Interindividual Variability of Apixaban Plasma Concentrations: Influence of Clinical and Genetic Factors in a Real-Life Cohort of Atrial Fibrillation Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- January, C.T.; Wann, L.S.; Calkins, H.; Chen, L.Y.; Cigarroa, J.E.; Cleveland, J.C.; Ellinor, P.T.; Ezekowitz, M.D.; Field, M.E.; Furie, K.L.; et al. 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration With the Society of Thoracic Surgeons. Circulation 2019, 140, 125–151. [Google Scholar] [CrossRef]
- Kirchhof, P.; Benussi, S.; Kotecha, D.; Ahlsson, A.; Atar, D.; Casadei, B.; Castella, M.; Diener, H.C.; Heidbuchel, H.; Hendriks, J.; et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Hear. J. 2016, 37, 2893–2962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lip, G.Y.H.; Brechin, C.M.; Lane, D.A. The Global Burden of Atrial Fibrillation and Stroke. Chest 2012, 142, 1489–1498. [Google Scholar] [CrossRef] [PubMed]
- Naccarelli, G.; Varker, H.; Lin, J.; Schulman, K.L. Increasing Prevalence of Atrial Fibrillation and Flutter in the United States. Am. J. Cardiol. 2009, 104, 1534–1539. [Google Scholar] [CrossRef]
- Hill, N.R.; Sandler, B.; Bergrath, E.; Milenković, D.; Ashaye, A.O.; Farooqui, U.; Cohen, A.T. A Systematic Review of Network Meta-Analyses and Real-World Evidence Comparing Apixaban and Rivaroxaban in Nonvalvular Atrial Fibrillation. Clin. Appl. Thromb. 2020, 26, 1–10. [Google Scholar] [CrossRef]
- Summary of Product Characteristics Eliquis (apixaban). Available online: https://www.ema.europa.eu/en/documents/product-information/eliquis-epar-product-information_en.pdf (accessed on 30 January 2020).
- Granger, C.B.; Alexander, J.H.; McMurray, J.J.; Lopes, R.D.; Hylek, E.M.; Hanna, M.; Al-Khalidi, H.R.; Ansell, J.; Atar, D.; Avezum, Á.; et al. Apixaban versus Warfarin in Patients with Atrial Fibrillation. N. Engl. J. Med. 2011, 365, 981–992. [Google Scholar] [CrossRef]
- Connolly, S.; Eikelboom, J.; Joyner, C.; Diener, H.-C.; Hart, R.; Golitsyn, S.; Flaker, G.; Avezum, A.; Hohnloser, S.H.; Diaz, R.; et al. Apixaban in Patients with Atrial Fibrillation. N. Engl. J. Med. 2011, 364, 806–817. [Google Scholar] [CrossRef] [Green Version]
- Ruff, C.; Giugliano, R.P.; Braunwald, E.; Hoffman, E.B.; Deenadayalu, N.; Ezekowitz, M.D.; Camm, A.J.; I Weitz, J.; Lewis, B.S.; Parkhomenko, A.; et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: A meta-analysis of randomised trials. Lancet 2014, 383, 955–962. [Google Scholar] [CrossRef]
- Heidbuchel, H.; Verhamme, P.; Alings, M.; Antz, M.; Diener, H.-C.; Hacke, W.; Oldgren, J.; Sinnaeve, P.; Camm, A.J.; Kirchhof, P.; et al. Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation. Europace 2015, 17, 1467–1507. [Google Scholar] [CrossRef]
- Walenga, J.M.; Adiguzel, C.; Adıgüzel, C. Drug and dietary interactions of the new and emerging oral anticoagulants. Int. J. Clin. Pr. 2010, 64, 956–967. [Google Scholar] [CrossRef]
- Zhou, S.-F. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 2008, 38, 802–832. [Google Scholar] [CrossRef]
- Brambila-Tapia, A.J.-L. MDR1 (ABCB1) polymorphisms: Functional effects and clinical implications. Revista de InvestigaciónClínica 2014, 65, 445–454. [Google Scholar]
- Chinn, L.W.; Kroetz, D.L. ABCB1 Pharmacogenetics: Progress, Pitfalls, and Promise. Clin. Pharmacol. Ther. 2007, 81, 265–269. [Google Scholar] [CrossRef]
- Marzolini, C.; Paus, E.; Buclin, T.; Kim, R.B. Polymorphisms in human MDR1 (P-glycoprotein): Recent advances and clinical relevance. Clin. Pharmacol. Ther. 2004, 75, 13–33. [Google Scholar] [CrossRef]
- Hoffmeyer, S.; Burk, O.; Von Richter, O.; Arnold, H.P.; Brockmöller, J.; Johne, A.; Cascorbi, I.; Gerloff, T.; Roots, I.; Eichelbaum, M.; et al. Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. 2000, 97, 3473–3478. [Google Scholar] [CrossRef]
- Wang, D.; Johnson, A.D.; Papp, A.C.; Kroetz, D.L.; Sadée, W. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet. Genom. 2005, 15, 693–704. [Google Scholar] [CrossRef]
- Ieiri, I. Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug Metab. Pharmacokinet. 2011, 27, 85–105. [Google Scholar] [CrossRef]
- Paré, G.; Eriksson, N.; Lehr, T.; Connolly, S.; Eikelboom, J.; Ezekowitz, M.D.; Axelsson, T.; Härtter, S.; Oldgren, J.; Reilly, P.; et al. Genetic Determinants of Dabigatran Plasma Levels and Their Relation to Bleeding. Circulation 2013, 127, 1404–1412. [Google Scholar] [CrossRef] [Green Version]
- Schulman, S.; Kearon, C.; The Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J. Thromb. Haemost. 2005, 3, 692–694. [Google Scholar] [CrossRef]
- Hellenbart, E.L.; Faulkenberg, K.D.; Finks, S. Evaluation of bleeding in patients receiving direct oral anticoagulants. Vasc. Heal. Risk Manag. 2017, 13, 325–342. [Google Scholar] [CrossRef] [Green Version]
- Ensembld Data Base. Available online: http://www.ensembl.org/Homo_sapiens/Variation/Population (accessed on 30 March 2020).
- Baglin, T.P.; Hillarp, A.; Tripodi, A.; Elalamy, I.; Buller, H.; Ageno, W. Measuring oral direct inhibitors of thrombin and factor Xa: A recommendation from the Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. J. Thromb. Haemost. 2013, 11, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Steffel, J.; Verhamme, P.; Potpara, T.S.; Albaladejo, P.; Antz, M.; Desteghe, L.; Haeusler, K.G.; Oldgren, J.; Reinecke, H.; Roldán-Schilling, V.; et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur. Hear. J. 2018, 39, 1330–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuelson, B.T.; Cuker, A. Measurement and reversal of the direct oral anticoagulants. Blood Rev. 2016, 31, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gosselin, R.C.; Adcock, D.M.; Bates, S.M.; Douxfils, J.; Favaloro, E.J.; Gouin-Thibault, I.; Guillermo, C.; Kawai, Y.; Lindhoff-Last, E.; Kitchen, S. International Council for Standardization in Haematology (ICSH) Recommendations for Laboratory Measurement of Direct Oral Anticoagulants. Thromb. Haemost. 2018, 118, 437–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatelain, C.; Chatelain, B.; Douxfils, J.; Dogné, J.-M.; Mullier, F. Impact of apixaban on routine and specific coagulation assays: A practical laboratory guide. Thromb. Haemost. 2013, 110, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Flaujac, C.; Delavenne, X.; Quenet, S.; Horellou, M.-H.; Laporte, S.; Siguret, V.; Lecompte, T.; Gouin-Thibault, I. Assessment of apixaban plasma levels by laboratory tests: Suitability of three anti-Xa assays. Thromb. Haemost. 2014, 111, 240–248. [Google Scholar] [CrossRef]
- Hillarp, A.; Gustafsson, K.M.; Faxälv, L.; Strandberg, K.; Baghaei, F.; Blixter, I.F.; Berndtsson, M.; Lindahl, T.L. Effects of the oral, direct factor Xa inhibitor apixaban on routine coagulation assays and anti-FXa assays. J. Thromb. Haemost. 2014, 12, 1545–1553. [Google Scholar] [CrossRef] [Green Version]
- Leil, T.A.; Feng, Y.; Zhang, L.; Paccaly, A.; Mohan, P.; Pfister, M. Quantification of Apixaban’s Therapeutic Utility in Prevention of Venous Thromboembolism: Selection of Phase III Trial Dose. Clin. Pharmacol. Ther. 2010, 88, 375–382. [Google Scholar] [CrossRef]
- Leil, T.A.; Frost, C.; Wang, X.; Pfister, M.; LaCreta, F. Model-based exposure-response analysis of apixaban to quantify bleeding risk in special populations of subjects undergoing orthopedic surgery. CPT: Pharmacometr. Syst. Pharmacol. 2014, 3, e136. [Google Scholar] [CrossRef]
- Frost, R.J.A.; Nepal, S.; Wang, J.; Schuster, A.; Byon, W.; Boyd, R.A.; Yu, Z.; Shenker, A.; Barrett, Y.C.; Mosqueda-Garcia, R.; et al. Safety, pharmacokinetics and pharmacodynamics of multiple oral doses of apixaban, a factor Xa inhibitor, in healthy subjects. Br. J. Clin. Pharmacol. 2013, 76, 776–786. [Google Scholar] [CrossRef]
- Frost, R.J.A.; Song, Y.; Barrett, Y.C.; Wang, J.; Pursley, J.; A Boyd, R.; LaCreta, F. A randomized direct comparison of the pharmacokinetics and pharmacodynamics of apixaban and rivaroxaban. Clin. Pharmacol. Adv. Appl. 2014, 6, 179–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skeppholm, M.; Al-Aieshy, F.; Berndtsson, M.; Al-Khalili, F.; Rönquist-Nii, Y.; Söderblom, L.; Malmström, R.E. Clinical evaluation of laboratory methods to monitor apixaban treatment. Thromb. Res. 2015, 136, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Gulilat, M.; Tang, A.; Gryn, S.; Leong-Sit, P.; Skanes, A.C.; Alfonsi, J.E.; Dresser, G.K.; Henderson, S.L.; Rose, R.V.; Lizotte, D.J.; et al. Interpatient Variation in Rivaroxaban and Apixaban Plasma Concentrations in Routine Care. Can. J. Cardiol. 2017, 33, 1036–1043. [Google Scholar] [CrossRef]
- Frost, R.J.A.; Song, Y.; Shenker, A.; Wang, J.; Barrett, Y.C.; Schuster, A.; Harris, S.I.; LaCreta, F. Effects of age and sex on the single-dose pharmacokinetics and pharmacodynamics of apixaban. Clin. Pharmacokinet. 2015, 54, 651–662. [Google Scholar] [CrossRef] [Green Version]
- Cirincione, B.; Kowalski, K.; Nielsen, J.; Roy, A.; Thanneer, N.; Byon, W.; Boyd, R.; Wang, X.; Leil, T.; LaCreta, F.; et al. Population Pharmacokinetics of Apixaban in Subjects with Nonvalvular Atrial Fibrillation. CPT Pharmacometr. Syst. Pharmacol. 2018, 7, 728–738. [Google Scholar] [CrossRef]
- Lin, S.; Kuo, C.; Yeh, S.; Tsai, L.; Liu, Y.; Huang, C.; Tang, S.-C.; Jeng, J. Real-World Rivaroxaban and Apixaban Levels in Asian Patients With Atrial Fibrillation. Clin. Pharmacol. Ther. 2019, 107, 278–286. [Google Scholar] [CrossRef]
- Chang, M.; Yu, Z.; Shenker, A.; Wang, J.; Pursley, J.; Byon, W.; Boyd, R.A.; LaCreta, F.; Frost, R.J.A. Effect of renal impairment on the pharmacokinetics, pharmacodynamics, and safety of apixaban. J. Clin. Pharmacol. 2015, 56, 637–645. [Google Scholar] [CrossRef]
- Chen, Y.; Li, L.; Yao, J.; Ma, Y.-Y.; Chen, J.-M.; Lu, T.-B. Improving the Solubility and Bioavailability of Apixaban via Apixaban–Oxalic Acid Cocrystal. Cryst. Growth Des. 2016, 16, 2923–2930. [Google Scholar] [CrossRef]
- Byon, W.; Nepal, S.; Schuster, A.E.; Shenker, A.; Frost, C.E. Regional Gastrointestinal Absorption of Apixaban in Healthy Subjects. J. Clin. Pharmacol. 2018, 58, 965–971. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Jarmuzewska, E.A. The influence of heart failure on the pharmacokinetics of cardiovascular and non-cardiovascular drugs: A critical appraisal of the evidence. Br. J. Clin. Pharmacol. 2018, 85, 20–36. [Google Scholar] [CrossRef]
- DiMatteo, C.; D’Andrea, G.; Vecchione, G.; Paoletti, O.; Tiscia, G.L.; Santacroce, R.; Correale, M.; Brunetti, N.; Grandone, E.; Testa, S.; et al. ABCB1 SNP rs4148738 modulation of apixaban interindividual variability. Thromb. Res. 2016, 145, 24–26. [Google Scholar] [CrossRef]
- Kryukov, A.V.; Sychev, D.A.; Andreev, D.; Ryzhikova, K.A.; Grishina, E.A.; Ryabova, A.V.; Loskutnikov, M.A.; Smirnov, V.V.; Konova, O.D.; Matsneva, I.A.; et al. Influence of ABCB1 and CYP3A5 gene polymorphisms on pharmacokinetics of apixaban in patients with atrial fibrillation and acute stroke. Pharmacogenom. Pers. Med. 2018, 11, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Ueshima, S.; Hira, D.; Fujii, R.; Kimura, Y.; Tomitsuka, C.; Yamane, T.; Tabuchi, Y.; Ozawa, T.; Itoh, H.; Horie, M.; et al. Impact of ABCB1, ABCG2, and CYP3A5 polymorphisms on plasma trough concentrations of apixaban in Japanese patients with atrial fibrillation. Pharmacogenet. Genom. 2017, 27, 329–336. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, N.; Raghavan, N.; Yao, M.; Ma, L.; Frost, C.A.; Maxwell, B.D.; Chen, S.-Y.; He, K.; Goosen, T.C.; et al. In Vitro Assessment of Metabolic Drug-Drug Interaction Potential of Apixaban through Cytochrome P450 Phenotyping, Inhibition, and Induction Studies. Drug Metab. Dispos. 2009, 38, 448–458. [Google Scholar] [CrossRef]
- Zhang, D.; He, K.; Herbst, J.J.; Kolb, J.; Shou, W.; Wang, L.; Balimane, P.V.; Han, Y.-H.; Gan, J.; Frost, C.E.; et al. Characterization of Efflux Transporters Involved in Distribution and Disposition of Apixaban. Drug Metab. Dispos. 2013, 41, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Gong, I.Y.; Kim, R.B. Importance of Pharmacokinetic Profile and Variability as Determinants of Dose and Response to Dabigatran, Rivaroxaban, and Apixaban. Can. J. Cardiol. 2013, 29, S24–S33. [Google Scholar] [CrossRef]
- Reilly, P.A.; Lehr, T.; Härtter, S.; Connolly, S.; Yusuf, S.; Eikelboom, J.; Ezekowitz, M.D.; Nehmiz, G.; Wang, S.; Wallentin, L. The Effect of Dabigatran Plasma Concentrations and Patient Characteristics on the Frequency of Ischemic Stroke and Major Bleeding in Atrial Fibrillation Patients. J. Am. Coll. Cardiol. 2014, 63, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Macha, K.; Marsch, A.; Siedler, G.; Breuer, L.; Strasser, E.F.; Engelhorn, T.; Schwab, S.; Kallmünzer, B. Cerebral Ischemia in Patients on Direct Oral Anticoagulants. Stroke 2019, 50, 873–879. [Google Scholar] [CrossRef]
Characteristic | Apixaban 5 mg (n = 53) | |
---|---|---|
Median age (years) | 70 (65;77) | |
Male n (%) | 32 (60.4%) | |
BMI (kg/m2) | 28 (24.6;31.3) | |
S (m2) | 1.9 (1.6;2.1) | |
AF type n (%) | paroxysmal | 11 (20.8%) |
persistent | 12 (22.6%) | |
permanent | 30 (56.6%) | |
Prior VKA n (%) | 21 (39.6%) | |
CHA2DS2-VASC score | 1–2 | 10 (18.8%) |
≥3 | 43 (81.2%) | |
CrCl mL/min/1.72 m2 | 77.5 (64.2;90.0) | |
Minor bleeding n (%) | 6 (11.3%) | |
Plasma concentrations (ng/mL) | trough | 132.3 (90.4;184.2) |
peak | 287.3 (198.6;396.8) |
Gene | n (%) | MAF (%) (n = 53) | MAF CEU * | HWE p | Trough Plasma Levels Median (range) | p ** | Peak Plasma Levels Median (range) | p ** | ||
---|---|---|---|---|---|---|---|---|---|---|
ABCB1 | rs1045642 | CC | 14 (26.4%) | 48.11 | 43.4 | 0.98 | 139.4 (99.3; 187.5) | 0.6 | 231.5 (176; 438.7) | 0.8 |
C > T | CT | 27 (50.9%) | 132.1 (87.1; 238.3) | 293.5 (219.6; 370.1) | ||||||
TT | 12 (22.6%) | 128 (80.1; 179.5) | 305.1 (142.1; 393.2) | |||||||
rs4148738 | GG | 15 (28.3%) | 46.22 | 46.0 | 0.85 | 166.5 (99.5; 206.8) | 0.5 | 271.4 (198.1; 442.7) | 0.9 | |
G > A | GA | 27 (50.9%) | 127.4 (70.5; 194.7) | 281.2 (205.6; 346.4) | ||||||
AA | 11 (20.8%) | 128 (87.3; 195) | 305.1 (144.7; 393.2) |
Unstandardized Coefficients B | p | 95.0% Confidence Interval for B | ||
---|---|---|---|---|
Min | Max | |||
(Constant) | 2.783 | <0.001 | 2.315 | 3.251 |
HF | −0.650 | 0.002 | −1.032 | −0.269 |
Cl Cr | −0.008 | 0.010 | −0.014 | −0.002 |
Unstandardized Coefficients B | p | 95.0% Confidence Interval for B | ||
---|---|---|---|---|
Min | Max | |||
(Constant) | 2.513 | <0.001 | 2.427 | 2.599 |
HF | −0.422 | 0.001 | −0.650 | −0.194 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roşian, A.-N.; Roşian, Ş.H.; Kiss, B.; Ştefan, M.G.; Trifa, A.P.; Ober, C.D.; Anchidin, O.; Buzoianu, A.D. Interindividual Variability of Apixaban Plasma Concentrations: Influence of Clinical and Genetic Factors in a Real-Life Cohort of Atrial Fibrillation Patients. Genes 2020, 11, 438. https://doi.org/10.3390/genes11040438
Roşian A-N, Roşian ŞH, Kiss B, Ştefan MG, Trifa AP, Ober CD, Anchidin O, Buzoianu AD. Interindividual Variability of Apixaban Plasma Concentrations: Influence of Clinical and Genetic Factors in a Real-Life Cohort of Atrial Fibrillation Patients. Genes. 2020; 11(4):438. https://doi.org/10.3390/genes11040438
Chicago/Turabian StyleRoşian, Adela-Nicoleta, Ştefan Horia Roşian, Bela Kiss, Maria Georgia Ştefan, Adrian Pavel Trifa, Camelia Diana Ober, Ovidiu Anchidin, and Anca Dana Buzoianu. 2020. "Interindividual Variability of Apixaban Plasma Concentrations: Influence of Clinical and Genetic Factors in a Real-Life Cohort of Atrial Fibrillation Patients" Genes 11, no. 4: 438. https://doi.org/10.3390/genes11040438