | SO_LH | SO_VR | SE | SO_LH | SO_VR | ||
0 | 13.45 | 13.45 | 13.45 | 13.39 | 13.39 | 13.39 | ||
1 | 13.44 | 13.68 | 13.45 | 13.39 | 13.60 | 13.40 | ||
2 | 13.44 | 13.81 | 13.45 | 13.39 | 13.72 | 13.40 | ||
3 | 13.44 | 13.94 | 13.45 | 13.38 | 13.82 | 13.39 | ||
4 | 13.44 | 14.06 | 13.44 | 13.38 | 13.93 | 13.39 | ||
5 | 13.44 | 14.17 | 13.44 | 13.38 | 14.02 | 13.39 | ||
10 | 13.44 | 14.67 | 13.41 | 13.38 | 14.44 | 13.36 | ||
15 | 13.45 | 15.08 | 13.37 | 13.39 | 14.77 | 13.33 | ||
20 | 13.44 | 15.42 | 13.32 | 13.39 | 15.05 | 13.29 | ||
30 | 13.44 | 15.96 | 13.23 | 13.39 | 15.46 | 13.23 | ||
40 | 13.45 | 16.36 | 13.12 | 13.39 | 15.75 | 13.15 | ||
50 | 13.45 | 16.67 | 13.01 | 13.40 | 15.98 | 13.07 |
SE | SO_LH * | SO_VR * | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
t | He | KL | NS | S | U | He | KL | NS | S | U | He | KL | NS | S | U | ||
1 | 23.35 | 0.27 | 20 | 38,995 | 38,955 | +0.04 | +0.05 | −1 | −193 | −233 | +0.03 | 0.00 | 0 | +31 | +134 | ||
2 | 23.06 | 0.52 | 20 | 37,093 | 37,050 | +0.06 | +0.07 | −1 | −275 | −335 | +0.01 | 0.00 | 0 | +52 | +155 | ||
3 | 22.76 | 0.76 | 20 | 35,522 | 35,472 | +0.10 | +0.09 | −1 | −356 | −410 | −0.02 | +0.01 | 0 | −12 | +104 | ||
4 | 22.48 | 0.99 | 20 | 34,166 | 34,119 | +0.07 | +0.11 | −1 | −390 | −442 | −0.02 | −0.01 | 0 | −16 | +94 | ||
5 | 22.19 | 1.20 | 20 | 33,016 | 32,978 | +0.08 | +0.13 | −1 | −456 | −528 | −0.03 | 0.00 | 0 | −69 | +37 | ||
10 | 20.79 | 2.17 | 20 | 28,782 | 28,692 | +0.17 | +0.18 | −1 | −533 | −563 | −0.07 | −0.03 | −1 | −269 | −62 | ||
15 | 19.52 | 3.00 | 20 | 25,844 | 25,763 | +0.24 | +0.17 | −1 | −497 | −563 | −0.03 | −0.07 | −1 | −400 | −206 | ||
20 | 18.33 | 3.75 | 20 | 23,512 | 23,434 | +0.37 | +0.13 | −1 | −336 | −424 | −0.01 | −0.12 | −1 | −429 | −247 | ||
30 | 16.02 | 5.13 | 20 | 19,854 | 19,795 | +0.79 | −0.02 | −2 | +81 | −59 | +0.04 | −0.25 | −2 | −469 | −337 | ||
40 | 14.03 | 6.26 | 20 | 17,044 | 17,002 | +1.15 | −0.16 | −1 | +545 | +377 | +0.18 | −0.43 | −2 | −432 | −309 | ||
50 | 12.32 | 7.23 | 20 | 14,853 | 14,811 | +1.39 | −0.27 | −1 | +787 | +592 | +0.19 | −0.52 | −2 | −433 | −322 |
N = 100 | N = 20 | ||||||
---|---|---|---|---|---|---|---|
t | SE | SO_LH | SO_VR | SE | SO_LH | SO_VR | |
1 | 188.21 | −111.90 | 195.55 | 36.92 | 42.27 | 40.40 | |
5 | 199.07 | −855.78 | 197.46 | 36.78 | 41.24 | 34.31 | |
10 | 191.56 | −5777.32 | 193.05 | 38.54 | 40.81 | 41.77 | |
15 | 203.50 | 1855.71 | 194.54 | 36.65 | 45.41 | 43.18 | |
20 | 202.62 | 1033.03 | 201.52 | 40.61 | 47.25 | 40.02 | |
25 | 190.44 | 636.00 | 209.85 | 40.20 | 47.08 | 42.02 | |
30 | 193.58 | 670.07 | 209.79 | 36.45 | 53.03 | 38.57 | |
35 | 193.30 | 524.97 | 206.03 | 33.41 | 50.28 | 44.62 | |
40 | 204.95 | 601.67 | 212.53 | 36.94 | 47.91 | 49.68 | |
45 | 207.44 | 703.31 | 205.00 | 37.52 | 48.50 | 40.09 | |
50 | 206.86 | 481.08 | 213.02 | 41.99 | 46.20 | 38.53 |
SO_LH | SO_VR | |||||||
---|---|---|---|---|---|---|---|---|
t | S | NS | ESf | Sf | NS | ESf | Sf | |
1 | 20 | 7 | 0.3 | 0 | 20 | 0.3 | 0 | |
2 | 7 | 0.7 | 0 | 13 | 0.8 | 1 | ||
3 | 8 | 0.8 | 0 | 13 | 1.4 | 1 | ||
4 | 8 | 0.9 | 0 | 12 | 1.7 | 1 | ||
1 | 1000 | 15 | 21.7 | 21 | 20 | 17.6 | 18 | |
2 | 16 | 38.9 | 37 | 19 | 34.6 | 33 | ||
3 | 15 | 54.6 | 52 | 19 | 50.9 | 47 | ||
4 | 15 | 68.6 | 64 | 18 | 66.3 | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-González, E.; Fernández, J.; Pong-Wong, R.; Toro, M.Á.; Villanueva, B. Changes in Allele Frequencies When Different Genomic Coancestry Matrices Are Used for Maintaining Genetic Diversity. Genes 2021, 12, 673. https://doi.org/10.3390/genes12050673
Morales-González E, Fernández J, Pong-Wong R, Toro MÁ, Villanueva B. Changes in Allele Frequencies When Different Genomic Coancestry Matrices Are Used for Maintaining Genetic Diversity. Genes. 2021; 12(5):673. https://doi.org/10.3390/genes12050673
Chicago/Turabian StyleMorales-González, Elisabeth, Jesús Fernández, Ricardo Pong-Wong, Miguel Ángel Toro, and Beatriz Villanueva. 2021. "Changes in Allele Frequencies When Different Genomic Coancestry Matrices Are Used for Maintaining Genetic Diversity" Genes 12, no. 5: 673. https://doi.org/10.3390/genes12050673
APA StyleMorales-González, E., Fernández, J., Pong-Wong, R., Toro, M. Á., & Villanueva, B. (2021). Changes in Allele Frequencies When Different Genomic Coancestry Matrices Are Used for Maintaining Genetic Diversity. Genes, 12(5), 673. https://doi.org/10.3390/genes12050673