Pro12Ala PPAR-γ2 and +294T/C PPAR-δ Polymorphisms and Association with Metabolic Traits in Teenagers from Northern Mexico
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Phenotyping
2.3. Genotyping
2.4. Statistical Analysis
3. Results
3.1. Population Characteristics and Metabolic Traits among Them
3.2. Pro12Ala PPAR-γ2 and +294T/C PPAR-δ
3.3. Metabolic Traits by Pro12Ala PPAR-γ2 and +294T/C PPAR-δ Polymorphism Genotype: Major Allele Homozygous vs. Minor Allele Carriers in the Total Studied Population
3.4. Association between Pro12Ala PPAR-γ2 and Metabolic Traits
3.5. Association between +294T/C PPAR-δ and Metabolic Traits
3.6. Logistic Regression
4. Discussion
5. Study Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; et al. Health effects of overweight and obesity in 195 countries over 25 years. New Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [PubMed]
- OECD. The Heavy Burden of Obesity; OECD Health Policy Studies, Ed.; OECD Publishing: Paris, France, 2019. [Google Scholar]
- Ogden, C.L.; Carroll, M.D.; Lawman, H.G.; Fryar, C.D.; Kruszon-Moran, D.; Kit, B.K.; Flegal, K.M. Trends in obesity prevalence among children and adolescents in the United States, 1988-1994 through 2013-2014. JAMA 2016, 315, 2292–2299. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Salud Pública. Encuesta Nacional de Salud y Nutrición 2018. México: Instituto Nacional de Salud Pública. 2018. Available online: https://www.inegi.org.mx/contenidos/programas/ensanut/2018/doc/ensanut_2018_diseno_conceptual.pdf (accessed on 19 June 2020).
- Willson, T.M.; Brown, P.J.; Sternbach, D.D.; Henke, B.R. The PPARs: From orphan receptors to drug discovery. J. Med. Chem. 2000, 43, 527–550. [Google Scholar] [CrossRef]
- Hong, F.; Pan, S.; Guo, Y.; Xu, P.; Zhai, Y. PPARs as Nuclear Receptors for Nutrients and Energy Metabolism. Molecules 2019, 24, 2545. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jiménez, A.R.; Medh, J.D. Identification and regulation of novel PPAR-γ splice variants in human THP-1 macrophages. Biochim. Biophys. Acta 2006, 1759, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Gouda, H.N.; Sagoo, G.S.; Harding, A.H.; Yates, J.; Sandhu, M.S.; Higgins, J.P.T. The association between the peroxisome proliferator-activated receptor-γ2 (PPARG2) Pro12Ala gene variant and type 2 diabetes mellitus: A HuGE review and meta-analysis. Am. J. Epidemiol. 2010, 171, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Swarbrick, M.M.; Chapman, C.M.L.; McQuillan, B.M.; Hung, J.; Thompson, P.L. A Pro12Ala polymorphism in the human peroxisome proliferator-activated receptor-γ2 is associated with combined hyperlipidaemia in obesity. Eur. J. Endocrinol. 2001, 144, 277–282. [Google Scholar] [CrossRef]
- Stumvoll, M.; Häring, H. The Peroxisome Proliferator-Activated Receptor-γ2 Pro12Ala Polymorphism. Perspect. Diabetes 2002, 51, 2341–2347. [Google Scholar]
- Stryjecki, C.; Peralta-Romero, J.; Alyass, A.; Karam-Araujo, R.; Suarez, F.; Gomez-Zamudio, J.; Burguete-Garcia, A.; Cruz, M.; Meyre, D. Pro12Ala genotype and insulin resistance is modified by circulating lipids in Mexican children. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef]
- Yen, C.; Beamer, B.A.; Negri, C.; Silver, K.; Yarnall, D.P. Molecular Scanning of the Human Peroxisome Proliferator Activated Receptor γ (hPPARγ) Gene in Diabetic Caucasians: Identification of a Pro12Ala γ2 Missense Mutation. Biochem. Biophys. Res. Commun. 1997, 274, 270–274. [Google Scholar] [CrossRef]
- Galbete, C.; Toledo, E.; Martínez-González, M.A.; Martínez, J.A.; Guillén-Grima, F.; Marti, A. Pro12Ala variant of the PPARG2 gene increases body mass index: An updated meta-analysis encompassing 49,092 subjects. Obesity 2013, 21, 1486–1495. [Google Scholar] [CrossRef]
- Morris, A.; Voight, B.; Teslobich, T.; Ferreira, T.; Segre, A.; Steinthorsdottir, B.; Strawbridge, R.J.; Khan, H.; Grallert, H.; Mahajan, A.; et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 2012, 44, 981–990. [Google Scholar] [PubMed]
- Deeb, S.S.; Fajas, L.; Nemoto, M.; Pihlajamäki, J.; Mykkänen, L.; Kuusisto, J.; Laakso, M.; Fujimoto, W.; Auwerx, J. A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat. Genet. 1998, 20, 284–287. [Google Scholar] [CrossRef]
- Muller, Y.L.; Bogardus, C.; Beamer, B.A.; Shuldiner, A.R.; Baier, L.J. A Functional Variant in the Peroxisome Proliferator—Activated Receptor γ2 Promoter Is Associated with Predictors of Obesity and Type 2 Diabetes in Pima Indians. Diabetes 2003, 52, 1864–1871. [Google Scholar] [CrossRef] [PubMed]
- Canizales-Quinteros, S.; Aguilar-Salinas, C.A.; Ortiz-López, M.G.; Rodríguez-Cruz, M.; Villarreal-Molina, M.T.; Coral-Vázquez, R.; Huertas-Vázquez, A.; Hernández-Caballero, A.; López-Alarcón, M.; Brito-Zurita, O.R.; et al. Association of PPARG2 Pro12Ala Variant with Larger Body Mass Index in Mestizo and Amerindian Populations of Mexico. Hum. Biol. 2007, 79, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Ben Ali, S.; Ben Yahia, F.; Sediri, Y.; Kallel, A.; Ftouhi, B. Gender-specific effect of Pro12Ala polymorphism in peroxisome proliferator-activated receptor γ-2 gene on obesity risk and leptin levels in a Tunisian population. Clin. Biochem. 2009, 42, 1642–1647. [Google Scholar] [CrossRef] [PubMed]
- Baldani, D.P.; Skrgatic, L.; Cerne, J.Z.; Ferk, P.; Simunic, V.; Gersak, K. Association of PPARG Pro12Ala polymorphism with insulin sensitivity and body mass index in patients with polycystic ovary syndrome. Biomed. Rep. 2014, 2, 199–206. [Google Scholar] [CrossRef][Green Version]
- Tönjes, A.; Stumvoll, M. The role of the Pro12Ala polymorphism in peroxisome proliferator-activated receptor γ in diabetes risk. Lippincott Williams & Wilkins. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 410–414. [Google Scholar]
- Information NC for B. PPARD peroxisome proliferator activated receptor delta [Homo sapiens (human)]. 2018. Available online: https://www.ncbi.nlm.nih.gov/gene/5467#gene-expression (accessed on 2 November 2018).
- Gouni-Berthold, I.; Giannakidou, E.; Faust, M.; Berthold, H.K.; Krone, W. The peroxisome proliferator-activated receptor delta +294T/C polymorphism in relation to lipoprotein metabolism in patients with diabetes mellitus type 2 and in non-diabetic controls. Atherosclerosis 2005, 183, 336–341. [Google Scholar] [CrossRef]
- Sznaidman, M.L.; Haffner, C.D.; Maloney, P.R.; Fivush, A.; Chao, E.; Goreham, D.; Sierra, M.L.; LeGrumelec, C.; Xu, H.E.; Montana, V.G.; et al. Novel selective small molecule agonists for peroxisome proliferator-activated receptor δ (PPARδ) - Synthesis and biological activity. Bioorg Med. Chem. Lett. 2003, 13, 1517–1521. [Google Scholar] [CrossRef]
- Skogsberg, J.; McMahon, A.D.; Karpe, F.; Hamsten, A.; Packard, C.J.; Ehrenborg, E. Peroxisome proliferator activated receptor delta genotype in relation to cardiovascular risk factors and risk of coronary heart disease in hypercholesterolaemic men. J. Intern. Med. 2003, 254, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.Y.; Liu, C.W.; Ge, L.; Pang, G.F.; Yang, M.; Hu, C.Y.; Ze-Ping, L.; Ning-Yuan, C.; Hai-Yan, L.; Hua-Yu, W.; et al. PPARD +294C overrepresentation in general and long-lived population in China Bama longevity area and unique relationships between PPARD +294T/C polymorphism and serum lipid profiles. Lipids Health Dis. 2015, 14, 1–8. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Aberle, J.; Hopfer, I.; Beil, F.U.; Seedorf, U. Association of the T+294C polymorphism in PPAR δ with low HDL cholesterol and coronary heart disease risk in women. Int. J. Med Sci. 2006, 3, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Burch, L.R.; Donnelly, L.A.; Doney, A.S.F.; Brady, J.; Tommasi, A.M.; Whitley, A.L.; Goddard, C.; Morris, A.D.; Hansen, M.K.; Palmer, C.N.A. Peroxisome proliferator-activated receptor-δ genotype influences metabolic phenotype and may influence lipid response to statin therapy in humans: A genetics of diabetes audit and research tayside study. J. Clin. Endocrinol. Metab. 2010, 95, 1830–1837. [Google Scholar] [CrossRef]
- Robitaille, J.; Gaudet, D.; Pérusse, L.; Vohl, M.-C. Features of the metabolic syndrome are modulated by an interaction between the peroxisome proliferator-activated receptor-delta -87T>C polymorphism and dietary fat in French-Canadians. Int. J. Obes. 2007, 31, 411–417. [Google Scholar]
- Aberle, J.; Hopfer, I.; Beil, F.U.; Seedorf, U. Association of peroxisome proliferator-activated receptor delta +294T/C with body mass index and interaction with peroxisome proliferator-activated receptor alpha L162V. Int. J. Obes. 2006, 30, 1709–1713. [Google Scholar] [CrossRef][Green Version]
- Grarup, N.; Albrechtsen, A.; Ek, J.; Borch-Johnsen, K.; Jørgensen, T.; Schmitz, O.; Pedersen, O. Variation in the peroxisome proliferator-activated receptor δ gene in relation to common metabolic traits in 7,495 middle-aged white people. Diabetologia 2007, 50, 1201–1208. [Google Scholar] [CrossRef]
- Villegas, R.; Williams, S.; Gao, Y.; Cai, Q.; Li, H.; Elasy, T.; Cai, H.; Edwards, T.; Xiang, Y.B.; Zheng, W.; et al. Peroxisome proliferator-activated receptor (PPAR) delta genetic variation and type 2 diabetes in middle age Chinese women. Ann. Hum. Genet. 2011, 75, 621–629. [Google Scholar] [CrossRef]
- Tang, L.; Lü, Q.; Cao, H.; Yang, Q.; Tong, N. PPARD rs2016520 polymorphism is associated with metabolic traits in a large population of Chinese adults. Gene 2016, 585, 191–195. [Google Scholar] [CrossRef]
- Qian, Y.; Li, P.; Zhang, J.; Shi, Y.; Chen, K.; Yang, J.; Wu, Y.; Ye, X. Association between peroxisome proliferator-activated receptor-alpha, delta, and gamma polymorphisms and risk of coronary heart disease: A case-control study and meta-analysis. Medicine 2016, 95, 1–9. [Google Scholar] [CrossRef]
- Jguirim-Souissi, I.; Jelassi, A.; Hrira, Y.; Najah, M.; Slimani, A.; Addad, F.; Hassine, M.; Hamda, K.B.; Maatouk, F.; Rouis, M.; et al. +294T/C polymorphism in the PPAR-δ gene is associated with risk of coronary artery disease in normolipidemic Tunisians. Genet. Mol. Res. 2010, 9, 1326–1333. [Google Scholar] [CrossRef]
- Miao, L.; Yin, R.-X.; Wu, D.-F.; Cao, X.-L.; Li, Q.; Hu, X.-J.; Yan, T.-T.; Aung, L.H.H.; Yang, D.-Z.; Lin, W.-X.; et al. Peroxisome proliferator-activated receptor delta +294 > C polymorphism and serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Lipids Health Dis. 2010, 9, 145–157. [Google Scholar]
- Rosales-Reynoso, M.A.; Wence-Chavez, L.I.; Arredondo-Valdez, A.R.; Dumois-Petersen, S.; Barros-Núñez, P.; Gallegos-Arreola, M.P.; Flores-Martínez, S.E.; Sánchez-Corona, J. Protective role of +294 T/C (rs2016520) polymorphism of PPARD in Mexican patients with colorectal cancer. Genet. Mol. Res. 2017, 16, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.; Weitzman, M.; Auinger, P.; Michael, N.; Dietz, W.H. Prevalence of a Metabolic Syndrome Phenotype in Adolescents. Arch. Pediatr. Adolescent Med. 2003, 157, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Mederico, M.; Paoli, M.; Zerpa, Y.; Camacho, N.; Cichetti, R.; Molina, Z.; Camachob, N.; Cichettib, R.; Molinab, Z.; Mora, Y.; et al. Valores de referencia de la circunferencia de la cintura e índice de la cintura/cadera en escolares y adolescentes de Mérida, Venezuela: Comparación con referencias internacionales. Endocrinol. Y Nutr. 2013, 60, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Mokha, J.S.; Srinivasan, S.R.; DasMahapatra, P.; Fernandez, C.; Chen, W.; Xu, J.; Berenson, G.S. Utility of waist-to-height ratio in assessing the status of central obesity and related cardiometabolic risk profile among normal weight and overweight/obese children: The Bogalusa Heart Study. BMC Pediatr. 2013, 10, 73. [Google Scholar]
- CDC. Defining Childhood Obesity. 2018. Available online: https://www.cdc.gov/obesity/childhood/defining.html (accessed on 19 June 2020).
- Must, A.; Anderson, S.E. Body mass index in children and adolescents: Considerations for population-based applications. Int. J. Obes. 2006, 30, 590–594. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Growth Reference 5-19 years. 2007. Available online: https://www.who.int/growthref/who2007_bmi_for_age/en/ (accessed on 19 June 2020).
- National Heart Lung and Blood Institute. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents. 2012. Available online: http://www.nhlbi.nih.gov/files/docs/guidelines/peds_guidelines_full.pdf (accessed on 19 June 2020).
- Millán, J.; Pintó, X.; Muñoz, A.; Zúñiga, M.; Rubiés-Prat, J.; Pallardo, L.F.; Masana, L.; Mangas, A.; Hernández-Mijares, A.; González-Santos, P.; et al. Cocientes lipoproteicos: Significado fisiológico y utilidad clínica de los índices aterogénicos en prevención cardiovascular. Clin. E Investig. En Arterioscler. 2010, 22, 25–32. [Google Scholar] [CrossRef]
- Cossrow, N.; Falkner, B. Race/ethnic issues in obesity and obesity-related comorbidities. J. Clin. Endocrinol. Metab. 2004, 89, 2590–2594. [Google Scholar] [CrossRef]
- Anderson, S.E.; Whitaker, R.C. Prevalence of obesity among US preschool children in different racial and ethnic groups. Arch. Pediatrics Adolesc. Med. 2009, 163, 344–348. [Google Scholar] [CrossRef]
- Taveras, E.M.; Gillman, M.W.; Kleinman, K.; Rich-Edwards, J.W.; Rifas-Shiman, S.L. Racial/Ethnic Differences in Early-Life Risk Factors for Childhood Obesity. Pediatrics 2010, 125, 686–695. [Google Scholar] [CrossRef]
- Salzano, F.M.; Sans, M. Interethnic admixture and the evolution of Latin American populations. Genetics Mol. Biol. 2014, 37 (Suppl. 1), 151–170. [Google Scholar] [CrossRef]
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity Among Adults and Youth: United States, 2015–2016; NCHS data brief; 2017; 288, pp. 1–8. Available online: https://www.cdc.gov/nchs/products/databriefs/db288.htm (accessed on 19 June 2020).
- Benítez-Hernández, Z.P.; Hernández-Torres, P.; Cabañas, M.D.; De La Torre-Díaz, M.D.L.; López-Ejeda, N.; Marrodán, M.D.; Cervantes-Borunda, M. Composición corporal, estado nutricional y alimentación en escolares Tarahumaras urbanos y rurales de Chihuahua, México. Nutr. Clínica Y Dietética Hosp. 2014, 34, 71–79. [Google Scholar]
- Salcedo-Rocha, A.L.; García de Alba, J.E.; Contreras-Marmolejo, M. Presión arterial en adolescentes mexicanos: Clasificación, factores de riesgo e importancia. Rev. De Salud Pública 2010, 12, 612–622. [Google Scholar]
- Cardoso-Saldaña, G.C.; Yamamoto-Kimura, L.; Medina-Urrutia, A.; Posadas-Sánchez, R.; Caracas-Portilla, N.A.; Posadas-Romero, C. Exceso de peso y síndrome metabólico en adolescentes de la Ciudad de México. Archivos de Cardiología de México 2010, 80, 12–18. [Google Scholar]
- Jackson, S.L.; Zhang, Z.; Wiltz, J.L.; Loustalot, F.; Ritchey, M.D.; Goodman, A.B.; Yang, Q. Hypertension Among Youths—United States, 2001–2016. Morb. Mortal. Wkly. Rep. 2018, 67, 758–762. [Google Scholar] [CrossRef]
- Romero-Velarde, E.; Campollo-Rivas, O.; De La Rosa, A.C.; Vásquez-Garibay, E.M.; Castro-Hernández, J.F.; Cruz-Osorio, R.M. Factores de riesgo de dislipidemia en niños y adolescentes con obesidad. Salud Pública De México 2007, 49, 103–108. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Perea-Martínez, A.; Bárcena-Sobrino, E.; Rodríguez-Herrera, R.; Greenawalt-Rodríguez, S.; Carbajal-Rodríguez, L.; Zarco-Román, J. Obesidad y comorbilidades en niños y adolescentes asistidos en el Instituto Nacional de Pediatría. Acta Pediátrica de México 2009, 30, 167–174. [Google Scholar]
- Camarillo-Romero, E.; García, M.V.D.; Amaya-Chávez, A.; Huitrón-Bravo, G.; Majluf-Cruz, A. Dificultades en la clasificación del síndrome metabólico. El ejemplo de los adolescentes en México. Salud Pública de México 2010, 52, 524–527. [Google Scholar] [PubMed]
- Almeida, S.M.; Furtado, J.M.; Mascarenhas, P.; Ferraz, M.E.; Ferreira, J.C.; Monteiro, M.P.; Vilanova, M.; Ferraz, F.P. Association between LEPR, FTO, MC4R, and PPARG-2 polymorphisms with obesity traits and metabolic phenotypes in school-aged children. Endocrine 2018, 60, 466–478. [Google Scholar] [CrossRef] [PubMed]
- Becer, E.; Çlrakoǧlu, A. Effect of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor γ2 gene on lipid profile and adipokines levels in obese subjects. Balk. J. Med Genet. 2017, 20, 71–79. [Google Scholar] [CrossRef][Green Version]
- Lagou, V.; Scott, R.A.; Manios, Y.; Chen, T.L.J.; Wang, G.; Grammatikaki, E.; Kortsalioudaki, C.; Liarigkovinos, T.; Moschonis, G.; Roma-Giannikou, E.; et al. Impact of peroxisome proliferator-activated receptors γ and δ on adiposity in toddlers and preschoolers in the GENESIS study. Obesity 2008, 16, 913–918. [Google Scholar] [CrossRef]
- Akhmetov, I.; Astranenkove, I.; Togozkin, V. Association of PPARD gene polymorphism with human physical performance. Mol. Biol. 2007, 41, 852–857. [Google Scholar]
- Shin, H.D.; Park, B.L.; Kim, L.H.; Jung, H.S.; Cho, Y.M.; Moon, M.K.; Park, Y.J.; Lee, H.K.; Park, K.S. Genetic Polymorphisms in Peroxisome Proliferator-Activated Receptor δ Associated with Obesity. Diabetes 2004, 53, 847–851. [Google Scholar] [CrossRef]
- Hasan, N.S.; Kamel, S.A.; Hamed, M.; Awadallah, E.; Rahman, A.H.A.; Musa, N.I.; Hussein, G.H.S. Peroxisome proliferator-activated receptor-γ polymorphism (rs1801282) is associated with obesity in Egyptian patients with coronary artery disease and type 2 diabetes mellitus. J. Genet. Eng. Biotechnol. 2017, 15, 409–414. [Google Scholar] [CrossRef]
- Hasstedt, S.J.; Ren, Q.F.; Teng, K.; Elbein, S.C. Effect of the peroxisome proliferator-activated receptor-γ2 Pro12Ala variant on obesity, glucose homeostasis, and blood pressure in members of familial type 2 diabetic kindreds. J. Clin. Endocrinol. Metab. 2001, 86, 536–541. [Google Scholar] [CrossRef][Green Version]
- Douglas, J.A.; Erdos, M.R.; Watanabe, R.M.; Braun, A.; Johnston, C.L.; Oeth, P.; Mohlke, K.L.; Valle, T.T.; Ehnholm, C.; Buchanan, T.A.; et al. The Peroxisome Proliferator-Activated Receptor-γ2 Pro12Ala Variant Association with Type 2 Diabetes and Trait Differences. Diabetes 2001, 50, 886–890. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Esparragón, F.J.; Rodríguez-Pérez, J.C.; Macías-Reyes, A.; Alamo-Santana, F. Peroxisome proliferator-activated receptor-gamma2-Pro12Ala and endothelial nitric oxide synthase-4a/b gene polymorphisms are associated with essential hypertension. J. Hypertens. 2003, 21, 1649–1655. [Google Scholar] [CrossRef] [PubMed]
- Al-Safar, H.; Hassoun, A.; Almazrouei, S.; Kamal, W.; Afandi, B.; Rais, N. Association of the genetic polymorphisms in transcription factor 7-like 2 and peroxisome proliferator-activated receptors-γ2 with type 2 diabetes mellitus and its interaction with obesity status in Emirati population. J. Diabetes Res. 2015, 2015, 129695. [Google Scholar] [CrossRef]
- Hu, C.; Jia, W.; Fang, Q.; Zhang, R.; Wang, C.; Lu, J.; Xiang, K. Peroxisome proliferator-activated receptor (PPAR) delta genetic polymorphism and its association with insulin resistance index and fasting plasma glucose concentrations in Chinese subjects. Diabet. Med. 2006, 23, 1307–1312. [Google Scholar] [CrossRef]
- Ye, H.; Li, Y.; Hong, Q.; Zhou, A.; Zhao, Q.; Xu, L.; Xu, M.Q.; Xu, X.T.; Tang, L.L.; Dai, J.; et al. Positive association between PPARD rs2016520 polymorphism and coronary heart disease in a Han Chinese population. Genet. Mol. Res. 2015, 14, 12254–12261. [Google Scholar] [CrossRef] [PubMed]
- Sözen, M.A.; Özcan, M.U.; Çıldır, M.; Doğru, I.H.; Aygök, A.G.; Balkan, K. Association of the human PPARγ2 Pro12Ala polymorphism with obesity in a population from Turkey. Acta Endocrinol. 2018, 14, 459–465. [Google Scholar]
- Meirhaeghe, A.; Fajas, L.; Helbecque, N.; Cottel, D.; Auwerx, J.; Deeb, S.S.; Amouyel, P. Impact of the Peroxisome Proliferator Activated Receptor γ2 Pro12Ala polymorphism on adiposity, lipids and non-insulin-dependent diabetes mellitus. Int. J. Obes. 2000, 24, 195–199. [Google Scholar] [CrossRef]
- Masud, S.; Ye, S. Effect of the peroxisome proliferator activated receptor-y gene Pro12Ala variant on body mass index: A meta-analysis. J. Med. Genetics 2003, 40, 773–780. [Google Scholar] [CrossRef]
- Mansoori, A.; Amini, M.; Kolahdooz, F.; Seyedrezazadeh, E. Obesity and Pro12Ala polymorphism of peroxisome proliferator-activated receptor-gamma gene in healthy adults: A systematic review and meta-analysis. Ann. Nutr. Metab. 2015, 67, 104–118. [Google Scholar] [CrossRef]
- Luo, W.; Guo, Z.; Wu, M.; Hao, C.; Hu, X.; Zhou, Z.; Zhou, Z.; Yao, X.; Zhang, L.; Liu, J. Association of Peroxisome Proliferator-Activated Receptor α/δ/γ with Obesity, and Gene-Gene Interaction, in the Chinese Han Population. J. Epidemiol. 2013, 23, 187–194. [Google Scholar] [CrossRef]
Characteristic | Mestizo-1 n = 96 (23%) | Mestizo-2 n = 37 (9%) | Tarahumara n = 173 (42%) | Mennonite n = 106 (26%) | Total (n = 412) |
---|---|---|---|---|---|
Md (IQR) | Md (IQR) | Md (IQR) | Md (IQR) | Md (IQR) | |
Age (years) | 13 (13–14) a | 13 (12–13) a | 14 (13–15) b | 15 (14–15) c | 14 (13–15) |
Weight (kg) | 47 (43–56) a | 59 (46–69) b,d | 48 (42–55) a | 57 (51–66) c,d | 51 (44–59) |
Height (cm) | 158 (152–164) a | 157 (152–162) a | 152 (148–158) b | 171 (164–175) c | 158 (151–166) |
BMI (kg/m2) | 19 (17–21) a | 24 (20–25) b | 20 (18–23) c,d | 20 (18–22) a,d | 20 (18–23) |
n (%) | n (%) | n (%) | n (%) | n (%) | |
Sex | |||||
Male | 41 (43)a | 21 (57)a | 52 (30)b | 47 (44)a | 161 (39) |
Female | 55 (57) | 16 (43) | 121 (70) | 59 (56) | 251 (61) |
pBMI ≥ 85th (kg/m2) | 17 (18)a | 26 (70)b | 30 (17)a | 12 (11)a | 85 (21) |
Characteristic | Mestizo-1 | Mestizo-2 | Tarahumara | Mennonite | Total |
---|---|---|---|---|---|
Mean ± SD/Md (IQR) | Mean ± SD/Md (IQR) | Mean ± SD/Md (IQR) | Mean ± SD/Md (IQR) | Mean ± SD/Md (IQR) | |
BMI (Z-score) | 0.05 (−0.66–0.70) a | 1.45 (.75–1.64) b | 0.41 (-0.19–0.88) a,c | -0.05 (-0.63–0.77) a,d | 0.25 (-0.50–0.92) |
SBP (mmHg) | 110 ± 11 a | 115 ± 11 a | 108 ± 10 a | 108 ± 10 a | 112 ± 10 |
DBP (mmHg) | 70 (63–80) a | 70 (65–80) a,c | 70 (60–75) a | 75 (68–80) b,c | 70 (64–80) |
WC (cm) | 64 (61–70) a | 80 (72–85) b,e | 70 (65–75) c | 68 (64–74) d,e | 68 (63–74) |
WHR | 0.41 (0.38–0.44) a | 0.52 (0.47–0.54) b | 0.46 (0.43–0.49) c | 0.40 (0.38–0.42) a | 0.43 (0.40–0.48) |
Glucose (mg/dL) | 87 ± 10 a | 75 ± 6 b | 83 ± 11 a | 78 ± 9 c | 82 ± 10 |
TG (mg/dL) | 77 (57–109) a | 93 (72–129) a,c | 92 (75–115) b,c | 75 (60–92) a,d | 83 (64–111) |
TC (mg/dL) | 145 ± 22 a | 156 ± 26 a | 133 ± 25 a | 144 ± 21 a | 140 ± 24 |
HDL (mg/dL) | 48 (40–55) a | 51 (44–56) a | 37 (32–42) b | 50 (43–56) a | 43 (36–52) |
LDL (mg/dL) | 79 ± 17 a | 84 ± 19 a | 76 ± 20 a | 77 ± 16 a | 78 ± 18 |
VLDL (mg/dL) | 15 (11–22) a | 19 (14–26) a,c | 18 (15–23) b,c | 15 (12–18) a,d | 17 (13–22) |
AI (Index) | 3.01 (2.59–3.48) a | 3.02 (2.55–3.74) a | 3.59 (3.12–4.20) b | 2.90 (2.56–3.19) a | 3.17 (2.76–3.69) |
PPAR-γ2 | Mestizo-1 n (%) | Mestizo-2 n (%) | Tarahumara n (%) | Mennonite n (%) | Total n (%) |
---|---|---|---|---|---|
CC | 79 (82) a | 25 (68) a,c | 103 (60) b,c | 83 (78) a | 290 (70) |
CG | 14 (15) | 10 (27) | 61 (35) | 20 (19) | 105 (26) |
GG | 3 (3) | 2 (5) | 9 (5) | 3 (3) | 17 (4) |
HWE p | 0.09 | 0.75 | 1 | 0.45 | 0.18 |
C | 172 (90) a | 60 (81) a,c | 267 (77) b,c | 186 (88) a | 685 (83) |
G | 20 (10) | 14 (19) | 79 (23) | 26 (12) | 139 (17) |
PPAR-δ | Mestizo-1 n (%) | Mestizo-2 n (%) | Tarahumara n (%) | Mennonite n (%) | Total n (%) |
---|---|---|---|---|---|
TT | 62 (65) a | 23 (62) a | 153 (88) b | 81 (76) a | 319 (77) |
TC | 33 (34) | 13 (35) | 20 (12) | 23 (22) | 89 (22) |
CC | 1 (1) | 1 (3) | 0 (0) | 2 (2) | 4 (1) |
HWE p | 0.32 | 0.88 | 0.71 | 0.97 | 0.72 |
T | 157 (82) a | 59 (80) a | 326 (94) b | 185 (87) a | 727 (88) |
C | 35 (18) | 15 (20) | 20 (6) | 27 (13) | 97 (12) |
Metabolic Traits | Pro12Ala PPAR-γ2 | +294T/C PPAR-δ | ||||
---|---|---|---|---|---|---|
CC (n = 290) | CG/GG (n = 122) | TT (n = 319) | TC/CC (n = 93) | |||
Mean ± SD/Md (IQR) | Mean ± SD/Md (IQR) | p | Mean ± SD/Md (IQR) | Mean ± SD/Md (IQR) | p | |
BMI (Z-score) | 0.22 (−0.54–0.99) | 0.28 (-0.37–0.77) | 0.46 # | 0.21 (-0.52–0.87) | 0.39 (−0.41–1.18) | 0.06 # |
SBP (mmHg) | 111 ± 11 | 109 ± 10 | 0.08 * | 110 ± 11 | 112 ± 11 | 0.15 * |
DBP (mmHg) | 70 (65–80) | 70 (60–78) | 0.10 # | 70 (60–80) | 70 (65–78) | 0.78 # |
WC (cm) | 68 (63–75) | 69 (65–74) | 0.37 # | 68 (63–74) | 69 (65–77) | 0.30 # |
WHR | 0.42 (0.39–0.48) | 0.44 (0.41–0.48) | 0.04 # | 0.43 (0.40–0.48) | 0.42 (0.40–0.47) | 0.82 # |
Glucose (mg/dL) | 82 ± 10 | 82 ± 10 | 0.90 * | 82 ± 11 | 80 ± 8 | 0.07 * |
TG (mg/dL) | 83 (64–112) | 87 (66–110) | 0.51 # | 87 (68–112) | 75 (59–109) | 0.01 # |
TC (mg/dL) | 142 ± 24 | 138 ± 24 | 0.14 * | 140 ± 25 | 143 ± 21 | 0.25 * |
HDL (mg/dL) | 45 (37–52) | 39 (35–48) | <0.01 # | 43 (36–51) | 48 (36–54) | 0.03 # |
LDL (mg/dL) | 78 ± 19 | 76 ± 17 | 0.37 * | 77 ± 19 | 80 ± 16 | 0.24 * |
VLDL (mg/dL) | 17 (13–22) | 17 (13–22) | 0.51 # | 17 (14–22) | 15 (12–22) | 0.01 # |
AI (Index) | 3.14 (2.70–3.66) | 3.23 (2.82–3.77) | 0.15 # | 3.18 (2.81–3.68) | 3.12 (2.66–3.70) | 0.37 # |
Metabolic Trait | Mestizo-1 | Mestizo-2 | Tarahumara | Mennonite | Total | Total (Adjusted) |
---|---|---|---|---|---|---|
n = (96) | n = (37) | n = (173) | n = (106) | n = (412) | n = (412) | |
β ± SE | β ± SE | β ± SE | β ± SE | β ± SE | β ± SE | |
(p) | (p) | (p) | (p) | (p) | (p) | |
SBP (mmHg) * | −5.59 ± 2.60 | −0.62 ± 3.03 | −1.37 ± 1.44 | 0.61 ± 2.64 | −2.05 ± 1.07 | −1.41 ± 1.08 (0.191) *, ++ |
(0.035) | (0.840) | (0.341) | (0.817) | (0.057) + | ||
DBP (mmHg) * | −2.14 ± 2.34 | −0.70 ± 3.36 | −0.34 ± 1.37 | 1.25 ± 2.10 | −1.68 ± 0.98 | −0.73 ± 0.98 (0.455) ‡ |
(0.363) | (0.835) | (0.802) | (0.554) | (0.086) | ||
Glucose (mg/dL) * | −4.77 ± 2.71 | 1.74 ± 2.20 | 0.73 ± 1.53 | 1.46 ± 1.81 | −18.77 ± 9.20 | −13.82 ± 8.48 (0.104) *, -- |
(0.082) | (0.436) | (0.632) | (0.423) | (0.042)- | ||
TG (log mg/dL) * | −0.02 ± 0.11 | −0.07 ± 0.14 | −0.03 ± 0.05 | 0.10 ± 0.09 | 0.03 ± 0.04 | -0.008 ± 0.04 (0.84) § |
(0.863) | (0.654) | (0.586) | (0.276) | (0.475) | ||
TC (mg/dL) # | −4.07 ± 5.85 | −10.67 ± 9.27 | −1.66 ± 3.74 | 8.01 ± 4.57 | −3.91 ± 2.59 | −1.48 ± 2.53 (0.558) ¶ |
(0.489) | (0.258) | (0.658) | (0.083) | (0.132) | ||
HDL (log mg/dL) ^ | −0.11 ± 0.05 | <−0.01 ± 0.08 | 0.03 ± 0.03 | 0.01 ± 0.04 | −0.06 ± 0.03 | −0.005 ± 0.02 (0.825) ‡ |
(0.033) | (0.961) | (0.250) | (0.815) | (0.031) ~ | ||
LDL (mg/dL) * | 2.07 ± 4.71 | −9.94 ± 6.74 | −2.77 ± 2.87 | 4.98 ± 3.66 | −1.94 ± 1.92 | −9.63 ± 6.19 (0.119) ^ |
(0.660) | (0.150) | (0.336) | (0.176) | (0.312) | ||
VLDL (log mg/dL) * | −0.02 ± 0.11 | −0.07 ± 0.14 | −0.03 ± 0.05 | 0.10 ± 0.09 | 0.03 ± 0.04 | −0.28 ± 0.78 (0.720) § |
(0.863) | (0.654) | (0.586) | (0.276) | (0.475) | ||
AI (log) ^ | 0.08 ± 0.05 | −0.07 ± 0.07 | −0.05 ± 0.03 | 0.05 ± 0.04 | 0.40 ± 0.19 | 0.39 ± 0.17 (0.021) ^, // |
(0.114) | (0.367) | (0.084) | (0.244) | (0.033) / |
Metabolic Trait | Mestizo-1 | Mestizo-2 | Tarahumara | Mennonite | Total | Total (Adjusted) |
---|---|---|---|---|---|---|
n = (96) | n = (37) | n = (173) | n = (106) | n = (412) | n = (412) | |
β ± SE | β ± SE | β ± SE | β ± SE | β ± SE | β ± SE | |
(p) | (p) | (p) | (p) | (p) | (p) | |
SBP (mmHg) * | 2.07 ± 2.09 | 0.74 ± 2.97 | 1.71 ± 2.26 | −1.54 ± 2.55 | 1.94 ± 1.19 | 1.34 ± 1.20 |
(0.326) | (0.806) | (0.451) | (0.546) | (0.103) | (0.263) * | |
DBP (mmHg) # | −0.25 ± 1.84 | −0.38 ± 3.25 | 0.29 ± 2.10 | −0.67 ± 2.03 | 0.85 ± 1.08 | 0.01 ± 1.08 |
(0.894) | (0.907) | (0.889) | (0.742) | (0.432) | (0.994) # | |
Glucose (mg/dL) * | −2.62 ± 2.15 | 0.04 ± 2.17 | −3.91 ± 2.39 | −0.75 ± 1.75 | −2.57 ± 1.18 | −2.22 ± 1.12 (0.048) * |
(0.227) | (0.984) | (0.103) | (0.669) | (0.031) | ||
TG (log mg/dL) * | −0.10 ± 0.09 | −0.12 ± 0.14 | −0.07 ± 0.08 | −0.15 ± 0.09 | −0.12 ± 0.05 | −0.08 ± 0.05 (0.08) # |
(0.273) | (0.415) | (0.374) | (0.086) | (0.008) | ||
TC (mg/dL) ^ | −0.002 ± 4.60 | 2.12 ± 9.35 | −4.89 ± 5.87 | −5.76 ± 4.48 | 79.02 ± 29.61 | 49.8 ± 28.9 (0.085) &, ++ |
(1) | (0.822) | (0.406) | (0.202) | (0.008) + | ||
HDL (log mg/dL) * | 0.02 ± 0.04 | 0.11 ± 0.07 | −0.10 ± 0.05 | 0.01 ± 0.04 | <0.01 ± 0.04 | 0.08 ± 0.07 (0.256) ‡ |
(0.594) | (0.144) | (0.046) | (0.685) | (0.904) - | ||
LDL (mg/dL) * | −6.75 ± 4.64 | 2.66 ± 6.6 | 0.47 ± 4.52 | −4.15 ± 3.49 | −1.67 ± 2.66 | −2.89 ± 2.68 (0.281) ‡,~~ |
(0.149) / | (0.688) | (0.917) ^ | (0.238) & | (0.531) ‡,~ | ||
VLDL (log mg/dL) * | 0.10 ± 0.09 | −0.12 ± 0.14 | −0.07 ± 0.08 | −0.15 ± 0.09 | −0.12 ± 0.05 | −0.08 ± 0.05 (0.082) # |
(0.273) | (0.415) | (0.374) | (0.086) | (0.008) | ||
AI (log) * | −0.02 ± 0.04 | −0.08 ± 0.07 | 0.08 ± 0.05 | −0.06 ± 0.04 | −0.03 ± 0.02 | −0.03 ± 0.06 (0.599) # |
(0.643) | (0.223) | (0.093) | (0.133) | (0.208) |
Metabolic Traits | Pro12Ala PPAR-γ2 | +294T/C PPAR-δ | ||||||
---|---|---|---|---|---|---|---|---|
CC | CG/GG | Adjusted OR (95%CI) | p | TT | C/CC | Adjusted OR (95%CI) | p | |
(n = 290) | (n = 122) | (n = 319) | (n = 93) | |||||
n (%) | n (%) | n (%) | n (%) | |||||
BMI (Z-score > 1.04) | 68 (23) | 15 (12) | 0.46 (0.25–0.84) | 0.011 | 57 (18) | 26 (28) | 1.78 (1.04–3.05) | 0.034 |
pBP ≥ 90th | 100 (34) | 33 (27) | 0.70 (0.44–1.12) | 0.142 | 103 (32) | 30 (32) | 1 (0.61–1.64) | 0.996 |
pWC ≥ 90th | 9 (3) | 5 (4) | 1.33 (0.44–4.07) | 0.612 | 9 (3) | 5 (5) | 1.96 (0.64–5.99) | 0.239 |
WHR > 0.45 * | 108 (37) | 55 (45) | 1.79 (1.03–3.08) | 0.036 ¶ | 131 (41) | 32 (34) | 0.74 (0.45–1.21) | 0.231 |
Glucose ≥ 110 (mg/dL) ** | 4 (1) | 1 (1) | -- | 5 (2) | 0 (0) | -- | ||
TG ≥ 110 ^ (mg/dL) | 76 (26) | 30 (25) | 0.91 (0.56–1.50) | 0.721 | 84 (26) | 22 (24) | 0.77 (0.44–1.34) | 0.350 |
TC ≥ 150 # (mg/dL) | 41 (14) | 9 (7) | 0.47 (0.22–1) | 0.050 - | 39 (12) | 11 (12) | 0.87 (0.43–1.81) | 0.726 ~ |
HDL ≤ 40 @ (mg/dL) | 92 (32) | 65 (53) | 2.50 (1.60–3.89) | <0.01 | 128 (40) | 29 (31) | 1 (0.55–1.82) | 0.995 / |
LDL ≥ 110 ‡ (mg/dL) | 13 (4) | 3 (2) | 0.54 (0.15–1.96) | 0.351 | 15 (5) | 1 (1) | 0.20 (0.03–1.52) | 0.118 |
VLDL ≥ 30 ‡ (mg/dL) | 22 (8) | 7 (6) | 0.74 (0.31–1.80) | 0.514 | 23 (7) | 6 (6) | 0.82 (0.32–2.10) | 0.679 |
AI (M > 4 F > 3.5) & | 86 (30) | 39 (32) | 1.07 (0.64–1.78) | 0.798 | 99 (31) | 26 (28) | 0.80 (0.45–1.41) | 0.435 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrillo-Venzor, M.A.; Erives-Anchondo, N.R.; Moreno-González, J.G.; Moreno-Brito, V.; Licón-Trillo, A.; González-Rodríguez, E.; Hernández-Rodríguez, P.d.C.; Reza-López, S.A.; Loera-Castañeda, V.; Leal-Berumen, I. Pro12Ala PPAR-γ2 and +294T/C PPAR-δ Polymorphisms and Association with Metabolic Traits in Teenagers from Northern Mexico. Genes 2020, 11, 776. https://doi.org/10.3390/genes11070776
Carrillo-Venzor MA, Erives-Anchondo NR, Moreno-González JG, Moreno-Brito V, Licón-Trillo A, González-Rodríguez E, Hernández-Rodríguez PdC, Reza-López SA, Loera-Castañeda V, Leal-Berumen I. Pro12Ala PPAR-γ2 and +294T/C PPAR-δ Polymorphisms and Association with Metabolic Traits in Teenagers from Northern Mexico. Genes. 2020; 11(7):776. https://doi.org/10.3390/genes11070776
Chicago/Turabian StyleCarrillo-Venzor, Martín A., Nancy R. Erives-Anchondo, Janette G. Moreno-González, Verónica Moreno-Brito, Angel Licón-Trillo, Everardo González-Rodríguez, Pilar del Carmen Hernández-Rodríguez, Sandra A. Reza-López, Verónica Loera-Castañeda, and Irene Leal-Berumen. 2020. "Pro12Ala PPAR-γ2 and +294T/C PPAR-δ Polymorphisms and Association with Metabolic Traits in Teenagers from Northern Mexico" Genes 11, no. 7: 776. https://doi.org/10.3390/genes11070776
APA StyleCarrillo-Venzor, M. A., Erives-Anchondo, N. R., Moreno-González, J. G., Moreno-Brito, V., Licón-Trillo, A., González-Rodríguez, E., Hernández-Rodríguez, P. d. C., Reza-López, S. A., Loera-Castañeda, V., & Leal-Berumen, I. (2020). Pro12Ala PPAR-γ2 and +294T/C PPAR-δ Polymorphisms and Association with Metabolic Traits in Teenagers from Northern Mexico. Genes, 11(7), 776. https://doi.org/10.3390/genes11070776