Mitochondrial Genome Evolution, Genetic Diversity, and Population Structure in British Water Voles (Arvicola amphibius)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Arvicolinae: Mitochondrial Genomes and Sampled Taxa
2.2. Arvicolinae: Phylogenetic Analysis of Mitochondrial Genomes
2.3. Arvicola amphibius: Sample Collection, DNA Extraction, and Amplification
2.4. Arvicola amphibius: Haplotype Networks and Phylogenetic Analysis
2.5. Arvicola amphibius: Population Genetics Statistics
3. Results
3.1. Phylogenetics of Arvicolinae
3.2. Population Genetics of Arvicola amphibius
3.3. Comparison of Genetic Diversity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burgin, C.J.; Colella, J.P.; Kahn, P.L.; Upham, N.S. How many species of mammals are there? J. Mammal. 2018, 99, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Carleton, M.D.; Musser, G.G. Order rodentia. In Mammal Species of the World; The John Hopkins University Press: Baltimore, MD, USA, 2005; pp. 745–2142. [Google Scholar]
- Robovský, J.; Řičánková, V.; Zrzavý, J. Phylogeny of Arvicolinae (Mammalia, Cricetidae): Utility of morphological and molecular data sets in a recently radiating clade. Zool. Scr. 2008, 37, 571–590. [Google Scholar] [CrossRef]
- Triant, D.A.; DeWoody, J.A. Molecular analyses of mitochondrial pseudogenes within the nuclear genome of arvicoline rodents. Genetica 2008, 132, 21–33. [Google Scholar] [CrossRef]
- Steppan, S.J.; Schenk, J.J. Muroid rodent phylogenetics: 900-species tree reveals increasing diversification rates. PLoS ONE 2017, 12, e0183070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folkertsma, R.; Westbury, M.V.; Eccard, J.A.; Hofreiter, M. The complete mitochondrial genome of the common vole, Microtus arvalis (Rodentia: Arvicolinae). Mitochondrial DNA Part B Resour. 2018, 3, 446–447. [Google Scholar] [CrossRef]
- Bondareva, O.V.; Abramson, N.I. The complete mitochondrial genome of the common pine vole Terricola subterraneus (Arvicolinae, Rodentia). Mitochondrial DNA Part B Resour. 2019, 4, 3925–3926. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Qi, Z.; Wen, Y.C.; Min, J.Z.; Song, Q.K. The complete mitochondrial genome of Microtus fortis pelliceus (Arvicolinae, Rodentia) from China and its phylogenetic analysis. Mitochondrial DNA Part B Resour. 2019, 4, 2039–2041. [Google Scholar] [CrossRef] [Green Version]
- Alqahtani, F.; Duckett, D.; Pirro, S.; Mandoiu, I.I. Complete mitochondrial genome of the water vole, Microtus richardsoni (Cricetidae, Rodentia). Mitochondrial DNA Part B Resour. 2020, 5, 2498–2499. [Google Scholar] [CrossRef]
- Yu, P.; Kong, L.; Li, Y.; Cong, H.; Li, Y. Analysis of complete mitochondrial genome and its application to phylogeny of Caryomys inez (Rodentia: Cricetidae: Arvicolinae). Mitochondrial DNA Part B Resour. 2016, 1, 343–344. [Google Scholar] [CrossRef] [Green Version]
- Piertney, S.B.; Stewart, W.A.; Lambin, X.; Telfer, S.; Aars, J.; Dallas, J.F. Phylogeographic structure and postglacial evolutionary history of water voles (Arvicola terrestris) in the United Kingdom. Mol. Ecol. 2005, 14, 1435–1444. [Google Scholar] [CrossRef]
- Brace, S.; Ruddy, M.; Miller, R.; Schreve, D.C.; Stewart, J.R.; Barnes, I. The colonization history of British water vole (Arvicola amphibius (Linnaeus, 1758)): Origins and development of the Celtic fringe. Proc. R. Soc. B Biol. Sci. 2016, 283. [Google Scholar] [CrossRef] [Green Version]
- Baker, R.J.; Scott, D.M.; King, P.J.; Overall, A.D.J. Genetic structure of regional water vole populations and footprints of reintroductions: A case study from southeast England. Conserv. Genet. 2020, 21, 531–546. [Google Scholar] [CrossRef]
- Baker, B.R. Demographic and Genetic Patterns of Water Voles in Human Modified Landscapes: Implications for Conservation. Ph.D. Thesis, University of Brighton, Brighton, UK, April 2015. [Google Scholar]
- Upham, N.S.; Esselstyn, J.A.; Jetz, W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 2019, 17, e3000494. [Google Scholar] [CrossRef] [PubMed]
- Paradis, E.; Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2018, 35, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Schliep, K.P. phangorn: phylogenetic analysis in R. Bioinformatics 2011, 27, 592–593. [Google Scholar] [CrossRef] [Green Version]
- Yu, G. Using ggtree to Visualize Data on Tree-Like Structures. Curr. Protoc. Bioinform. 2020, 69. [Google Scholar] [CrossRef]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. Partitionfinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef] [Green Version]
- Lanfear, R.; Calcott, B.; Kainer, D.; Mayer, C.; Stamatakis, A. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol. Biol. 2014, 14, 82. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Wang, Z.; Storm, D.R. Extraction of DNA from mouse tails. Biotechniques 2006, 41, 410–412. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, I.; Völkel, I.; Täubert, H.; Brenig, B. Forensic DNA-typing of dog hair: DNA-extraction and PCR amplification. Forensic Sci. Int. 2004, 141, 149–151. [Google Scholar] [CrossRef] [PubMed]
- Paradis, E. pegas: An R package for population genetics with an integrated–modular approach. Bioinformatics 2010, 26, 419–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marková, S.; Horníková, M.; Lanier, H.C.; Henttonen, H.; Searle, J.B.; Weider, L.J.; Kotlík, P. High genomic diversity in the bank vole at the northern apex of a range expansion: The role of multiple colonizations and end-glacial refugia. Mol. Ecol. 2020, 29, 1730–1744. [Google Scholar] [CrossRef]
- Filipi, K.; Marková, S.; Searle, J.B.; Kotlík, P. Mitogenomic phylogenetics of the bank vole Clethrionomys glareolus, a model system for studying end-glacial colonization of Europe. Mol. Phylogenet. Evol. 2015, 82, 245–257. [Google Scholar] [CrossRef]
- Galewski, T.; Tilak, M.K.; Sanchez, S.; Chevret, P.; Paradis, E.; Douzery, E.J.P. The evolutionary radiation of Arvicolinae rodents (voles and lemmings): Relative contribution of nuclear and mitochondrial DNA phylogenies. BMC Evol. Biol. 2006, 6, 80. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, S.; Paupério, J.; Pavlova, S.V.; Alves, P.C.; Searle, J.B. The Microtus voles: Resolving the phylogeny of one of the most speciose mammalian genera using genomics. Mol. Phylogenet. Evol. 2018, 125, 85–92. [Google Scholar] [CrossRef]
- Laikre, L.; Schwartz, M.K.; Waples, R.S.; Ryman, N. Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends Ecol. Evol. 2010, 25, 520–529. [Google Scholar] [CrossRef] [Green Version]
- Canu, A.; Scandura, M.; Luchetti, S.; Cossu, A.; Iacolina, L.; Bazzanti, M.; Apollonio, M. Influence of management regime and population history on genetic diversity and population structure of brown hares (Lepus europaeus) in an Italian province. Eur. J. Wildl. Res. 2013, 59, 783–793. [Google Scholar] [CrossRef]
Arvicola amphibius | n | bp | Hap. No. | Hap. Div. | π | D | P Norm. | P Beta |
---|---|---|---|---|---|---|---|---|
Captive (Wildwood Trust) | 17 | 706 | 12 | 0.949 | 0.004 | −2.186 | 0.029 | 0.007 |
Natural South East and East of England | 15 | 731 | 14 | N/A | 0.007 | −2.378 | 0.017 | 0.000 |
Natural English and Welsh | 32 | 644 | 32 | 0.982 | 0.008 | −2.164 | 0.030 | 0.011 |
Natural Scottish | 25 | 644 | 25 | 0.945 | 0.009 | −1.857 | 0.063 | 0.041 |
Natural British | 67 | 639 | 39 | 0.971 | 0.016 | −0.113 | 0.910 | 0.950 |
Natural Mainland European | 20 | 639 | 19 | 0.995 | 0.024 | −0.753 | 0.452 | 0.491 |
Ancient British | 17 | 634 | 16 | 0.993 | 0.017 | −0.176 | 0.861 | 0.898 |
Myodes glareolus | ||||||||
British | 24 | 940 | 17 | 0.967 | 0.006 | −1.115 | 0.265 | 0.281 |
All | 118 | 940 | 97 | 0.996 | 0.009 | −1.775 | 0.076 | 0.050 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirkland, C.; Farré, M. Mitochondrial Genome Evolution, Genetic Diversity, and Population Structure in British Water Voles (Arvicola amphibius). Genes 2021, 12, 138. https://doi.org/10.3390/genes12020138
Kirkland C, Farré M. Mitochondrial Genome Evolution, Genetic Diversity, and Population Structure in British Water Voles (Arvicola amphibius). Genes. 2021; 12(2):138. https://doi.org/10.3390/genes12020138
Chicago/Turabian StyleKirkland, Corey, and Marta Farré. 2021. "Mitochondrial Genome Evolution, Genetic Diversity, and Population Structure in British Water Voles (Arvicola amphibius)" Genes 12, no. 2: 138. https://doi.org/10.3390/genes12020138