Epigenetic Mechanisms of ART-Related Imprinting Disorders: Lessons From iPSC and Mouse Models
Abstract
:1. Background
2. Imprinting Disorders Associated with ART
2.1. Beckwith-Wiedemann Syndrome
2.2. Silver-Russell Syndrome
2.3. Prader-Willi Syndrome
2.4. Angelman Syndrome
3. A Need for Improved Imprinting Model Systems
4. Mouse Models for Imprinting and ART
5. iPSCs as a Tool to Model Imprinting Disorders
6. The Effects of Reprogramming on Methylation Status in Normal iPSCs
7. Imprinting Status of iPSCs
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ART | Assisted reproductive technology |
IVF | In vitro fertilization |
ICSI | Intracytoplasmic sperm injection |
hPSCs | Human pluripotent stem cells |
hESCs | Human embryonic stem cells |
ICM | Inner cell mass |
iPSCs | Induced pluripotent stem cells |
ntESCs | Nuclear transfer embryonic stem cells |
AS | Angelman syndrome |
PWS | Prader–Willi syndrome |
LOI | Loss of imprinting |
lncRNA | Long non-coding RNA |
BWS | Beckwith–Wiedemann syndrome |
DMR | Differentially methylated region |
SRS | Silver–Russell syndrome |
ICR | Imprinting coding region |
TET | Ten-eleven translocation methylcytosine dioxygenases |
5mC | 5-Methylcytosine |
5hmCe | 5-Hydroxymethylcytosine |
ZFP | Zinc finger protein |
DNMT | DNA methyltransferase |
KAP1 | KRAB-associated protein 1 |
mESC | mouse embryonic stem cells |
LOM | Loss of methylation |
GOM | Gain of methylation |
SNP | Single nucleotide polymorphism |
ID | Imprinting disorder |
References
- Ferguson-Smith, A.C. Genomic imprinting: The emergence of an epigenetic paradigm. Nat. Rev. Genet. 2011, 12, 565–575. [Google Scholar] [CrossRef]
- Bartolomei, M.S.; Ferguson-Smith, A. Mammalian Genomic Imprinting. Cold Spring Harb. Perspect. Biol. 2011, 3, a002592. [Google Scholar] [CrossRef] [Green Version]
- Tucci, V.; Isles, A.; Kelsey, G.; Ferguson-Smith, A.C.; The Erice Imprinting Group. Genomic Imprinting and Physiological Processes in Mammals. Cell 2019, 176, 952–965. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.R.; Dent, C.L.; McNamara, I.G.; Isles, A.R. Behavioural effects of imprinted genes. Curr. Opin. Behav. Sci. 2015, 2, 28–33. [Google Scholar] [CrossRef]
- Wilkinson, L.S.; Davies, W.; Isles, A.R. Genomic imprinting effects on brain development and function. Nat. Rev. Neurosci. 2007, 8, 832–843. [Google Scholar] [CrossRef] [PubMed]
- Soellner, L.; Begemann, M.; Mackay, D.J.; Grønskov, K.; Tümer, Z.; Maher, E.R.; Temple, I.K.; Monk, D.; Riccio, A.; Linglart, A.; et al. Recent Advances in Imprinting Disorders. Clin. Genet. 2016, 91, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henningsen, A.A.; Gissler, M.; Rasmussen, S.; Opdahl, S.; Wennerholm, U.B.; Spangmose, A.L.; Tiitinen, A.; Bergh, C.; Romundstad, L.B.; Laivuori, H.; et al. Imprinting disorders in children born after ART: A Nordic study from the CoNARTaS group. Hum. Reprod. 2020, 35, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Eroglu, A.; Layman, L.C. Role of ART in Imprinting Disorders. Semin. Reprod. Med. 2012, 30, 92–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manipalviratn, S.; DeCherney, A.; Segars, J. Imprinting disorders and assisted reproductive technology. Fertil. Steril. 2009, 91, 305–315. [Google Scholar] [CrossRef]
- Odom, L.N.; Segars, J. Imprinting disorders and assisted reproductive technology. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 517–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortessis, V.; Azadian, M.; Buxbaum, J.; Sanogo, F.; Song, A.Y.; Sriprasert, I.; Wei, P.C.; Yu, J.; Chung, K.; Siegmund, K.D. Comprehensive meta-analysis reveals association between multiple imprinting disorders and conception by assisted reproductive technology. J. Assist. Reprod. Genet. 2018, 35, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Amor, D.J.; Halliday, J. A review of known imprinting syndromes and their association with assisted reproduction technologies. Hum. Reprod. 2008, 23, 2826–2834. [Google Scholar] [CrossRef] [Green Version]
- Brioude, F.; Kalish, J.M.; Mussa, A.; Foster, A.C.; Bliek, J.; Ferrero, G.B.; Boonen, S.E.; Cole, T.; Baker, R.; Bertoletti, M.; et al. Expert consensus document: Clinical and molecular diagnosis, screening and management of Beckwith–Wiedemann syndrome: An international consensus statement. Nat. Rev. Endocrinol. 2018, 14, 229–249. [Google Scholar] [CrossRef] [PubMed]
- Choufani, S.; Shuman, C.; Weksberg, R. Beckwith-Wiedemann syndrome. Am. J. Med. Genet. Part C Semin. Med. Genet. 2010, 154C, 343–354. [Google Scholar] [CrossRef]
- De Angelis, A.M.; Martini, A.E.; Owen, C.M. Assisted Reproductive Technology and Epigenetics. Semin. Reprod. Med. 2018, 36, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Mussa, A.; Molinatto, C.; Cerrato, F.; Palumbo, O.; Carella, M.; Baldassarre, G.; Carli, D.; Peris, C.; Riccio, A.; Ferrero, G.B. Assisted Reproductive Techniques and Risk of Beckwith-Wiedemann Syndrome. Pediatrics 2017, 140, e20164311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lidegaard, Ø.; Pinborg, A.; Andersen, A.N. Imprinting diseases and IVF: Danish National IVF cohort study. Hum. Reprod. 2005, 20, 950–954. [Google Scholar] [CrossRef] [Green Version]
- Tenorio, J.; Romanelli, V.; Martin-Trujillo, A.; Fernández, G.-M.; Segovia, M.; Perandones, C.; Jurado, L.A.P.; Esteller, M.; Fraga, M.; Arias, P.; et al. Clinical and molecular analyses of Beckwith-Wiedemann syndrome: Comparison between spontaneous conception and assisted reproduction techniques. Am. J. Med. Genet. Part A 2016, 170, 2740–2749. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.P.; Beischel, L.; Schwanke, C.; Styren, K.; Crunk, A.; Schoof, J.; Elias, A.F. Overrepresentation of pregnancies conceived by artificial reproductive technology in prenatally identified fetuses with Beckwith-Wiedemann syndrome. J. Assist. Reprod. Genet. 2018, 35, 985–992. [Google Scholar] [CrossRef]
- Wakeling, E.L.; Abu Amero, S.; Alders, M.; Bliek, J.; Forsythe, E.; Kumar, S.; Lim, D.; Macdonald, F.; Mackay, D.J.; Maher, E.R.; et al. Epigenotype-phenotype correlations in Silver-Russell syndrome. J. Med. Genet. 2010, 47, 760–768. [Google Scholar] [CrossRef] [Green Version]
- Wakeling, E.L.; Brioude, F.; Lokulo-Sodipe, K.; O’Connell, S.M.; Salem, J.; Bliek, J.; Canton, A.P.M.; Chrzanowska, K.; Davies, J.; Dias, R.P.; et al. Diagnosis and management of Silver–Russell syndrome: First international consensus statement. Nat. Rev. Endocrinol. 2017, 13, 105–124. [Google Scholar] [CrossRef] [PubMed]
- Abu-Amero, S.; Monk, D.; Frost, J.; Preece, M.; Stanier, P.; Moore, E.G. The genetic aetiology of Silver-Russell syndrome. J. Med Genet. 2007, 45, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Hiura, H.; Okae, H.; Miyauchi, N.; Sato, F.; Sato, A.; Van De Pette, M.; John, R.M.; Kagami, M.; Nakai, K.; Soejima, H.; et al. Characterization of DNA methylation errors in patients with imprinting disorders conceived by assisted reproduction technologies. Hum. Reprod. 2012, 27, 2541–2548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hattori, H.; Hiura, H.; Kitamura, A.; Miyauchi, N.; Kobayashi, N.; Takahashi, S.; Okae, H.; Kyono, K.; Kagami, M.; Ogata, T.; et al. Association of four imprinting disorders and ART. Clin. Epigenet. 2019, 11, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassidy, S.B.; Schwartz, S.; Miller, J.L.; Driscoll, D.J. Prader-Willi syndrome. Genet. Med. 2011, 14, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Gold, J.-A.; Ruth, C.; Osann, K.; Flodman, P.; McManus, B.; Lee, H.-S.; Donkervoort, S.; Khare, M.; Ma, E.R.; Dykens, E.; et al. Frequency of Prader–Willi syndrome in births conceived via assisted reproductive technology. Genet. Med. 2014, 16, 164–169. [Google Scholar] [CrossRef] [Green Version]
- Hiura, H.; Okae, H.; Chiba, H.; Miyauchi, N.; Sato, F.; Sato, A.; Arima, T. Imprinting methylation errors in ART. Reprod. Med. Biol. 2014, 13, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Matsubara, K.; Murakami, N.; Nagai, T.; Ogata, T. Maternal age effect on the development of Prader–Willi syndrome resulting from upd(15)mat through meiosis 1 errors. J. Hum. Genet. 2011, 56, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.C.; Driscoll, D.J.; Dagli, I.A. Clinical and genetic aspects of Angelman syndrome. Genet. Med. 2010, 12, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Sutcliffe, A.; Peters, C.; Bowdin, S.; Temple, I.K.; Reardon, W.; Wilson, L.; Clayton-Smith, J.; Brueton, L.; Bannister, W.; Maher, E. Assisted reproductive therapies and imprinting disorders—a preliminary British survey. Hum. Reprod. 2006, 21, 1009–1011. [Google Scholar] [CrossRef]
- Chi, F.; Zhao, M.; Li, K.; Lin, A.-Q.; Li, Y.; Teng, X. DNA methylation status of imprinted H19 and KvDMR1 genes in human placentas after conception using assisted reproductive technology. Ann. Transl. Med. 2020, 8, 854. [Google Scholar] [CrossRef]
- Lazaraviciute, G.; Kauser, M.; Bhattacharya, S.; Haggarty, P.; Bhattacharya, S. A systematic review and meta-analysis of DNA methylation levels and imprinting disorders in children conceived by IVF/ICSI compared with children conceived spontaneously. Hum. Reprod. Update 2014, 20, 840–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, C.A.; Ferguson-Smith, A.C. Mechanisms regulating imprinted genes in clusters. Curr. Opin. Cell Biol. 2007, 19, 281–289. [Google Scholar] [CrossRef]
- Chang, S.; Bartolomei, M.S. Modeling human epigenetic disorders in mice: Beckwith-Wiedemann Syndrome and Silver-Russell Syndrome. Dis. Model. Mech. 2020, 13. [Google Scholar] [CrossRef]
- Cleaton, M.A.; Edwards, C.A.; Ferguson-Smith, A.C. Phenotypic Outcomes of Imprinted Gene Models in Mice: Elucidation of Pre- and Postnatal Functions of Imprinted Genes. Annu. Rev. Genom. Hum. Genet. 2014, 15, 93–126. [Google Scholar] [CrossRef]
- John, R.M. Engineering mouse models to investigate the function of imprinting. Brief. Funct. Genom. 2010, 9, 294–303. [Google Scholar] [CrossRef] [Green Version]
- Tunster, S.; Van de Pette, M.; John, R. Fetal overgrowth in the Cdkn1c mouse model of Beckwith-Wiedemann syndrome. Dis. Model. Mech. 2011, 4, 814–821. [Google Scholar] [CrossRef] [Green Version]
- McNamara, G.I.; Davis, B.A.; Dwyer, D.; John, R.; Isles, A.R. Behavioural abnormalities in a novel mouse model for Silver Russell Syndrome. Hum. Mol. Genet. 2016, 25, 5407–5417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, M.; Franco, D.V.; Morse, A.D.; Resnick, J.L. A mouse model of Angelman syndrome imprinting defects. Hum. Mol. Genet. 2018, 28, 220–229. [Google Scholar] [CrossRef]
- Horii, T.; Morita, S.; Hino, S.; Kimura, M.; Hino, Y.; Kogo, H.; Nakao, M.; Hatada, I. Successful generation of epigenetic disease model mice by targeted demethylation of the epigenome. Genome Biol. 2020, 21, 77. [Google Scholar] [CrossRef] [PubMed]
- Prasasya, R.; Grotheer, K.V.; Siracusa, L.D.; Bartolomei, M.S. Temple syndrome and Kagami-Ogata syndrome: Clinical presentations, genotypes, models and mechanisms. Hum. Mol. Genet. 2020, 29, R107–R116. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Smith, T.H.; Battle, S.L.; Ferrell, S.; Hawkins, R.D. Superovulation alters global DNA methylation in early mouse embryo development. Epigenetics 2019, 14, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Sato, A.; Otsu, E.; Negishi, H.; Utsunomiya, T.; Arima, T. Aberrant DNA methylation of imprinted loci in superovulated oocytes. Hum. Reprod. 2007, 22, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Market-Velker, B.A.; Zhang, L.; Magri, L.S.; Bonvissuto, A.C.; Mann, M.R. Dual effects of superovulation: Loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum. Mol. Genet. 2010, 19, 36–51. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Huang, Y.; Huang, H.; Guan, Y.; Li, M.; Jiang, X.; Yu, M.; Yang, X. Effects of superovulation, in vitro fertilization, and oocyte in vitro maturation on imprinted gene Grb10 in mouse blastocysts. Arch. Gynecol. Obstet. 2018, 298, 1219–1227. [Google Scholar] [CrossRef]
- Fortier, A.L.; Lopes, F.L.; Darricarrère, N.; Martel, J.; Trasler, J.M. Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum. Mol. Genet. 2008, 17, 1653–1665. [Google Scholar] [CrossRef] [Green Version]
- Jahanbakhsh-Asl, E.; Salehi, M.; Ghaffari-Novin, M.; Kato, Y. Superovulation Affects the Gene Expression Patterns of Mice Oocytes and Preimplantation Embryos Produced by Different Assisted Reproductive Technologies. Int. J. Women’s Health Reprod. Sci. 2018, 6, 444–451. [Google Scholar] [CrossRef]
- Velker, B.A.M.; Denomme, M.M.; Krafty, R.T.; Mann, M.R.W. Maintenance of Mest imprinted methylation in blastocyst-stage mouse embryos is less stable than other imprinted loci following superovulation or embryo culture. Environ. Epigenet. 2017, 3, dvx015. [Google Scholar] [CrossRef] [Green Version]
- Sato, C.; Shimada, M.; Mori, T.; Kumasako, Y.; Otsu, E.; Watanabe, H.; Utsunomiya, T. Assessment of human oocyte developmental competence by cumulus cell morphology and circulating hormone profile. Reprod. Biomed. Online 2007, 14, 49–56. [Google Scholar] [CrossRef]
- Khoureiry, R.; Ibala-Rhomdane, S.; Mery, L.; Blachere, T.; Guerin, J.-F.; Lornage, J.; Lefevre, A. Dynamic CpG methylation of the KCNQ1OT1 gene during maturation of human oocytes. J. Med. Genet. 2008, 45, 583–588. [Google Scholar] [CrossRef] [Green Version]
- Geuns, E.; Hilven, P.; Van Steirteghem, A.; Liebaers, I.; De Rycke, M. Methylation analysis of KvDMR1 in human oocytes. J. Med. Genet. 2006, 44, 144–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, N.; Coluccio, A.; Thorball, C.W.; Planet, E.; Shi, H.; Offner, S.; Turelli, P.; Imbeault, M.; Ferguson-Smith, A.C.; Trono, D. ZNF445 is a primary regulator of genomic imprinting. Genes Dev. 2019, 33, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okae, H.; Chiba, H.; Hiura, H.; Hamada, H.; Sato, A.; Utsunomiya, T.; Kikuchi, H.; Yoshida, H.; Tanaka, A.; Suyama, M.; et al. Genome-Wide Analysis of DNA Methylation Dynamics during Early Human Development. PLoS Genet. 2014, 10, e1004868. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Ma, Y.; Wen, L.; Lei, H.; Chen, S.; Wang, X. Changes in DNA methylation and imprinting disorders in E9.5 mouse fetuses and placentas derived from vitrified eight-cell embryos. Mol. Reprod. Dev. 2019, 86, 404–415. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Vu, T.H.; Ulaner, G.A.; Littman, E.; Ling, J.-Q.; Chen, H.-L.; Hu, J.-F.; Behr, B.; Giudice, L.; Hoffman, A.R. IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch. Mol. Hum. Reprod. 2005, 11, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Market-Velker, B.; Fernandes, A.; Mann, M. Side-by-Side Comparison of Five Commercial Media Systems in a Mouse Model: Suboptimal In Vitro Culture Interferes with Imprint Maintenance1. Biol. Reprod. 2010, 83, 938–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denomme, M.M.; Mann, M.R.W. Genomic imprints as a model for the analysis of epigenetic stability during assisted reproductive technologies. Reproduction 2012, 144, 393–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mani, S.; Mainigi, M. Embryo Culture Conditions and the Epigenome. Semin. Reprod. Med. 2018, 36, 211–220. [Google Scholar] [CrossRef]
- Velker, B.A.M.; Denomme, M.M.; Mann, M.R.W. Embryo Culture and Epigenetics. In Advanced Structural Safety Studies. Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2012; Volume 912, pp. 399–421. [Google Scholar]
- Kindsfather, A.J.; Czekalski, M.A.; Pressimone, C.A.; Erisman, M.P.; Mann, M.R.W. Perturbations in imprinted methylation from assisted reproductive technologies but not advanced maternal age in mouse preimplantation embryos. Clin. Epigenet. 2019, 11, 162. [Google Scholar] [CrossRef]
- Lopes, F.L.; Fortier, A.L.; Darricarrère, N.; Chan, D.; Arnold, D.R.; Trasler, J.M. Reproductive and epigenetic outcomes associated with aging mouse oocytes. Hum. Mol. Genet. 2009, 18, 2032–2044. [Google Scholar] [CrossRef] [Green Version]
- Mann, M.R.W.; Lee, S.S.; Doherty, A.S.; Verona, R.I.; Nolen, L.D.; Schultz, R.M.; Bartolomei, M.S. Selective loss of imprinting in the placenta following preimplantation development in culture. Development 2004, 131, 3727–3735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doherty, A.S.; Mann, M.R.; Tremblay, K.D.; Bartolomei, M.S.; Schultz, R.M. Differential Effects of Culture on Imprinted H19 Expression in the Preimplantation Mouse Embryo1. Biol. Reprod. 2000, 62, 1526–1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Zhang, M.; Li, L.; Wang, M.; Shi, Y.; Zhang, H.; Kang, B.; Tang, N.; Li, B. Loss of methylation of H19-imprinted gene derived from assisted reproductive technologies can be mitigated by cleavage-stage embryo transfer in mice. J. Assist. Reprod. Genet. 2019, 36, 2259–2269. [Google Scholar] [CrossRef] [PubMed]
- Fauque, P.; Jouannet, P.; Lesaffre, C.; Ripoche, M.-A.; Dandolo, L.; Vaiman, D.; Jammes, H. Assisted Reproductive Technology affects developmental kinetics, H19 Imprinting Control Region methylation and H19 gene expression in individual mouse embryos. BMC Dev. Biol. 2007, 7, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.; Geng, L.; Huang, R.; Peng, W.; Chen, X.; Jiang, X.; Xiaoyu, Y.; Lixia, G.; Huang, Y.; Yang, X. Effect of vitrification on in vitro development and imprinted gene Grb10 in mouse embryos. Reproduction 2017, 154, 197–205. [Google Scholar] [CrossRef]
- De Waal, E.; Yamazaki, Y.; Ingale, P.; Bartolomei, M.; Yanagimachi, R.; McCarrey, J.R. Primary epimutations introduced during intracytoplasmic sperm injection (ICSI) are corrected by germline-specific epigenetic reprogramming. Proc. Natl. Acad. Sci. USA 2012, 109, 4163–4168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saenz-De-Juano, M.; Billooye, K.; Smitz, J.; Anckaert, E. The loss of imprinted DNA methylation in mouse blastocysts is inflicted to a similar extent byin vitrofollicle culture and ovulation induction. Mol. Hum. Reprod. 2016, 22, 427–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rentsendorj, A.; Mohan, S.; Szabó, P.; Mann, J.R. A Genomic Imprinting Defect in Mice Traced to a Single Gene. Genetics 2010, 186, 917–927. [Google Scholar] [CrossRef] [Green Version]
- Ferguson-Smith, A.; Cattanach, B.M.; Barton, S.C.; Beechey, C.V.; Surani, M.A. Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nat. Cell Biol. 1991, 351, 667–670. [Google Scholar] [CrossRef]
- Liu, W.; Deng, Y.; Liu, Y.; Gong, W.; Deng, W. Stem Cell Models for Drug Discovery and Toxicology Studies. J. Biochem. Mol. Toxicol. 2013, 27, 17–27. [Google Scholar] [CrossRef]
- Ben-David, U.; Kopper, O.; Benvenisty, N. Expanding the Boundaries of Embryonic Stem Cells. Cell Stem Cell 2012, 10, 666–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowe, R.G.; Daley, G.Q. Induced pluripotent stem cells in disease modelling and drug discovery. Nat. Rev. Genet. 2019, 20, 377–388. [Google Scholar] [CrossRef]
- Doss, M.X.; Sachinidis, A. Current Challenges of iPSC-Based Disease Modeling and Therapeutic Implications. Cells 2019, 8, 403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [Green Version]
- Wernig, M.; Meissner, A.; Foreman, R.; Brambrink, T.; Ku, M.; Hochedlinger, K.; Bernstein, B.E.; Jaenisch, R. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nat. Cell Biol. 2007, 448, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, T.S.; Hanna, J.; Zhang, X.; Ku, M.; Wernig, M.; Schorderet, P.; Bernstein, B.E.; Jaenisch, R.; Lander, E.S.; Meissner, A. Dissecting direct reprogramming through integrative genomic analysis. Nat. Cell Biol. 2008, 454, 49–55. [Google Scholar] [CrossRef]
- Guenther, M.G.; Frampton, G.; Soldner, F.; Hockemeyer, D.; Mitalipova, M.; Jaenisch, R.; Young, R.A. Chromatin Structure and Gene Expression Programs of Human Embryonic and Induced Pluripotent Stem Cells. Cell Stem Cell 2010, 7, 249–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins-Taylor, K.; Hsiao, J.S.; Chen, P.-F.; Glatt-Deeley, H.; De Smith, A.J.; Blakemore, A.I.; Lalande, M.; Chamberlain, S.J. Imprinted expression of UBE3A in non-neuronal cells from a Prader–Willi syndrome patient with an atypical deletion. Hum. Mol. Genet. 2014, 23, 2364–2373. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Cai, J.; Zhang, Y.; Wang, X.; Li, W.; Xu, J.; Li, F.; Guo, X.; Deng, K.; Zhong, M.; et al. Induced Pluripotent Stem Cells Can Be Used to Model the Genomic Imprinting Disorder Prader-Willi Syndrome. J. Biol. Chem. 2010, 285, 40303–40311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fink, J.J.; Robinson, T.M.; Germain, N.D.; Sirois, C.; Bolduc, K.A.; Ward, A.J.; Rigo, F.; Chamberlain, S.J.; Levine, E.S. Disrupted neuronal maturation in Angelman syndrome-derived induced pluripotent stem cells. Nat. Commun. 2017, 8, 15038. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, S.J.; Chen, P.-F.; Ng, K.Y.; Bourgois-Rocha, F.; Lemtiri-Chlieh, F.; Levine, E.; Lalande, M. Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader–Willi syndromes. Proc. Natl. Acad. Sci. USA 2010, 107, 17668–17673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanurova, J.; Neureiter, A.; Hiber, M.; Kessler, H.D.O.; Stolp, K.; Goetzke, R.; Klein, D.; Bankfalvi, A.; Klump, H.; Steenpass, L. Angelman syndrome-derived neurons display late onset of paternal UBE3A silencing. Sci. Rep. 2016, 6, 30792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazor, K.L.; Altun, G.; Lynch, C.; Tran, H.; Harness, J.V.; Slavin, I.; Garitaonandia, I.; Müller, F.-J.; Wang, Y.-C.; Boscolo, F.S.; et al. Recurrent Variations in DNA Methylation in Human Pluripotent Stem Cells and Their Differentiated Derivatives. Cell Stem Cell 2012, 10, 620–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuno, H.; Nakabayashi, K.; Abe, K.; Ando, T.; Sanosaka, T.; Kohyama, J.; Akamatsu, W.; Ohyama, M.; Takahashi, T.; Kosaki, K.; et al. Changeability of the fully methylated status of the 15q11.2 region in induced pluripotent stem cells derived from a patient with Prader-Willi syndrome. Congenit. Anom. 2017, 57, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Hur, S.K.; Naveh, N.S.S.; Thorvaldsen, J.L.; French, D.L.; Gagne, A.L.; Jobaliya, C.D.; Anguera, M.C.; Bartolomei, M.S.; Kalish, J.M. Derivation and investigation of the first human cell-based model of Beckwith-Wiedemann syndrome. Epigenetics 2020. [Google Scholar] [CrossRef]
- Hill, P.; Amouroux, R.; Hajkova, P. DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: An emerging complex story. Genomics 2014, 104, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Perrera, V.; Martello, G. How Does Reprogramming to Pluripotency Affect Genomic Imprinting? Front. Cell Dev. Biol. 2019, 7, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godini, R.; Lafta, H.Y.; Fallahi, H. Epigenetic modifications in the embryonic and induced pluripotent stem cells. Gene Expr. Patterns 2018, 29, 1–9. [Google Scholar] [CrossRef]
- Li, X.; Li, M.J.; Yang, Y.; Bai, Y. Effects of reprogramming on genomic imprinting and the application of pluripotent stem cells. Stem Cell Res. 2019, 41, 101655. [Google Scholar] [CrossRef]
- Johannesson, B.; Sagi, I.; Gore, A.; Paull, D.; Yamada, M.; Golan-Lev, T.; Li, Z.; Le Duc, C.; Shen, Y.; Stern, S.; et al. Comparable Frequencies of Coding Mutations and Loss of Imprinting in Human Pluripotent Cells Derived by Nuclear Transfer and Defined Factors. Cell Stem Cell 2014, 15, 634–642. [Google Scholar] [CrossRef] [Green Version]
- Bar, S.; Schachter, M.; Eldar-Geva, T.; Benvenisty, N. Large-Scale Analysis of Loss of Imprinting in Human Pluripotent Stem Cells. Cell Rep. 2017, 19, 957–968. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Morey, R.; O’Neil, R.C.; He, Y.; Daughtry, B.; Schultz, M.D.; Hariharan, M.; Nery, J.R.; Castanon, R.; Sabatini, K.; et al. Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nat. Cell Biol. 2014, 511, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, S.; Diep, D.; Gore, A.; Panopoulos, A.; Montserrat, N.; Plongthongkum, N.; Kumar, S.; Fung, H.-L.; Giorgetti, A.; Bilic, J.; et al. Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA 2012, 109, 16196–16201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, W.; Zhang, J.-P.; Xu, J.; Su, R.J.; Neises, A.; Ji, G.-Z.; Yuan, W.; Cheng, T.; Zhang, X.-B. Enhanced Generation of Integration-free iPSCs from Human Adult Peripheral Blood Mononuclear Cells with an Optimal Combination of Episomal Vectors. Stem Cell Rep. 2016, 6, 873–884. [Google Scholar] [CrossRef] [Green Version]
- Lister, R.; Pelizzola, M.; Kida, Y.; Hawkins, R.D.; Nery, J.R.; Hon, G.; Antosiewicz-Bourget, J.; O’Malley, R.; Castanon, R.; Klugman, S.; et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nat. Cell Biol. 2011, 471, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Bar-Nur, O.; Russ, H.A.; Efrat, S.; Benvenisty, N. Epigenetic Memory and Preferential Lineage-Specific Differentiation in Induced Pluripotent Stem Cells Derived from Human Pancreatic Islet Beta Cells. Cell Stem Cell 2011, 9, 17–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bar, S.; Benvenisty, N. Epigenetic aberrations in human pluripotent stem cells. EMBO J. 2019, 38, e101033. [Google Scholar] [CrossRef]
- Rouhani, F.; Kumasaka, N.; De Brito, M.C.; Bradley, A.; Vallier, L.; Gaffney, D. Genetic Background Drives Transcriptional Variation in Human Induced Pluripotent Stem Cells. PLoS Genet. 2014, 10, e1004432. [Google Scholar] [CrossRef] [PubMed]
- Vaskova, E.A.; Stekleneva, A.E.; Medvedev, S.P.; Zakian, S.M. “Epigenetic Memory” Phenomenon in Induced Pluripotent Stem Cells. Acta Nat. 2013, 5, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Yi, S.V. Impacts of Chromatin States and Long-Range Genomic Segments on Aging and DNA Methylation. PLoS ONE 2015, 10, e0128517. [Google Scholar] [CrossRef]
- Jones, M.J.; Goodman, S.J.; Kobor, M. DNA methylation and healthy human aging. Aging Cell 2015, 14, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Shan, Z.-Y.; Wu, Y.-S.; Li, X.; Shen, X.-H.; Wang, Z.-D.; Liu, Z.; Shen, J.-L.; Lei, L. Continuous Passages Accelerate the Reprogramming of Mouse Induced Pluripotent Stem Cells. Cell. Reprogramming 2014, 16, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Nishino, K.; Umezawa, A. DNA methylation dynamics in human induced pluripotent stem cells. Hum. Cell 2016, 29, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Tesarova, L.; Simara, P.; Stejskal, S.; Koutna, I. The Aberrant DNA Methylation Profile of Human Induced Pluripotent Stem Cells Is Connected to the Reprogramming Process and Is Normalized During In Vitro Culture. PLoS ONE 2016, 11, e0157974. [Google Scholar] [CrossRef]
- Tchieu, J.; Kuoy, E.; Chin, M.H.; Trinh, H.; Patterson, M.; Sherman, S.; Aimiuwu, O.; Lindgren, A.; Hakimian, S.; Zack, J.A.; et al. Female Human iPSCs Retain an Inactive X Chromosome. Cell Stem Cell 2010, 7, 329–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pick, M.; Stelzer, Y.; Bar-Nur, O.; Mayshar, Y.; Eden, A.; Benvenisty, N. Clone- and Gene-Specific Aberrations of Parental Imprinting in Human Induced Pluripotent Stem Cells. Stem Cells 2009, 27, 2686–2690. [Google Scholar] [CrossRef] [PubMed]
- Takikawa, S.; Ray, C.; Wang, X.; Shamis, Y.; Wu, T.-Y.; Li, X. Genomic imprinting is variably lost during reprogramming of mouse iPS cells. Stem Cell Res. 2013, 11, 861–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stadtfeld, M.; Apostolou, E.; Akutsu, H.; Fukuda, A.; Follett, P.; Natesan, S.; Kono, T.; Shioda, T.; Hochedlinger, K. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nat. Cell Biol. 2010, 465, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Hiura, H.; Toyoda, M.; Okae, H.; Sakurai, M.; Miyauchi, N.; Sato, A.; Kiyokawa, N.; Okita, H.; Miyagawa, Y.; Akutsu, H.; et al. Stability of genomic imprinting in human induced pluripotent stem cells. BMC Genet. 2013, 14, 32. [Google Scholar] [CrossRef] [Green Version]
- Rulands, S.; Lee, H.J.; Clark, S.J.; Angermueller, C.; Smallwood, S.A.; Krueger, F.; Mohammed, H.; Dean, W.; Nichols, J.; Rugg-Gunn, P.; et al. Genome-Scale Oscillations in DNA Methylation during Exit from Pluripotency. Cell Syst. 2018, 7, 63–76.e12. [Google Scholar] [CrossRef]
- Yagi, M.; Kabata, M.; Ukai, T.; Ohta, S.; Tanaka, A.; Shimada, Y.; Sugimoto, M.; Araki, K.; Okita, K.; Woltjen, K.; et al. De Novo DNA Methylation at Imprinted Loci during Reprogramming into Naive and Primed Pluripotency. Stem Cell Rep. 2019, 12, 1113–1128. [Google Scholar] [CrossRef] [Green Version]
- Shipony, Z.; Mukamel, Z.; Cohen, N.M.; Landan, G.; Chomsky, E.; Zeliger, S.R.; Fried, Y.C.; Ainbinder, E.; Friedman, N.; Tanay, A. Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells. Nat. Cell Biol. 2014, 513, 115–119. [Google Scholar] [CrossRef]
- Brix, J.; Zhou, Y.; Luo, Y. The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells. J. Genet. Genom. 2015, 42, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Ishida, M.; Moore, G.E. The role of imprinted genes in humans. Mol. Asp. Med. 2013, 34, 826–840. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, L.; Mao, S.-Q.; Li, Z.; Chen, J.; Zhang, R.-R.; Wu, H.-P.; Gao, J.; Guo, F.; Liu, W.; et al. Tet and TDG Mediate DNA Demethylation Essential for Mesenchymal-to-Epithelial Transition in Somatic Cell Reprogramming. Cell Stem Cell 2014, 14, 512–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bermejo-Álvarez, P.; Ramos-Ibeas, P.; Park, K.; Powell, A.P.; VanSandt, L.; Derek, B.; Ramirez, M.A.; Gutierrez-Adan, A.; Telugu, B.P. Tet-mediated imprinting erasure in H19 locus following reprogramming of spermatogonial stem cells to induced pluripotent stem cells. Sci. Rep. 2015, 5, 13691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffié, R.; Ajjan, S.; Greenberg, M.; Zamudio, N.; Del Arenal, M.E.; Iranzo, J.; Okamoto, I.; Barbaux, S.; Fauque, P.; Bourc’His, D. The Gpr1/Zdbf2 locus provides new paradigms for transient and dynamic genomic imprinting in mammals. Genes Dev. 2014, 28, 463–478. [Google Scholar] [CrossRef] [Green Version]
- Kelsey, G.; Feil, R. New insights into establishment and maintenance of DNA methylation imprints in mammals. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20110336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rugg-Gunn, P.J.; Ferguson-Smith, A.C.; Pedersen, R.A. Status of genomic imprinting in human embryonic stem cells as revealed by a large cohort of independently derived and maintained lines. Hum. Mol. Genet. 2007, 16, R243–R251. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.M.; Liu, L.; Xiao, L.; Schaniel, C.; Li, X. Genomic imprinting defect in Zfp57 mutant iPS cell lines. Stem Cell Res. 2016, 16, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ito, M.; Zhou, F.; Youngson, N.; Zuo, X.; Leder, P.; Ferguson-Smith, A.C. A Maternal-Zygotic Effect Gene, Zfp57, Maintains Both Maternal and Paternal Imprints. Dev. Cell 2008, 15, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Loh, Y.-H.; Zhang, W.; Chen, X.; George, J.; Ng, H.H. Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev. 2007, 21, 2545–2557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voon, H.; Gibbons, R.J. Maintaining memory of silencing at imprinted differentially methylated regions. Cell. Mol. Life Sci. 2016, 73, 1871–1879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barberet, J.; Binquet, C.; Guilleman, M.; Doukani, A.; Choux, C.; Bruno, C.; Bourredjem, A.; Chapusot, C.; Bourc’His, D.; Duffourd, Y.; et al. Do assisted reproductive technologies and in vitro embryo culture influence the epigenetic control of imprinted genes and transposable elements in children? Hum. Reprod. 2021, 36, 479–492. [Google Scholar] [CrossRef] [PubMed]
- Choux, C.; Binquet, C.; Carmignac, V.; Bruno, C.; Chapusot, C.; Barberet, J.; LaMotte, M.; Sagot, P.; Bourc’His, D.; Fauque, P. The epigenetic control of transposable elements and imprinted genes in newborns is affected by the mode of conception: ART versus spontaneous conception without underlying infertility. Hum. Reprod. 2017, 33, 331–340. [Google Scholar] [CrossRef] [PubMed]
Procedure | Imprinted Gene | Reported Alteration | ID Associated with Imprinted Region | References |
---|---|---|---|---|
Ex vivo embryo culture | H19 | LOM and biallelic expression LOM at ICR | SRS | [62,63] [56,64] |
IVF | H19 H19 | Aberrant imprint methylation resulting in biallelic expression rather than expression solely from maternal allele. Aberrant methylation patterns at ICR LOM at ICR GOM at maternal ICR | SRS BWS | [55] [65] [64] [55] |
Vitrification | Grb10 KvDMR1 | Reduced expression accompanied by downregulation of methylation. Reduced methylation does not explain altered expression. GOM in fetuses compared to in vitro culture samples | SRS BWS | [66] [54] |
ICSI | Snrpn Peg3 H19 | LOM at maternal DMR and aberrant expression LOM at maternal DMR and aberrant expression LOM at ICR | PWS / SRS | [67] [64] |
Superovulation | H19 Snrpn Kcnq1ot1 Gbr10 | Aberrant expression Increased expression LOM at paternal allele LOM at maternal ICR LOM at DMR LOM at maternal ICR GOM at CGI1 and decreased expression | SRS PWS BWS SRS | [65] [45] [44] [44] [68] [44] [45] |
In vitro follicle culture | H19 Snrpn Mest | LOM at DMR LOM at DMR LOM at DMR | SRS PWSSRS | [68] [68] [68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horánszky, A.; Becker, J.L.; Zana, M.; Ferguson-Smith, A.C.; Dinnyés, A. Epigenetic Mechanisms of ART-Related Imprinting Disorders: Lessons From iPSC and Mouse Models. Genes 2021, 12, 1704. https://doi.org/10.3390/genes12111704
Horánszky A, Becker JL, Zana M, Ferguson-Smith AC, Dinnyés A. Epigenetic Mechanisms of ART-Related Imprinting Disorders: Lessons From iPSC and Mouse Models. Genes. 2021; 12(11):1704. https://doi.org/10.3390/genes12111704
Chicago/Turabian StyleHoránszky, Alex, Jessica L. Becker, Melinda Zana, Anne C. Ferguson-Smith, and András Dinnyés. 2021. "Epigenetic Mechanisms of ART-Related Imprinting Disorders: Lessons From iPSC and Mouse Models" Genes 12, no. 11: 1704. https://doi.org/10.3390/genes12111704
APA StyleHoránszky, A., Becker, J. L., Zana, M., Ferguson-Smith, A. C., & Dinnyés, A. (2021). Epigenetic Mechanisms of ART-Related Imprinting Disorders: Lessons From iPSC and Mouse Models. Genes, 12(11), 1704. https://doi.org/10.3390/genes12111704