ATP-Dependent Ligases and AEP Primases Affect the Profile and Frequency of Mutations in Mycobacteria under Oxidative Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Gene Cloning Strategies
2.3. Construction of Gene-Replacement Mutants
2.4. Phenotypic Analysis of M. Smegmatis Strains
2.5. Mutation Rate
2.6. Next-Generation Sequencing
3. Results
3.1. NHEJ Proteins Promote the Resistance of Mycobacteria to DNA Methylation and Oxidation Assaults
3.2. The Presence of LigD and LigC1/C2/PrimC Increases the Frequency of Mutations in Mycobacteria
3.3. LigD/Ku Promotes Double Substitutions and Single Nucleotide Insertions in the Presence of a DNA-Oxidizing Agent
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Global Tuberculosis Report. 2019. Available online: http://www.who.int/tttb/global-report-2019 (accessed on 8 April 2021).
- Wink, D.A.; Kasprzak, K.S.; Maragos, C.M.; Elespuru, R.K.; Misra, M.; Dunams, T.M.; Cebula, T.A.; Koch, W.H.; Andrews, A.W.; Allen, J.S.; et al. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 1991, 254, 1001–1003. [Google Scholar] [CrossRef]
- van der Veen, S.; Tang, C.M. The ber necessities: The repair of DNA damage in human-adapted bacterial pathogens. Nat. Rev. Microbiol. 2015, 13, 83–94. [Google Scholar] [CrossRef]
- Singh, A. Guardians of the mycobacterial genome: A review on DNA repair systems in mycobacterium tuberculosis. Microbiology 2017, 163, 1740–1758. [Google Scholar] [CrossRef] [PubMed]
- Glickman, M.S. Double-strand DNA break repair in mycobacteria. Microbiol. Spectr. 2014, 2, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, C.; Thibessard, A.; Bruand, C.; Lecointe, F.; Leblond, P. Bacterial nhej: A never ending story. Mol. Microbiol. 2019, 111, 1139–1151. [Google Scholar] [CrossRef]
- Aravind, L.; Koonin, E.V. Prokaryotic homologs of the eukaryotic DNA-end-binding protein ku, novel domains in the ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res. 2001, 11, 1365–1374. [Google Scholar] [CrossRef] [PubMed]
- Weller, G.R.; Doherty, A.J. A family of DNA repair ligases in bacteria? FEBS Lett. 2001, 505, 340–342. [Google Scholar] [CrossRef]
- Weller, G.R.; Kysela, B.; Roy, R.; Tonkin, L.M.; Scanlan, E.; Della, M.; Devine, S.K.; Day, J.P.; Wilkinson, A.; d’Adda di Fagagna, F.; et al. Identification of a DNA nonhomologous end-joining complex in bacteria. Science 2002, 297, 1686–1689. [Google Scholar] [CrossRef] [PubMed]
- Stephanou, N.C.; Gao, F.; Bongiorno, P.; Ehrt, S.; Schnappinger, D.; Shuman, S.; Glickman, M.S. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks. J. Bacteriol. 2007, 189, 5237–5246. [Google Scholar] [CrossRef]
- Korycka-Machala, M.; Rychta, E.; Brzostek, A.; Sayer, H.R.; Rumijowska-Galewicz, A.; Bowater, R.P.; Dziadek, J. Evaluation of nad(+) -dependent DNA ligase of mycobacteria as a potential target for antibiotics. Antimicrob. Agents Chemother. 2007, 51, 2888–2897. [Google Scholar] [CrossRef]
- Pitcher, R.S.; Tonkin, L.M.; Daley, J.M.; Palmbos, P.L.; Green, A.J.; Velting, T.L.; Brzostek, A.; Korycka-Machala, M.; Cresawn, S.; Dziadek, J.; et al. Mycobacteriophage exploit nhej to facilitate genome circularization. Mol. Cell 2006, 23, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Pitcher, R.S.; Green, A.J.; Brzostek, A.; Korycka-Machala, M.; Dziadek, J.; Doherty, A.J. Nhej protects mycobacteria in stationary phase against the harmful effects of desiccation. DNA Repair 2007, 6, 1271–1276. [Google Scholar] [CrossRef]
- Zhu, H.; Shuman, S. Novel 3’-ribonuclease and 3’-phosphatase activities of the bacterial non-homologous end-joining protein, DNA ligase d. J. Biol. Chem. 2005, 280, 25973–25981. [Google Scholar] [CrossRef]
- Wright, D.; DeBeaux, A.; Shi, R.; Doherty, A.J.; Harrison, L. Characterization of the roles of the catalytic domains of mycobacterium tuberculosis ligase d in ku-dependent error-prone DNA end joining. Mutagenesis 2010, 25, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Shuman, S. Substrate specificity and structure-function analysis of the 3’-phosphoesterase component of the bacterial nhej protein, DNA ligase d. J. Biol. Chem. 2006, 281, 13873–13881. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Shuman, S. Bacterial nonhomologous end joining ligases preferentially seal breaks with a 3’-oh monoribonucleotide. J. Biol. Chem. 2008, 283, 8331–8339. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Bongiorno, P.; Martins, A.; Stephanou, N.C.; Zhu, H.; Shuman, S.; Glickman, M.S. Mechanism of nonhomologous end-joining in mycobacteria: A low-fidelity repair system driven by ku, ligase d and ligase c. Nat. Struct. Mol. Biol. 2005, 12, 304–312. [Google Scholar] [CrossRef]
- Akey, D.; Martins, A.; Aniukwu, J.; Glickman, M.S.; Shuman, S.; Berger, J.M. Crystal structure and nonhomologous end-joining function of the ligase component of mycobacterium DNA ligase d. J. Biol. Chem. 2006, 281, 13412–13423. [Google Scholar] [CrossRef] [PubMed]
- Aniukwu, J.; Glickman, M.S.; Shuman, S. The pathways and outcomes of mycobacterial nhej depend on the structure of the broken DNA ends. Genes Dev. 2008, 22, 512–527. [Google Scholar] [CrossRef]
- Bhattarai, H.; Gupta, R.; Glickman, M.S. DNA ligase c1 mediates the ligd-independent nonhomologous end-joining pathway of mycobacterium smegmatis. J. Bacteriol. 2014, 196, 3366–3376. [Google Scholar] [CrossRef] [PubMed]
- Kuron, A.; Korycka-Machala, M.; Brzostek, A.; Nowosielski, M.; Doherty, A.; Dziadek, B.; Dziadek, J. Evaluation of DNA primase dnag as a potential target for antibiotics. Antimicrob. Agents Chemother. 2014, 58, 1699–1706. [Google Scholar] [CrossRef]
- Zhu, H.; Bhattarai, H.; Yan, H.G.; Shuman, S.; Glickman, M.S. Characterization of mycobacterium smegmatis pold2 and pold1 as rna/DNA polymerases homologous to the pol domain of bacterial DNA ligase d. Biochemistry 2012, 51, 10147–10158. [Google Scholar] [CrossRef]
- Plocinski, P.; Brissett, N.C.; Bianchi, J.; Brzostek, A.; Korycka-Machala, M.; Dziembowski, A.; Dziadek, J.; Doherty, A.J. DNA ligase c and prim-polc participate in base excision repair in mycobacteria. Nat. Commun. 2017, 8, 1251. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.a.D.W.R. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2001. [Google Scholar]
- Andrews, S. Fastqc: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 8 April 2021).
- Deatherage, D.E.; Barrick, J.E. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol. Biol. 2014, 1151, 165–188. [Google Scholar] [PubMed]
- Seemann, T. Snippy: Fast Bacterial Variant Calling from ngs Reads. 2015. Available online: https://github.com/tseemann/snippy (accessed on 8 April 2021).
- Shuman, S.; Glickman, M.S. Bacterial DNA repair by non-homologous end joining. Nat. Rev. Microbiol 2007, 5, 852–861. [Google Scholar] [CrossRef] [PubMed]
- Pitcher, R.S.; Brissett, N.C.; Doherty, A.J. Nonhomologous end-joining in bacteria: A microbial perspective. Annu. Rev. Microbiol. 2007, 61, 259–282. [Google Scholar] [CrossRef] [PubMed]
- Brissett, N.C.; Zabrady, K.; Plocinski, P.; Bianchi, J.; Korycka-Machala, M.; Brzostek, A.; Dziadek, J.; Doherty, A.J. Molecular basis for DNA repair synthesis on short gaps by mycobacterial primase-polymerase c. Nat. Commun. 2020, 11, 4196. [Google Scholar] [CrossRef] [PubMed]
- Almeida, K.H.; Sobol, R.W. A unified view of base excision repair: Lesion-dependent protein complexes regulated by post-translational modification. DNA Repair 2007, 6, 695–711. [Google Scholar] [CrossRef]
- Roberts, S.A.; Strande, N.; Burkhalter, M.D.; Strom, C.; Havener, J.M.; Hasty, P.; Ramsden, D.A. Ku is a 5′-drp/ap lyase that excises nucleotide damage near broken ends. Nature 2010, 464, 1214–1217. [Google Scholar] [CrossRef]
- de Ory, A.; Zafra, O.; de Vega, M. Efficient processing of abasic sites by bacterial nonhomologous end-joining ku proteins. Nucleic Acids Res. 2014, 42, 13082–13095. [Google Scholar] [CrossRef][Green Version]
- de Ory, A.; Nagler, K.; Carrasco, B.; Raguse, M.; Zafra, O.; Moeller, R.; de Vega, M. Identification of a conserved 5′-drp lyase activity in bacterial DNA repair ligase d and its potential role in base excision repair. Nucleic Acids Res. 2016, 44, 1833–1844. [Google Scholar] [CrossRef]
- Rosenberg, S.M. Evolving responsively: Adaptive mutation. Nat. Rev. Genet. 2001, 2, 504–515. [Google Scholar] [CrossRef] [PubMed]
- Brzostek, A.; Szulc, I.; Klink, M.; Brzezinska, M.; Sulowska, Z.; Dziadek, J. Either non-homologous ends joining or homologous recombination is required to repair double-strand breaks in the genome of macrophage-internalized mycobacterium tuberculosis. PLoS ONE 2014, 9, e92799. [Google Scholar]
- Moeller, R.; Stackebrandt, E.; Reitz, G.; Berger, T.; Rettberg, P.; Doherty, A.J.; Horneck, G.; Nicholson, W.L. Role of DNA repair by nonhomologous-end joining in bacillus subtilis spore resistance to extreme dryness, mono- and polychromatic uv, and ionizing radiation. J. Bacteriol. 2007, 189, 3306–3311. [Google Scholar] [CrossRef] [PubMed]
- Paris, U.; Mikkel, K.; Tavita, K.; Saumaa, S.; Teras, R.; Kivisaar, M. Nhej enzymes ligd and ku participate in stationary-phase mutagenesis in pseudomonas putida. DNA Repair 2015, 31, 11–18. [Google Scholar] [CrossRef]
- Tegova, R.; Tover, A.; Tarassova, K.; Tark, M.; Kivisaar, M. Involvement of error-prone DNA polymerase iv in stationary-phase mutagenesis in pseudomonas putida. J. Bacteriol. 2004, 186, 2735–2744. [Google Scholar] [CrossRef]
- Beranek, D.T. Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat. Res. 1990, 231, 11–30. [Google Scholar] [CrossRef]
- Ui, A.; Seki, M.; Ogiwara, H.; Onodera, R.; Fukushige, S.; Onoda, F.; Enomoto, T. The ability of sgs1 to interact with DNA topoisomerase iii is essential for damage-induced recombination. DNA Repair 2005, 4, 191–201. [Google Scholar] [CrossRef]
- Choy, J.S.; Kron, S.J. Nua4 subunit yng2 function in intra-s-phase DNA damage response. Mol. Cell. Biol. 2002, 22, 8215–8225. [Google Scholar] [CrossRef]
- Lundin, C.; North, M.; Erixon, K.; Walters, K.; Jenssen, D.; Goldman, A.S.; Helleday, T. Methyl methanesulfonate (mms) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks. Nucleic Acids Res. 2005, 33, 3799–3811. [Google Scholar] [CrossRef]
- Yang, Y.; Gordenin, D.A.; Resnick, M.A. A single-strand specific lesion drives mms-induced hyper-mutability at a double-strand break in yeast. DNA Repair 2010, 9, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Minias, A.; Zukowska, L.; Lechowicz, E.; Gasior, F.; Knast, A.; Podlewska, S.; Zygala, D.; Dziadek, J. Early drug development and evaluation of putative antitubercular compounds in the -omics era. Front. Microbiol. 2020, 11, 618168. [Google Scholar] [CrossRef] [PubMed]
Mycobacterium Smegmatis Strains | |||
---|---|---|---|
Wild-Type | KuDCCP | CCP | |
Substitution | % of Genomes Affected | ||
A→C | 16.67% | - | 10.00% |
A→G | 16.67% | - | - |
A→T | - | - | - |
C→A | 16.67% | 10.00% | - |
C→G | 16.67% | 10.00% | 10.00% |
C→T | - | 20.00% | 10.00% |
G→A | 33.33% | 10.00% | 20.00% |
G→C | - | 10.00% | 20.00% |
G→T | - | 10.00% | 10.00% |
T→A | - | 10.00% | - |
T→C | 16.67% | - | 10.00% |
T→G | 33.33% | 10.00% | 10.00% |
CA→AC | 33.33% | - | - |
TC→CT | 50.00% | - | 40.00% |
TA→CT | - | - | 10.00% |
CAAC→GGTG | 16.67% | - | - |
deletion | % of genomes affected | ||
ΔA | 16.67% | - | - |
ΔC | - | - | - |
ΔG | 16.67% | 40.00% | 10.00% |
ΔT | - | - | - |
insertion | % of genomes affected | ||
T | 16.67% | - | - |
CG | 33.33% | - | 30.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzostek, A.; Gąsior, F.; Lach, J.; Żukowska, L.; Lechowicz, E.; Korycka-Machała, M.; Strapagiel, D.; Dziadek, J. ATP-Dependent Ligases and AEP Primases Affect the Profile and Frequency of Mutations in Mycobacteria under Oxidative Stress. Genes 2021, 12, 547. https://doi.org/10.3390/genes12040547
Brzostek A, Gąsior F, Lach J, Żukowska L, Lechowicz E, Korycka-Machała M, Strapagiel D, Dziadek J. ATP-Dependent Ligases and AEP Primases Affect the Profile and Frequency of Mutations in Mycobacteria under Oxidative Stress. Genes. 2021; 12(4):547. https://doi.org/10.3390/genes12040547
Chicago/Turabian StyleBrzostek, Anna, Filip Gąsior, Jakub Lach, Lidia Żukowska, Ewelina Lechowicz, Małgorzata Korycka-Machała, Dominik Strapagiel, and Jarosław Dziadek. 2021. "ATP-Dependent Ligases and AEP Primases Affect the Profile and Frequency of Mutations in Mycobacteria under Oxidative Stress" Genes 12, no. 4: 547. https://doi.org/10.3390/genes12040547
APA StyleBrzostek, A., Gąsior, F., Lach, J., Żukowska, L., Lechowicz, E., Korycka-Machała, M., Strapagiel, D., & Dziadek, J. (2021). ATP-Dependent Ligases and AEP Primases Affect the Profile and Frequency of Mutations in Mycobacteria under Oxidative Stress. Genes, 12(4), 547. https://doi.org/10.3390/genes12040547