The First Two Complete Mitochondrial Genomes of Neoephemeridae (Ephemeroptera): Comparative Analysis and Phylogenetic Implication for Furcatergalia
Abstract
:1. Introduction
2. Results and Discussion
2.1. Features of the Sequenced Mitogenomes
2.2. Nucleotide Composition
2.3. Protein-Coding Genes
2.4. Ribosomal and Transfer RNA Genes
2.5. Non-Coding Regions
2.6. Comparative Analysis of Furcatergalia Mitogenomes
2.7. Phylogenetic Analysis
3. Materials and Methods
3.1. Sample Collection, Identification, and DNA Extraction
3.2. Whole-Genome Sequencing and Mitogenome Assembly
3.3. Mitogenome Annotation and Bioinformatic Analysis
3.4. Phylogenetic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nie, R.E.; Yang, X.K. Research progress in mitochondrial genomes of Coleoptera. Acta Entomol. Sin. 2014, 57, 860–868. [Google Scholar]
- Boore, J.L. Animal mitochondrial genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolstenholme, D.R. Genetic novelties in mitochondrial genomes of multicellular animals. Curr. Opin. Genet. Dev. 1992, 2, 918–925. [Google Scholar] [CrossRef]
- Li, R.; Lei, Z.M.; Li, W.J.; Zhang, W.; Zhou, C.F. Comparative mitogenomic analysis of heptageniid mayflies (Insecta: Ephemeroptera): Conserved intergenic spacer and trna gene duplication. Insects 2021, 12, 170. [Google Scholar] [CrossRef] [PubMed]
- Avise, J.C.; Arnold, J.; Ball, R.M.; Bermingham, E.; Lamb, T.; Neigel, J.E.; Reeb, C.A.; Saunders, N.C. Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Ann. Rev. Ecol. Syst. 1987, 18, 489–522. [Google Scholar] [CrossRef]
- Wilson, A.C.; Cann, R.L.; Carr, S.M.; George, M.; Gyllensten, U.B.; Helm-Bychowski, K.M.; Higuchi, R.G.; Palumbi, S.R.; Prager, E.M.; Sage, R.D.; et al. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linn. Soc. 2010, 26, 375–400. [Google Scholar] [CrossRef]
- Cameron, S.L. Insect mitochondrial genomics: Implications for evolution and phylogeny. Annu. Rev. Entomol. 2014, 59, 95–117. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Amédégnato, C.; Cigliano, M.M.; Desutter-Grandcolas, L.; Heads, S.W.; Huang, Y.; Otte, D.; Whiting, M.F. 300 million years of diversification: Elucidating the patterns of orthopteran evolution based on comprehensive taxon and gene sampling. Cladistics 2015, 31, 621–651. [Google Scholar] [CrossRef]
- Zeng, L.Y.; Pang, Y.T.; Feng, S.Q.; Wang, Y.N.; Stejskal, V.; Aulicky, R.; Zhang, S.F.; Li, Z.H. Comparative mitochondrial genomics of five Dermestid beetles (Coleoptera: Dermestidae) and its implications for phylogeny. Genomics 2020, 113, 927–934. [Google Scholar]
- Wang, J.; Zhang, Y.J.; Yang, L.; Chen, X.S. The complete mitochondrial genome of Trifida elongate and comparative analysis of 43 leafhoppers. Comp. Biochem. Phys. D 2021, 39, 100843. [Google Scholar] [CrossRef]
- Yu, D.N.; Yu, P.P.; Zhang, L.P.; Storey, K.B.; Zhang, J.Y. Increasing 28 mitogenomes of Ephemeroptera, Odonata and Plecoptera support the Chiastomyaria hypothesis with three different outgroup combinations. PeerJ 2021, 9, e11402. [Google Scholar] [CrossRef]
- Xu, X.D.; Jia, Y.Y.; Cao, S.S.; Zhang, Z.Y.; Storey, K.B.; Yu, D.N.; Zhang, J.Y. Six complete mitochondrial genomes of mayflies from three genera of Ephemerellidae (Insecta: Ephemeroptera) with inversion and translocation of trnI rearrangement and their phylogenetic relationships. PeerJ 2020, 8, e9740. [Google Scholar] [CrossRef] [PubMed]
- Brittain, J.E.; Sartori, M. Ephemeroptera (Mayflies). In Encyclopedia of Insects; Resh, W.H., Carde, R.T., Eds.; Academic Press: San Diego, CA, USA, 2003; pp. 373–380. [Google Scholar]
- Ogden, T.H.; Gattolliat, J.L.; Sartori, M.; Staniczek, A.H.; Soldán, T.; Whiting, M.F. Towards a new paradigm in mayfly phylogeny (Ephemeroptera): Combined analysis of morphological and molecular data. Syst. Entomol. 2009, 34, 616–634. [Google Scholar] [CrossRef]
- Barber-James, H.M.; Gattolliat, J.L.; Sartori, M.; Hubbard, M.D. Global diversity of mayflies (Ephemeroptera, Insecta) in freshwater. Hydrobiologia 2008, 595, 339–350. [Google Scholar] [CrossRef]
- Bauernfeind, E.; Soldan, T. The Mayflies of Europe (Ephemeroptera); Apollo Books: Ollerup, Denmark, 2012. [Google Scholar]
- Jacobus, L.M.; Macadam, C.R.; Sartori, M. Mayflies (Ephemeroptera) and their contributions to eosystem services. Insects 2019, 10, 170. [Google Scholar] [CrossRef] [Green Version]
- Ogden, T.H.; Whiting, M.F. The problem with “The Paleoptera problem”: Sense and sensitivity. Cladistics 2003, 19, 432–442. [Google Scholar] [CrossRef]
- Ogden, T.H.; Whiting, M.F. Phylogeny of Ephemeroptera (mayflies) based on molecular evidence. Mol. Phylogenet. Evol. 2005, 37, 625–643. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.B.; Bartlett, S.; Sartori, M.; Breinholt, J.W.; Ogden, T.H. Anchored phylogenomics of burrowing mayflies (Ephemeroptera) and the evolution of tusks. Syst. Entomol. 2018, 43, 692–701. [Google Scholar] [CrossRef]
- Ogden, T.H.; Breinholt, J.W.; Bybee, S.M.; Miller, D.B.; Sartori, M.; Shiozawa, D.; Whiting, M.F. Mayfly phylogenomics: Initial evaluation of anchored hybrid enrichment data for the order Ephemeroptera. Zoosymposia 2019, 16, 167–181. [Google Scholar]
- McCafferty, W.P. Toward a phylogenetic classification of the Ephemeroptera (Insecta): A commentary on systematics. Ann. Entomol. Soc. Am. 1991, 84, 343–360. [Google Scholar] [CrossRef]
- Kluge, N.J. The Phylogenetic System of Ephemeroptera; Kluwer Academic: Dordrecht, The Netherlands, 2004; p. 442. [Google Scholar]
- Li, R.; Zhang, W.; Ma, Z.X.; Zhou, C.F. First complete mitogenomes of three mayflies in the genus Afronurus (Ephemeroptera: Heptageniidae) and their implications for phylogenetic reconstruction. Biologia 2021, 76, 2291–2302. [Google Scholar] [CrossRef]
- Xu, X.D.; Guan, J.Y.; Zhang, Z.Y.; Cao, Y.R.; Cai, Y.Y.; Storey, K.B.; Yu, D.N.; Zhang, J.Y. Insight into the phylogenetic relationships among three subfamilies within Heptageniidae (Insecta: Ephemeroptera) along with low-temperature selection pressure analyses using mitogenomes. Insects 2021, 12, 656. [Google Scholar] [CrossRef] [PubMed]
- Bae, Y.J.; McCafferty, W.P. Phylogenetic systematics and biogeography of the Neoephemeridae (Ephemeroptera: Pannota). Aquat. Insects 1998, 20, 35–68. [Google Scholar] [CrossRef]
- Ma, Z.X.; Zhou, C.F. The imaginal characters of Neoephemera projecta showing its plesiomorphic position and a new genus status in the family (Ephemeroptera: Neoephemeridae). Insects 2021, 12, 723. [Google Scholar] [CrossRef]
- Zhou, C.F.; Zheng, L.Y. A new species of the genus Neoephemera McDunnough from China (Ephemeroptera: Neoephemeridae). Aquat. Insects 2001, 23, 327–332. [Google Scholar] [CrossRef]
- Nguyen, V.V.; Bae, Y.J. Taxonomic review of the Vietnamese Neoephemeridae (Ephemeroptera) with description of Potamanthellus unicutibius, new species. Pan-Pac. Entomol. 2004, 79, 230–236. [Google Scholar]
- Holland, V.B.; Beaty, S.R.; Jacobus, L.M. A new species of Neoephemera McDunnough, 1925 (Ephemeroptera: Neoephemeridae) from North Carolina and Virginia. Zootaxa 2016, 4138, 139–154. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.Y.; Zhang, S.S.; Zhang, L.P.; Yu, D.N.; Zhang, J.Y.; Cheng, H.Y. The complete mitochondrial genome of Epeorus herklotsi (Ephemeroptera: Heptageniidae) and its phylogeny. Mitochondrial DNA B 2018, 3, 303–304. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Qin, J.C.; Zhou, C.F. The phylogeny of Ephemeroptera in Pterygota revealed by the mitochondrial genome of Siphluriscus chinensis (Hexapoda: Insecta). Gene 2014, 545, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Zhou, C.F.; Gai, Y.H.; Song, D.X.; Zhou, K.Y. The complete mitochondrial genome of Parafronurus youi (Insecta: Ephemeroptera) and phylogenetic position of the Ephemeroptera. Gene 2008, 424, 18–24. [Google Scholar] [CrossRef]
- Li, R.; Zhang, W.; Ma, Z.X.; Zhou, C.F. Novel gene rearrangement pattern in the mitochondrial genomes of Torleya mikhaili and Cincticostella fusca (Ephemeroptera: Ephemerellidae). Int. J. Biol. Macromol. 2020, 165, 3106–3114. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.B.; Wu, Y.F.; Yang, C.; Gu, X.H.; Wilson, J.J.; Li, H.; Cai, W.Z.; Yang, H.L.; Song, F. Evolution of tRNA gene rearrangement in the mitochondrial genome of ichneumonoid wasps (Hymenoptera: Ichneumonoidea). Int. J. Biol. Macromol. 2020, 164, 540–547. [Google Scholar] [CrossRef]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef]
- Wei, S.J.; Shi, M.; Chen, X.X.; Sharkey, M.J.; van Achterberg, C.; Ye, G.Y.; He, J.H. New views on strand asymmetry in insect mitochondrial genomes. PLoS ONE 2010, 5, e12708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojala, D.; Montoya, J.; Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature 1981, 290, 470–474. [Google Scholar] [CrossRef]
- Du, Y.M.; Liang, Z.L.; Dietrich, C.H.; Dai, W. Comparative analysis of mitochondrial genomes of Nirvanini and Evacanthini (Hemiptera: Cicadellidae) reveals an explicit evolutionary relationship. Genomics 2021, 113, 1378–1385. [Google Scholar] [CrossRef] [PubMed]
- Varani, G.; McClain, W.H. The G-U wobble base pair: A fundamental building block of RNA structure crucial to RNA function in diverse biological systems. EMBO Rep. 2000, 1, 18–23. [Google Scholar] [CrossRef]
- Clayton, D.A. Replication and transcription of vertebrate mitochondrial DNA. Annu. Rev. Cell Biol. 1991, 7, 453–478. [Google Scholar] [CrossRef]
- Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. BBA-Bioenerg. 1999, 1410, 103–123. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Silva, P.; Enriquez, J.A.; Montoya, J. Replication and transcription of mammalian mitochondrial DNA. Exp. Physiol. 2003, 88, 41–56. [Google Scholar] [CrossRef]
- Lv, C.D.; Li, Q.; Kong, L.F. Comparative analyses of the complete mitochondrial genomes of Dosinia clams and their phylogenetic position within Veneridae. PLoS ONE 2018, 13, e0196466. [Google Scholar] [CrossRef]
- Li, R.; Wang, Y.Q.; Shu, X.H.; Meng, L.; Li, B.P. Complete mitochondrial genomes of three Oxya grasshoppers (Orthoptera) and their implications for phylogenetic reconstruction. Genomics 2020, 112, 289–296. [Google Scholar] [CrossRef]
- Xia, X.H. Maximizing transcription efficiency causes codon usage bias. Genetics 1996, 144, 1309–1320. [Google Scholar] [CrossRef]
- Zhang, L.; Li, W.H. Mammalian housekeeping genes evolve more slowly than tissue-specific genes. Mol. Biol. Evol. 2004, 21, 236–239. [Google Scholar] [CrossRef] [PubMed]
- Kluge, N.J. Phylogeny and higher classification of Ephemeroptera. Zoosyst. Ross. 1998, 7, 255–269. [Google Scholar]
- Wang, T.Q.; McCafferty, W.P.; Bae, Y.J. Sister relationship of the Neoephemeridae and Caenidae (Ephemeroptera: Pannota). Entomol. News 1997, 108, 52–56. [Google Scholar]
- McCafferty, W.P.; Wang, T.Q. Phylogenetic systematics of the major lineages of pannote mayflies (Ephemeroptera: Pannota). T. Am. Entomol. Soc. 2000, 126, 9–101. [Google Scholar]
- Patel, R.K.; Jain, M. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE 2012, 7, e30619. [Google Scholar]
- Schmieder, R.; Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011, 27, 863–864. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, D.; Patrick, M.; Guillaume, S. Novoplasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017, 45, e18. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Bernt, M.; Donath, A.; Juhling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Putz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef]
- Laslett, D.; Canbäck, B. ARWEN, a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 2008, 24, 172–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, T.M.; Chan, P.P. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016, 44, W54–W57. [Google Scholar] [CrossRef] [PubMed]
- Meng, G.; Li, Y.; Yang, C.; Liu, S. MitoZ: A toolkit for mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 2019, 47, e63. [Google Scholar] [CrossRef]
- Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32, W273–W279. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Alejandro, S.G. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Katoh, K.; Kuma, K.; Toh, H.; Miyata, T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005, 33, 511–518. [Google Scholar] [CrossRef]
- Abascal, F.; Zardoya, R.; Telford, M.J. TranslatorX: Multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 2010, 38, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Castresana, J. Gblocks, V. 0.91b. 2002. Available online: http://molevol.cmima.csic.es/castresana/Gblocks_server.html (accessed on 11 July 2021).
- Zhang, D.; Gao, F.; Jakovlic, I.; Zhou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Res. 2020, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Lanfear, R.; Calcott, B.; Ho, S.Y.; Guindon, S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 2012, 29, 1695–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Hohna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.; Pfeiffer, W.T.; Schwartz, T. Creating the CIPRES science gateway for inference of large phylogenetic Trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; Institute of Electrical and Electronics Engineers (IEEE): New Orleans, LA, USA, 2010; pp. 1–8. [Google Scholar]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
Gene | Strand | Position | Intergenic Nucleotides | Codon | Anticodon | |||
---|---|---|---|---|---|---|---|---|
Ppr | Ped | Ppr | Ped | Ppr | Ped | |||
trnI | J | 1–65 | 1–65 | 0 | 0 | GAU | ||
trnQ | N | 80–148 | 78–146 | 14 | 12 | UUG | ||
trnM | J | 161–225 | 180–243 | 12 | 33 | CAU | ||
ND2 | J | 226–1236 | 244–1266 | 0 | 0 | ATT/TAA | ATT/TAA | |
trnW | J | 1239–1306 | 1265–1332 | 2 | −2 | UCA | ||
trnC | N | 1299–1360 | 1325–1387 | −8 | −8 | GCA | ||
trnY | N | 1361–1424 | 1392–1454 | 0 | 4 | GUA | ||
COI | J | 1390–2956 | 1420–2986 | −35 | −35 | ATT/T | ATT/T | |
trnL | J | 2957–3022 | 2988–3052 | 0 | 1 | UAA | ||
COII | J | 3023–3710 | 3054–3741 | 0 | 1 | ATG/T | ATG/T | |
trnK | J | 3711–3779 | 3742–3810 | 0 | 0 | CUU | ||
trnD | J | 3780–3846 | 3811–3876 | 0 | 0 | GUC | ||
ATP8 | J | 3847–4011 | 3877–4044 | 0 | 0 | ATT/TAA | ATC/TAA | |
ATP6 | J | 4005–4682 | 4038–4715 | −7 | −7 | ATG/TAA | ATG/TAA | |
COIII | J | 4682–5470 | 4715–5503 | −1 | −1 | ATG/TAA | ATG/TAA | |
trnG | J | 5469–5531 | 5503–5566 | −2 | −1 | UCC | ||
ND3 | J | 5532–5885 | 5567–5920 | 0 | 0 | ATT/TAA | ATT/TAG | |
trnA | J | 6048–6112 | 5919–5981 | 162 | −2 | UGC | ||
trnR | J | 6278–6340 | 5982–6044 | 165 | 0 | UCG | ||
trnN | J | 6341–6405 | 6045–6109 | 0 | 0 | GUU | ||
trnS | J | 6404–6467 | 6108–6172 | −2 | −2 | GCU | ||
trnE | J | 6468–6532 | 6173–6236 | 0 | 0 | UUC | ||
trnF | N | 6534–6596 | 6237–6300 | 1 | 0 | GAA | ||
ND5 | N | 6597–8331 | 6301–8035 | 0 | 0 | ATG/T | ATG/T | |
trnH | N | 8333–8395 | 8037–8099 | 1 | 1 | GUG | ||
ND4 | N | 8396–9737 | 8100–9441 | 0 | 0 | ATG/T | ATG/T | |
ND4L | N | 9731–10,027 | 9435–9731 | −7 | −7 | ATG/TAA | ATG/TAA | |
trnT | J | 10,030–10,095 | 9734–9799 | 2 | 2 | UGU | ||
trnP | N | 10,096–10,157 | 9800–9862 | 0 | 0 | UGG | ||
ND6 | J | 10,160–10,675 | 9865–10383 | 2 | 2 | ATT/TAA | ATT/TAA | |
CYTB | J | 10,688–11,822 | 10383–11517 | 12 | −1 | ATG/T | ATG/T | |
trnS | J | 11,823–11,892 | 11518–11587 | 0 | 0 | UGA | ||
ND1 | N | 11,921–12,866 | 11606–12556 | 28 | 18 | ATG/T | ATG/TAA | |
trnL | N | 12,868–12,932 | 12558–12621 | 1 | 1 | UAG | ||
rrnL | N | 12,933–14,182 | 12622–13876 | 0 | 0 | |||
trnV | N | 14,183–14,252 | 13877–13947 | 0 | 0 | UAC | ||
rrnS | N | 14,253–15,033 | 13948–14727 | 0 | 0 | |||
CR | J | 15,034–16,031 | 14728–15274 | 0 | 0 |
Species | Region | Size (bp) | T (%) | C (%) | A (%) | G (%) | A + T (%) | G + C (%) | AT-Skew | GC-Skew |
---|---|---|---|---|---|---|---|---|---|---|
P. projecta | Total genome | 16,031 | 37.51 | 15.74 | 35.87 | 10.88 | 73.38 | 26.62 | −0.02 | −0.18 |
PCGs123 | 11,223 | 42.80 | 13.49 | 29.75 | 13.95 | 72.56 | 27.44 | −0.18 | 0.02 | |
PCGs12 | 7464 | 40.72 | 16.17 | 25.23 | 17.89 | 65.94 | 34.06 | −0.23 | 0.05 | |
PCGs3 | 3732 | 46.95 | 8.23 | 38.64 | 6.19 | 85.58 | 14.42 | −0.10 | −0.14 | |
rRNAs | 2031 | 37.52 | 8.47 | 37.81 | 16.20 | 75.33 | 24.67 | 0.00 | 0.31 | |
tRNAs | 1439 | 35.93 | 11.67 | 36.62 | 15.77 | 72.55 | 27.45 | 0.01 | 0.15 | |
CR | 998 | 44.16 | 11.31 | 38.32 | 6.20 | 82.48 | 17.52 | −0.07 | −0.29 | |
P. edmundsi | Total genome | 15,274 | 36.20 | 15.83 | 36.87 | 11.10 | 73.07 | 26.93 | 0.01 | −0.18 |
PCGs123 | 11,246 | 42.94 | 13.41 | 29.30 | 14.35 | 72.24 | 27.76 | −0.19 | 0.03 | |
PCGs12 | 7478 | 40.56 | 16.57 | 24.35 | 18.52 | 64.91 | 35.09 | −0.25 | 0.06 | |
PCGs3 | 3739 | 47.69 | 7.19 | 39.02 | 6.10 | 86.71 | 13.29 | −0.10 | −0.08 | |
rRNAs | 2035 | 38.87 | 8.60 | 36.51 | 16.02 | 75.38 | 24.62 | −0.03 | 0.30 | |
tRNAs | 1437 | 35.98 | 11.69 | 36.40 | 15.94 | 72.37 | 27.63 | 0.01 | 0.15 | |
CR | 548 | 42.28 | 15.33 | 31.36 | 11.02 | 73.65 | 26.35 | −0.15 | −0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Ma, Z.; Zhou, C. The First Two Complete Mitochondrial Genomes of Neoephemeridae (Ephemeroptera): Comparative Analysis and Phylogenetic Implication for Furcatergalia. Genes 2021, 12, 1875. https://doi.org/10.3390/genes12121875
Li R, Ma Z, Zhou C. The First Two Complete Mitochondrial Genomes of Neoephemeridae (Ephemeroptera): Comparative Analysis and Phylogenetic Implication for Furcatergalia. Genes. 2021; 12(12):1875. https://doi.org/10.3390/genes12121875
Chicago/Turabian StyleLi, Ran, Zhenxing Ma, and Changfa Zhou. 2021. "The First Two Complete Mitochondrial Genomes of Neoephemeridae (Ephemeroptera): Comparative Analysis and Phylogenetic Implication for Furcatergalia" Genes 12, no. 12: 1875. https://doi.org/10.3390/genes12121875
APA StyleLi, R., Ma, Z., & Zhou, C. (2021). The First Two Complete Mitochondrial Genomes of Neoephemeridae (Ephemeroptera): Comparative Analysis and Phylogenetic Implication for Furcatergalia. Genes, 12(12), 1875. https://doi.org/10.3390/genes12121875