Development and Transferability of EST-SSR Markers for Pinus koraiensis from Cold-Stressed Transcriptome through Illumina Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Transcriptome Data Capture
2.2. Plant Materials and DNA Extraction
2.3. EST-SSR Locus Detection and Primer Design
2.4. PCR Amplification and SSR Validation
2.5. Statistical Analyses
2.6. EST-SSR Primer Transferability in Related Species
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Liang, D.Y.; Wang, B.Y.; Song, S.L.; Wang, J.Y.; Wang, L.F.; Wang, Q.; Ren, X.B.; Zhao, X.Y. Analysis of genetic effects on a complete diallel cross test of Pinus koraiensis. Euphytica 2019, 215, 92. [Google Scholar] [CrossRef]
- Zhang, S.T.; Zhang, L.G.; Wang, L.; Zhao, Y.H. Total phenols, flavonoids, and procyanidins levels and total antioxidant activity of different Korean pine (Pinus koraiensis) varieties. J. For. Res. 2019, 30, 1743–1754. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Q.H.; Tian, Y.G.; Yang, S.C.; Wang, H.W.; Wang, L.K.; Li, Y.L.; Zhang, P.; Zhao, X.Y. Comprehensive assessment of growth traits and wood properties in half-sib Pinus koraiensis families. Euphytica 2018, 214, 202. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, X.; Hu, X.; Yang, D.; Lang, F.; Wang, D.; Mu, H. Family Selection of Pinus koraiensis Based on Growth and Fructification. J. Beihua Univ. (Nat. Sci.) 2019, 20, 26–32. [Google Scholar]
- Liang, D.Y.; Ding, C.J.; Zhao, G.H.; Leng, W.W.; Zhang, M.; Zhao, X.Y.; Qu, G.Z. Variation and selection analysis of Pinus koraiensis clones in northeast China. J. For. Res. 2018, 29, 611–622. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, J.; Zhang, P.; Liang, D.; Zhang, Q.; Wang, B.; Pei, X.; Zhao, X. Variation and selection of growth and fruit traits among 170 Pinus koraiensis clones. For. Res. 2019, 32, 58–64. [Google Scholar]
- Nguyen, T.T.; Tai, D.T.; Zhang, P.; Razaq, M.; Shen, H.L. Effect of thinning intensity on tree growth and temporal variation of seed and cone production in a Pinus koraiensis plantation. J. For. Res. 2019, 30, 835–845. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Z.Y.; Huang, Y.; Deng, X.; Yin, H. Effects of rare earth elements La~(3+) and Eu~(3+) on the polyphenols contents and PAL, C4H activities of Pinus koraiensis seedlings. Sci. Silvae Sin. 2014, 50, 168–173. [Google Scholar]
- Zhang, C.; Zhao, X.; Zhao, Y. Community structure in different successional stages in north temperate forests of Changbai Mountains, China. Chin. J. Plant Ecol. 2009, 33, 1090–1100. [Google Scholar]
- International Union for Conservation of Nature and Natural Resources. Available online: https://www.iucnredlist.org/species/42373/2975987 (accessed on 13 December 2010).
- Li, X.; Liu, X.T.; Wei, J.T.; Li, Y.; Tigabu, M.; Zhao, X.Y. Genetic Improvement of Pinus koraiensis in China: Current situation and future prospects. Forests 2020, 11, 148. [Google Scholar] [CrossRef] [Green Version]
- Tong, Y.W.; Lewis, B.J.; Zhou, W.M.; Mao, C.R.; Wang, Y.; Zhou, L.; Yu, D.P.; Dai, L.M.; Qi, L. Genetic diversity and population structure of natural Pinus koraiensis populations. Forests 2020, 11, 39. [Google Scholar] [CrossRef] [Green Version]
- Ruan, X.; Wang, Z.; Wang, T.; Su, Y. Characterization and application of EST-SSR markers developed from the transcriptome of Amentotaxus argotaenia (Taxaceae), a relict vulnerable Conifer. Front. Genet. 2019, 10, 1014. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Fang, L.; Zhang, Q.A.; Wang, M.X.; Wang, Y.; Jia, L. Transcriptome analysis of carotenoid biosynthesis in the, Brassica campestris, L. subsp. chinensis, var. rosularis Tsen. Sci. Hortic. 2018, 235, 116–123. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Y.; Huang, W.; Jiang, Y.; Zhang, H.; Wu, W. Mining of simple sequence repeats (SSRs) loci and development of novel transferability-across EST-SSR markers from de novo transcriptome assembly of Angelica dahurica. PLoS ONE 2019, 14, e0221040. [Google Scholar] [CrossRef] [Green Version]
- Cai, K.; Zhu, L.; Zhang, K.; Li, L.; Zhao, Z.; Zeng, W.; Lin, X. Development and characterization of EST-SSR markers from RNA-Seq data in Phyllostachys violascens. Front. Plant Sci. 2019, 10, 50. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Chen, J.; Kou, Y.; Wang, Y. Application of EST-SSR markers developed from the transcriptome of Torreya grandis (Taxaceae), a threatened nut-yielding conifer tree. PeerJ 2018, 6, e5606. [Google Scholar] [CrossRef] [Green Version]
- Shao, D.; Pei, Y.; Zhang, H. cpSSR analysis of variation of genetic diversity in temporal dimension of natural population of Pinus koraiensis in Liangshui National Nature Reserve. Bull. Bot. Res. 2007, 27, 473–477. [Google Scholar]
- Zhang, Y.; Yi, X.; Ji, L. Screening of Pinus koraiensis microsatellite makers from relative species of Pinus and analysis of population genetic diversity. Chin. J. Ecol. 2013, 32, 2307–2313. [Google Scholar]
- Feng, F.; Chen, M.; Zhang, D.; Sui, X.; Han, S. Application of SRAP in the genetic diversity of Pinus koraiensis of different provenances. Afr. J. Biotechnol. 2010, 8, 1000–1008. [Google Scholar]
- Xia, M.; Zhou, X.; Zhao, S. RAPD analysis on genetic diversity of natural populations of Pinus koraiensis. Acta Ecol. Sin. 2000, 21, 730–737. [Google Scholar]
- Feng, F.; Sui, X.; Zhang, D. Study on genetic diversity of Korean pine from different provenance. For. Sci. Technol. 2008, 33, 1–4. [Google Scholar]
- Wang, F.; Chen, S.; Liang, D.Y.; Qu, G.Z.; Chen, S.; Zhao, X.Y. Transcriptomic analyses of Pinus koraiensis under different cold stresses. BMC Genom. 2020, 21, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef]
- Falush, D.; Stephens, M.; Pritchard, J.K. Inference of population structure using multilocus genotype data: Linked 507 loci and correlated allele frequencies. Genetics. 2003, 164, 1567–1587. [Google Scholar]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Earl, D.A.; von Holdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Wang, H.; Chen, W.; Pang, X.M.; Li, Y.Y. Genetic diversity and structure of native and non-native populations of the endangered plant Pinus dabeshanensis. Genet. Mol. Res. 2016, 15, gmr.15027937. [Google Scholar] [CrossRef]
- Du, J.; Zhang, Z.; Zhang, H.G.; Tang, J.H. EST–SSR marker development and transcriptome sequencing analysis of different tissues of Korean pine (Pinus koraiensis Sieb. et Zucc.). Biotechnol. Biotechnol. Equip. 2017, 31, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.L.; Li, D.L.; Cai, N.H.; Zhou, J.; Sun, Q.; Tang, H.Y.; Wang, D.W.; Xu, Y.L. Characteristic analysis of microsatellite in Pinus kesiya var. langbianensis by using high-throughput sequencing. J. Cent. South Univ. For. Technol. 2016, 36, 72–77. [Google Scholar]
- Ferrer, M.M.; Eguiarte, L.E.; Montaña, C. Genetic structure and outcrossing rates in Flourensia cernua (Asteraceae) growing at different densities in the South-Western Chihuahuan Desert. Ann. Bot. 2004, 94, 419–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellmann, J.J.; Pineda-Krch, M. Constraints and reinforcement on adaptation under climate change: Selection of genetically correlated traits. Biol. Conserv. 2007, 140, 599–609. [Google Scholar] [CrossRef]
- Li, X.; Li, M.; Hou, L.; Zhang, Z.Y.; Pang, X.M.; Li, Y.Y. De novo transcriptome assembly and population genetic analyses for an endangered Chinese endemic Acer miaotaiense (Aceraceae). Genes 2018, 9, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Zhang, H.G.; Mo, C.; Zhang, L. Transcriptome sequencing analysis and development of EST-SSR markers for Pinus koraiensis. Sci. Silvae Sin. 2015, 51, 114–120. [Google Scholar]
- Wang, M.B.; Hao, Z.Z. Rangewide genetic diversity in natural populations of Chinese Pine (Pinus tabulaeformis). Biochem. Genet. 2010, 48, 590–602. [Google Scholar] [CrossRef]
- Xu, Y.L.; Cai, N.H.; Woeste, K.; Kang, X.Y.; He, C.Z.; Li, G.Q.; Chen, S.; Duan, A.A. Genetic diversity and population structure of Pinus yunnanensis by simple sequence repeat markers. For. Sci. 2016, 62, 38–47. [Google Scholar] [CrossRef]
- Duan, D.; Jia, Y.; Yang, J.; Li, Z.H. Comparative transcriptome analysis of male and female conelets and development of microsatellite markers in Pinus bungeana, an endemic Conifer in China. Genes 2017, 8, 393. [Google Scholar] [CrossRef] [Green Version]
- Feng, B.; Zhang, M.M.; Soojin, V.Y.; Zhou, X.Y. Development of novel EST-SSR markers for ploidy identification based on de novo transcriptome assembly for Misgurnus anguillicaudatus. PLoS ONE 2018, 13, e0195829. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.B.; Zhou, X.Y.; Li, J.W. Development of novel EST-SSR markers for cucumber (Cucumis sativus) and their transferability to related species. Sci. Hortic. 2010, 125, 534–538. [Google Scholar] [CrossRef]
- Wu, J.; Cai, C.F.; Cheng, F.Y.; Cui, H.L.; Zhou, H. Characterisation and development of EST-SSR markers in tree peony using transcriptome sequences. Mol. Breed. 2014, 34, 1853–1866. [Google Scholar] [CrossRef]
- Azevedo, D.S.R.; Gustavo, S.; Lemos, L.S.L.; Lopes, U.V.; Patrocinio, N.G.R.B.P.; Alves, R.M.; Marcellino, L.H.; Clement, D.; Micheli, F.; Gramacho, K.P. Genome size, cytogenetic data and transferability of EST-SSRs markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae). PLoS ONE 2017, 12, e0170799. [Google Scholar]
- Liu, H.; Zhang, Q.X.; Sun, M.; Pan, H.T.; Kong, Z.X. Development of expressed sequence tag-simple sequence repeat markers for Chrysanthemum morifolium and closely related species. Genet. Mol. Res. 2014, 14, 7578–7586. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Xie, W.G.; Zhao, Y.Q.; Zhang, J.C.; Wang, N.; Ntakirutimana, F.; Yan, J.J.; Wang, Y.R. EST-SSR marker development based on RNA-sequencing of E. sibiricus and its application for phylogenetic relationships analysis of seventeen Elymus species. BMC Plant Biol. 2019, 19, 235. [Google Scholar] [CrossRef]
- Wu, X.; Wen, Y.; Ueno, S.; Tsumura, Y. Development and characterization of EST-SSR markers for Taxus mairei (Taxaceae) and their transferability across species. Nephron. Clin. Pract. 2016, 65, 67–70. [Google Scholar] [CrossRef] [Green Version]
Item | Parameters | Number |
---|---|---|
EST-SSR | Total number of sequences examined | 97,376 |
Total size of examined sequences (bp) | 75,061,632 | |
Total number of identified SSRs | 7235 | |
Number of sequences containing SSRs | 6656 | |
Number of sequences containing more than one SSR | 509 | |
Number of SSRs present in compound formation | 354 |
Number of Repeats | Mono- | Di- | Tri- | Tetra- | Penta- | Hexa- | Total | Percentage (%) |
---|---|---|---|---|---|---|---|---|
5 | 815 | 53 | 21 | 40 | 929 | 13.53 | ||
6 | 420 | 260 | 16 | 4 | 9 | 709 | 10.32 | |
7 | 250 | 92 | 2 | 2 | 346 | 5.04 | ||
8 | 144 | 57 | 1 | 2 | 204 | 2.97 | ||
9 | 104 | 29 | 133 | 1.94 | ||||
10 | 1777 | 68 | 19 | 1864 | 27.14 | |||
11 | 873 | 57 | 7 | 937 | 13.64 | |||
12 | 485 | 44 | 1 | 530 | 7.72 | |||
13 | 302 | 38 | 5 | 345 | 5.02 | |||
14 | 214 | 34 | 2 | 250 | 3.64 | |||
15 | 137 | 28 | 165 | 2.4 | ||||
16 | 97 | 19 | 116 | 1.69 | ||||
17 | 68 | 13 | 81 | 1.18 | ||||
18 | 47 | 30 | 77 | 1.12 | ||||
19 | 35 | 23 | 58 | 0.85 | ||||
20 | 32 | 12 | 44 | 0.64 | ||||
21 | 16 | 16 | 0.23 | |||||
22 | 9 | 9 | 0.13 | |||||
23 | 8 | 8 | 0.12 | |||||
24 | 11 | 11 | 0.16 | |||||
25 | 5 | 5 | 0.07 | |||||
26 | 5 | 5 | 0.07 | |||||
Others | 26 | 26 | 0.38 | |||||
Total | 4147 | 1284 | 1287 | 72 | 25 | 53 | 6868 | 100 |
Percentage (%) | 60.38 | 18.7 | 18.74 | 1.05 | 0.36 | 0.77 |
Repeats | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16+ | Total | Percentage | Rank |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C/G | 23 | 10 | 5 | 4 | 1 | 2 | 12 | 57 | 0.83 | 21 | |||||
A/T | 1754 | 863 | 480 | 298 | 213 | 135 | 347 | 4090 | 59.55 | 1 | |||||
CG/CG | 1 | 1 | 2 | 0.03 | 40 | ||||||||||
GC/GC | 2 | 1 | 3 | 0.04 | 38 | ||||||||||
AC/GT | 20 | 15 | 10 | 5 | 1 | 1 | 3 | 1 | 1 | 1 | 58 | 0.84 | 18 | ||
CA/TG | 35 | 15 | 8 | 5 | 4 | 1 | 2 | 2 | 72 | 1.05 | 13 | ||||
TA/TA | 108 | 81 | 44 | 33 | 27 | 25 | 9 | 8 | 11 | 8 | 40 | 394 | 5.74 | 3 | |
AT/AT | 134 | 90 | 56 | 54 | 33 | 27 | 26 | 24 | 18 | 19 | 54 | 535 | 7.79 | 2 | |
GA/TC | 58 | 21 | 6 | 4 | 2 | 1 | 3 | 1 | 96 | 1.40 | 7 | ||||
AG/CT | 62 | 26 | 20 | 3 | 2 | 2 | 3 | 1 | 4 | 1 | 124 | 1.81 | 5 | ||
CTA/TAG | 3 | 3 | 0.04 | 38 | |||||||||||
GTA/TAC | 4 | 1 | 1 | 6 | 0.09 | 36 | |||||||||
CCG/CGG | 12 | 2 | 2 | 16 | 0.23 | 30 | |||||||||
ACT/AGT | 2 | 2 | 0.03 | 40 | |||||||||||
CGC/GCG | 11 | 4 | 1 | 2 | 18 | 0.26 | 29 | ||||||||
ACG/CGT | 2 | 1 | 2 | 5 | 0.07 | 37 | |||||||||
CGA/TCG | 3 | 2 | 1 | 1 | 1 | 8 | 0.12 | 35 | |||||||
GAC/GTC | 7 | 2 | 9 | 0.13 | 33 | ||||||||||
GCC/GGC | 8 | 1 | 9 | 0.13 | 33 | ||||||||||
AGG/CCT | 35 | 13 | 4 | 3 | 1 | 1 | 1 | 58 | 0.84 | 18 | |||||
GGA/TCC | 26 | 16 | 3 | 45 | 0.66 | 24 | |||||||||
CAG/CTG | 58 | 18 | 7 | 2 | 1 | 1 | 1 | 88 | 1.28 | 8 | |||||
GCA/TGC | 43 | 20 | 8 | 5 | 4 | 1 | 81 | 1.18 | 10 | ||||||
AGC/GCT | 44 | 8 | 4 | 5 | 1 | 1 | 63 | 0.92 | 16 | ||||||
CTC/GAG | 41 | 8 | 6 | 3 | 58 | 0.84 | 18 | ||||||||
ATG/CAT | 30 | 9 | 1 | 2 | 1 | 1 | 44 | 0.64 | 25 | ||||||
ACC/GGT | 6 | 5 | 1 | 1 | 13 | 0.19 | 32 | ||||||||
ATA/TAT | 29 | 18 | 6 | 2 | 2 | 57 | 0.83 | 21 | |||||||
ACA/TGT | 17 | 3 | 2 | 3 | 1 | 1 | 2 | 29 | 0.42 | 28 | |||||
AAC/GTT | 22 | 3 | 2 | 3 | 1 | 1 | 32 | 0.47 | 27 | ||||||
CAC/GTG | 9 | 4 | 1 | 1 | 15 | 0.22 | 31 | ||||||||
TAA/TTA | 45 | 19 | 7 | 5 | 2 | 1 | 1 | 80 | 1.16 | 11 | |||||
CCA/TGG | 25 | 5 | 3 | 2 | 1 | 2 | 1 | 39 | 0.57 | 26 | |||||
CAA/TTG | 33 | 13 | 7 | 2 | 3 | 1 | 59 | 0.86 | 17 | ||||||
TCA/TGA | 38 | 15 | 2 | 3 | 4 | 2 | 64 | 0.93 | 15 | ||||||
ATC/GAT | 37 | 8 | 1 | 46 | 0.67 | 23 | |||||||||
AAT/ATT | 65 | 12 | 14 | 6 | 2 | 2 | 1 | 1 | 103 | 1.50 | 6 | ||||
AAG/CTT | 44 | 14 | 3 | 3 | 1 | 3 | 1 | 69 | 1.00 | 14 | |||||
AGA/TCT | 53 | 19 | 2 | 5 | 1 | 80 | 1.16 | 11 | |||||||
GAA/TTC | 60 | 17 | 3 | 4 | 3 | 1 | 88 | 1.28 | 8 | ||||||
Others | 114 | 29 | 4 | 3 | 150 | 2.18 | 4 | ||||||||
Total | 924 | 709 | 347 | 206 | 133 | 1865 | 938 | 530 | 345 | 250 | 165 | 456 | 6868 | 100 |
Locus | Primer Sequence (5′–3′) | Motif | Tm (°C) | Size (bp) | Na | Ne | I | Ho | He | PIC |
---|---|---|---|---|---|---|---|---|---|---|
NFPK-218 | F:AGTGGAACGAATTTGAACCG R:GGGCTTTGAAACAGGTGAAA | (TC)6 | 60 | 188 | 4 | 1.073 | 0.108 | 0.030 | 0.059 | 0.380 |
NFPK-40 | F:TCGCTCTCTTCTTGACCACA R:CCGCTACTTCATCAGGGTTC | (TGA)6 | 60 | 196 | 4 | 1.070 | 0.119 | 0.040 | 0.061 | 0.063 |
NFPK-32 | F:AAATGGACGAAGTTGGATGG R:CTCAGTGTCTTCAGGCAGGA | (GCT)6 | 59 | 197 | 6 | 2.052 | 0.759 | 0.603 | 0.510 | 0.582 |
NFPK-53 | F:TGGAGATGCAGCAGATTAGG R:CTGCACACAGGATGTCACAA | (ATG)6 | 59 | 197 | 2 | 1.122 | 0.086 | 0.020 | 0.062 | 0.375 |
NFPK-65 | F:ATGGGTATGGTGTTGGAAGG R:CTGGAGGAGCAAAATCGTGT | (TGC)6 | 59 | 199 | 11 | 1.451 | 0.491 | 0.325 | 0.281 | 0.588 |
NFPK-71 | F:TTGGTGAGGATTGGTTCGAT R:CAAACTTCCGATTCGAGTGA | (AAG)6 | 60 | 200 | 5 | 1.957 | 0.725 | 0.622 | 0.484 | 0.405 |
NFPK-117 | F:GCCCAATGGATGTGTCTCTT R:TCGGCCTGCAATTAGTCTCT | (TC)12 | 60 | 203 | 8 | 2.609 | 1.047 | 0.986 | 0.610 | 0.614 |
NFPK-72 | F:ATCACCGCTGCCTTTCAGTA R:TCACTTCCCCAATCAATTCC | (ATA)8 | 60 | 204 | 3 | 1.045 | 0.070 | 0.014 | 0.038 | 0.387 |
NFPK-67 | F:TGACCACTTCAGGCTTCTGAT R:ATGGCATCTGCTCTTTTTGC | (TGC)6 | 59 | 208 | 3 | 2.037 | 0.784 | 0.536 | 0.475 | 0.543 |
NFPK-34 | F:AACCCACAGAAAGCTGAGGA R:CACCCCTGAACAGAGAGGAG | (TAA)6 | 60 | 221 | 2 | 0.894 | 0.032 | 0.018 | 0.017 | 0.032 |
NFPK-43 | F:ATGCAGGGTTTGCAATACAG R:AATACGAGCACCGCGTTATC | (GAG)6 | 60 | 227 | 4 | 1.078 | 0.105 | 0.038 | 0.054 | 0.069 |
NFPK-38 | F:TGATGGTGTGGTGAGGGTTA R:AGCGTGGGAGGAGTGTGTAG | (AAG)6 | 60 | 229 | 5 | 1.273 | 0.269 | 0.109 | 0.168 | 0.266 |
NFPK-150 | F:AAATAACGGGGCTGTGTGTC R:ACGGATGTTGTAATCCCCAA | (GA)6 | 60 | 241 | 2 | 1.034 | 0.059 | 0.032 | 0.030 | 0.029 |
NFPK-145 | F:ATGCGGAGGGATCAATTCTA R:CCAAGGCGCATCAATATTTC | (TA)6 | 60 | 241 | 14 | 2.985 | 0.989 | 0.296 | 0.513 | 0.794 |
NFPK-175 | F:AAGGTCACGGCGTTCATTAC R:CCTGTGACCTCAACTGGGAT | (GA)6 | 60 | 259 | 5 | 1.075 | 0.133 | 0.069 | 0.065 | 0.074 |
NFPK-181 | F:CTAAAGCGCTCAACCCAGAC R:GGACCACAGCGTGTTAGGAT | (AT)6 | 60 | 261 | 6 | 1.492 | 0.438 | 0.160 | 0.248 | 0.456 |
NEPK-179 | F: CCAAGCCAGGTAAGGCACTA R: TGGACAAGGGAGATGAGACA | (CA)10 | 60 | 246 | 9 | 3.393 | 1.506 | 0.111 | 0.705 | 0.659 |
NEPK-168 | F: CGGCTGTTCTGTTCCACATA R: GCCTTTGCAGTAGGATCGAG | (TA)11 | 60 | 261 | 23 | 3.884 | 2.063 | 0.193 | 0.743 | 0.723 |
NFPK-213 | F:ATGTGTCACCACCCCTCATT R:ATGAGTGCGGCCTAAAGAGA | (TC)6 | 60 | 274 | 10 | 2.625 | 1.046 | 0.802 | 0.571 | 0.636 |
NFPK-184 | F:AAGTCTCCACTGCATCAACCTT R:TGTCTCCCAACTTCCTGCTT | (TC)8 | 60 | 275 | 3 | 2.092 | 0.757 | 0.967 | 0.518 | 0.400 |
Mean | 6.45 | 1.812 | 0.579 | 0.299 | 0.311 | 0.404 | ||||
Total | 129 |
Locus | Pinus sibirica | Pinus pumila | Pinus wallichiana | Pinus parviflora | Pinus bungeana | Pinus tabuliformis | Pinus sylvestris | Total |
---|---|---|---|---|---|---|---|---|
NFPK-218 | + | + | + | + | - | - | - | 4 |
NFPK-40 | + | + | + | + | + | + | + | 7 |
NFPK-32 | + | + | + | + | + | + | + | 7 |
NFPK-53 | + | + | + | + | + | + | + | 7 |
NFPK-65 | + | + | + | + | + | - | - | 5 |
NFPK-71 | + | + | + | + | + | - | - | 5 |
NFPK-117 | + | + | + | + | + | - | + | 6 |
NFPK-72 | + | + | + | + | + | + | + | 7 |
NFPK-67 | + | + | + | + | + | - | - | 5 |
NFPK-34 | - | - | - | - | - | - | - | 0 |
NFPK-43 | + | + | + | + | + | + | + | 7 |
NFPK-38 | + | + | + | + | + | + | + | 7 |
NFPK-150 | + | + | + | + | + | + | + | 7 |
NFPK-145 | + | + | + | + | - | + | - | 5 |
NFPK-179 | + | + | + | + | + | + | + | 7 |
NFPK-175 | + | + | + | + | - | + | + | 6 |
NFPK-168 | + | + | - | + | + | - | - | 4 |
NFPK-181 | - | + | - | - | - | - | - | 1 |
NFPK-213 | + | + | + | + | + | - | - | 5 |
NFPK-184 | + | + | + | + | + | + | + | 7 |
Total | 18 | 19 | 17 | 18 | 15 | 11 | 11 | 109 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, X.; Wei, J.; Li, Y.; Tigabu, M.; Zhao, X. Development and Transferability of EST-SSR Markers for Pinus koraiensis from Cold-Stressed Transcriptome through Illumina Sequencing. Genes 2020, 11, 500. https://doi.org/10.3390/genes11050500
Li X, Liu X, Wei J, Li Y, Tigabu M, Zhao X. Development and Transferability of EST-SSR Markers for Pinus koraiensis from Cold-Stressed Transcriptome through Illumina Sequencing. Genes. 2020; 11(5):500. https://doi.org/10.3390/genes11050500
Chicago/Turabian StyleLi, Xiang, Xiaoting Liu, Jiatong Wei, Yan Li, Mulualem Tigabu, and Xiyang Zhao. 2020. "Development and Transferability of EST-SSR Markers for Pinus koraiensis from Cold-Stressed Transcriptome through Illumina Sequencing" Genes 11, no. 5: 500. https://doi.org/10.3390/genes11050500
APA StyleLi, X., Liu, X., Wei, J., Li, Y., Tigabu, M., & Zhao, X. (2020). Development and Transferability of EST-SSR Markers for Pinus koraiensis from Cold-Stressed Transcriptome through Illumina Sequencing. Genes, 11(5), 500. https://doi.org/10.3390/genes11050500