Ohr and OhrR Are Critical for Organic Peroxide Resistance and Symbiosis in Azorhizobium caulinodans ORS571
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Plasmids and Cultural Conditions
2.2. Bioinformatics Analyses
2.3. Construction of In-Frame Deletion and Complementation
2.4. Disc Diffusion Assay
2.5. Peroxide Killing Assay
2.6. Quantitative Real-Time PCR Analysis
2.7. Translational Analysis of ohr
2.8. Protein Expression and Purification
2.9. Electrophoretic Mobility Shift Assay
2.10. Site-Directed Mutagenesis
2.11. Nodulation Assay and Nitrogenase Activity
3. Results
3.1. Identification of A. caulinodans Ohr and OhrR
3.2. Ohr Contributes to Defence against Organic Peroxides in A. caulinodans
3.3. The Expression of ohr Is Regulated by OhrR
3.4. Reduced Form of OhrR Binds the Promoter Region of ohr and This Binding Is Inhibited by Peroxides
3.5. Sensing of Organic Hydroperoxides by OhrR Requires the Conserved Cys11 Residue
3.6. Ohr Is Required for Optimal Stem Nodulation and Nitrogenase Activity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abdal Dayem, A.; Hossain, M.K.; Lee, S.B.; Kim, K.; Saha, S.K.; Yang, G.M.; Choi, H.Y.; Cho, S.G. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles. Int. J. Mol. Sci. 2017, 18, 120. [Google Scholar] [CrossRef] [Green Version]
- Ezraty, B.; Gennaris, A.; Barras, F.; Collet, J.F. Oxidative stress, protein damage and repair in bacteria. Nat. Rev. Microbiol. 2017, 15, 385–396. [Google Scholar] [CrossRef]
- Zeng, Y.H.J.; Wang, X.; Drlica, K.; Zhao, X. Post-stress bacterial cell death mediated by reactive oxygen species. Proc. Natl. Acad. Sci. USA 2019, 116, 10064–10071. [Google Scholar]
- Imlay, J.A. The molecular mechanisms and physiological consequences of oxidative stress: Lessons from a model bacterium. Nat. Rev. Microbiol. 2013, 11, 443–454. [Google Scholar] [CrossRef] [Green Version]
- Damiani, I.; Pauly, N.; Puppo, A.; Brouquisse, R.; Boscari, A. Reactive Oxygen Species and Nitric Oxide Control Early Steps of the Legume- Rhizobium Symbiotic Interaction. Front. Plant Sci. 2016, 7, 454. [Google Scholar] [CrossRef] [PubMed]
- Zurbriggen, M.D.; Carrillo, N.; Hajirezaei, M.R. ROS signaling in the hypersensitive response: When, where and what for? Plant Signal. Behav. 2010, 5, 393–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.; Damiani, I.; Puppo, A.; Frendo, P. Redox changes during the legume-rhizobium symbiosis. Mol. Plant 2009, 2, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef]
- Santos, R.; Hérouart, D.; Sigaud, S.; Touati, D.; Puppo, A. Oxidative Burst in Alfalfa- Sinorhizobium meliloti Symbiotic Interaction. Mol. Plant-Microbe Interact. 2001, 14, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Shaw, S.L.; Long, S.R. Nod Factor Inhibition of Reactive Oxygen Efflux in a Host Legume. Plant Physiol. 2003, 132, 2196–2204. [Google Scholar] [CrossRef] [Green Version]
- D’Haeze, W.; De Rycke, R.; Mathis, R.; Goormachtig, S.; Pagnotta, S.; Verplancke, C.; Capoen, W.; Holsters, M. Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume. Proc. Natl. Acad. Sci. USA 2003, 100, 11789–11794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Göbel, T.F.; Deanna, R.; Muñoz, N.B.; Robert, G.; Asurmendi, S.; Lascano, R. Redox Systemic Signaling and Induced Tolerance Responses During Soybean–Bradyrhizobium japonicum Interaction: Involvement of Nod Factor Receptor and Autoregulation of Nodulation. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio, M.C.; James, E.K.; Clemente, M.R.; Bucciarelli, B.; Vance, C.P.; Becana, M. Localization of Superoxide Dismutases and Hydrogen Peroxide in Legume Root Nodules. Mol. Plant-Microbe Interact. 2004, 17, 1294–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.B.; De Backer, P.; Aono, T.; Liu, C.-T.; Suzuki, S.; Suzuki, T.; Kaneko, T.; Yamada, M.; Tabata, S.; Kupfer, D.M.; et al. The genome of the versatile nitrogen fixer Azorhizobium caulinodans ORS571. BMC Genom. 2008, 9, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, E.K.; Lannetta, P.P.M.; Nixon, P.J.; Whiston, A.J.; Peat, L.; Crawford, R.M.M.; Sprent, J.I.; Brewin, N.J. Photosystem II and oxygen regulation in Sesbania rostrata stem nodules. Plant Cell Environ. 1996, 19, 895–910. [Google Scholar] [CrossRef]
- Choudhary, A.; Kumar, A.; Kaur, N. ROS and oxidative burst: Roots in plant development. Plant Divers. 2019. [Google Scholar] [CrossRef]
- Zhao, Y.; Nickels, L.M.; Wang, H.; Ling, J.; Zhong, Z.; Zhu, J.; Bothe, H. OxyR-regulated catalase activity is critical for oxidative stress resistance, nodulation and nitrogen fixation in Azorhizobium caulinodans. FEMS Microbiol. Lett. 2016, 363, fnw130. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G.; Yang, J.; Li, X.; Cao, Y.; Liu, X.; Ling, J.; Wang, H.; Zhong, Z.; Zhu, J. Alkyl hydroperoxide reductase is important for oxidative stress resistance and symbiosis in Azorhizobium caulinodans. FEMS Microbiol. Lett. 2019, 366, fnz014. [Google Scholar] [CrossRef]
- Liu, X.; Qiu, W.; Rao, B.; Cao, Y.; Fang, X.; Yang, J.; Jiang, G.; Zhong, Z.; Zhu, J. Bacterioferritin comigratory protein is important in hydrogen peroxide resistance, nodulation, and nitrogen fixation in Azorhizobium caulinodans. Arch. Microbiol. 2019. [Google Scholar] [CrossRef]
- Klomsiri, C.; Panmanee, W.; Dharmsthiti, S.; Vattanaviboon, P.; Mongkolsuk, S. Novel Roles of ohrR-ohr in Xanthomonas Sensing, Metabolism, and Physiological Adaptive Response to Lipid Hydroperoxide. J. Bacteriol. 2005, 187, 3277–3281. [Google Scholar] [CrossRef] [Green Version]
- Prost, I.; Dhondt, S.; Rothe, G.; Vicente, J. Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogen. Plant Physiol. 2005, 139, 1902–1913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontenelle, C.; Blanco, C.; Arrieta, M.; Dufour, V.; Trautwetter, A. Resistance to organic hydroperoxides requires ohr and ohrR genes in Sinorhizobium meliloti. BMC Microbiol. 2011, 11, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chae, H.Z.; Robison, K.; Poole, L.B.; Church, G.; Storz, G.; Rhee, S.G. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: Alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. USA 1994, 91, 7017–7021. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Xie, Q.-w.; Nathan, C. Alkyl Hydroperoxide Reductase Subunit C (AhpC) Protects Bacterial and Human Cells against Reactive Nitrogen Intermediates. Mol. Cell 1998, 1, 795–805. [Google Scholar] [CrossRef]
- Shrivastava, A.K.; Pandey, S.; Dietz, K.J.; Singh, P.K.; Singh, S.; Rai, R.; Rai, L.C. Overexpression of AhpC enhances stress tolerance and N2-fixation in Anabaena by upregulating stress responsive genes. Biochim. Biophys. Acta 2016, 1860, 2576–2588. [Google Scholar] [CrossRef] [PubMed]
- Mongkolsuk, S.; Praituan, W.; Loprasert, S.; Fuangthong, M.; Chamnongpol, S. Identification and Characterization of a New Organic Hydroperoxide Resistance (ohr) Gene with a Novel Pattern of Oxidative Stress Regulation from Xanthomonas campestris pv. phaseoli. J. Bacteriol. 1998, 180, 2636–2643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuangthong, M.; Atichartpongkul, S.; Mongkolsuk, S.; Helmann, J.D. OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis. J. Bacteriol. 2001, 183, 4134–4141. [Google Scholar] [CrossRef] [Green Version]
- Shea, R.J. ohr, Encoding an Organic Hydroperoxide Reductase, Is an In Vivo-Induced Gene in Actinobacillus pleuropneumoniae. Infect. Immun. 2002, 70, 794–802. [Google Scholar] [CrossRef] [Green Version]
- Si, M.; Wang, J.; Xiao, X.; Guan, J.; Zhang, Y.; Ding, W.; Chaudhry, M.T.; Wang, Y.; Shen, X. Ohr Protects Corynebacterium glutamicum against Organic Hydroperoxide Induced Oxidative Stress. PLoS ONE 2015, 10, e0131634. [Google Scholar] [CrossRef]
- Alegria, T.G.P.; Meireles, D.A.; Cussiol, J.R.R.; Hugo, M.; Trujillo, M.; Oliveira, M.A.d.; Miyamoto, S.; Queiroz, R.F.; Valadares, N.F.; Garratt, R.C.; et al. Ohr plays a central role in bacterial responses against fatty acid hydroperoxides and peroxynitrite. Proc. Natl. Acad. Sci. USA 2016, 114, E132. [Google Scholar] [CrossRef] [Green Version]
- Cussiol, J.R.R.; Alves, S.V.; Antonio de Oliveira, M.; Netto, L.E.S. Organic Hydroperoxide Resistance Gene Encodes a Thiol-dependent Peroxidase. J. Biol. Chem. 2003, 278, 11570–11578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Luo, Q.; Jiang, Y.; Wu, G.; Gao, H. Managing oxidative stresses in Shewanella oneidensis: Intertwined roles of the OxyR and OhrR regulons. Environ. Microbiol. 2014, 16, 1821–1834. [Google Scholar] [CrossRef] [PubMed]
- Saikolappan, S.; Das, K.; Sasindran, S.J.; Jagannath, C.; Dhandayuthapani, S. OsmC proteins of Mycobacterium tuberculosis and Mycobacterium smegmatis protect against organic hydroperoxide stress. Tuberculosis 2011, 91, S119–S127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atichartpongkul, S.; Loprasert, S.; Vattanaviboon, P.; Whangsuk, W.; Helmann, J.D.; Mongkolsuk, S. Bacterial Ohr and OsmC paralogues define two protein families with distinct functions and patterns of expression. Microbiology 2001, 147, 1775–1782. [Google Scholar] [CrossRef] [Green Version]
- Lesniak, J.; Barton, W.A.; Nikolov, D.B. Structural and functional characterization of the Pseudomonas hydroperoxide resistance protein Ohr. EMBO J. 2002, 21, 6649–6659. [Google Scholar] [CrossRef] [Green Version]
- Si, M.; Su, T.; Chen, C.; Wei, Z.; Gong, Z.; Li, G. OsmC in Corynebacterium glutamicum was a thiol-dependent organic hydroperoxide reductase. Int. J. Biol. Macromol. 2019, 136, 642–652. [Google Scholar] [CrossRef]
- Oliveira, M.A.; Guimarãesb, B.G.; Cussiola, J.R.R.; Medranob, F.J.; Gozzob, F.C.; Netto, L.E.S. Structural Insights into Enzyme-Substrate Interaction and Characterization of Enzymatic Intermediates of Organic Hydroperoxide Resistance Protein from Xylella fastidiosa. J. Mol. Biol. 2006, 359, 433–445. [Google Scholar] [CrossRef]
- Panmanee, W.; Vattanaviboon, P.; Eiamphungporn, W.; Whangsuk, W.; Sallabhan, R.; Mongkolsuk, S. OhrR, a transcription repressor that senses and responds to changes in organic peroxide levels in Xanthomonas campestris pv. phaseoli. Mol. Microbiol. 2002, 45, 1647–1654. [Google Scholar] [CrossRef]
- Mongkolsuk, S.; Panmanee, W.; Atichartpongkul, S.; Vattanaviboon, P.; Whangsuk, W.; Fuangthong, M.; Eiamphungporn, W.; Sukchawalit, R.; Utamapongchai, S. The repressor for an organic peroxide-inducible operon is uniquely regulated at multiple levels. Mol. Microbiol. 2002, 44, 793–802. [Google Scholar] [CrossRef]
- Hao, Z.; Lou, H.; Zhu, R.; Zhu, J.; Zhang, D.; Zhao, B.S.; Zeng, S.; Chen, X.; Chan, J.; He, C.; et al. The multiple antibiotic resistance regulator MarR is a copper sensor in Escherichia coli. Nat. Chem. Biol. 2013, 10, 21–28. [Google Scholar] [CrossRef]
- Deochand, D.K.; Grove, A. MarR family transcription factors: Dynamic variations on a common scaffold. Crit. Revi. Biochem. Mol. Biol. 2017, 52, 595–613. [Google Scholar] [CrossRef] [PubMed]
- Grove, A. Regulation of Metabolic Pathways by MarR Family Transcription Factors. Comput. Struct. Biotechnol. J. 2017, 15, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Newberry, K.J.; Fuangthong, M.; Panmanee, W.; Mongkolsuk, S.; Brennan, R.G. Structural Mechanism of Organic Hydroperoxide Induction of the Transcription Regulator OhrR. Mol. Cell 2007, 28, 652. [Google Scholar] [CrossRef] [PubMed]
- Hillion, M.; Antelmann, H. Thiol-based redox switches in prokaryotes. Biol. Chem. 2015, 396. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W.; Soonsanga, S.; Helmann, J.D. A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR. Proc. Natl. Acad. Sci. USA 2007, 104, 8743–8748. [Google Scholar] [CrossRef] [Green Version]
- Panmanee, W.; Vattanaviboon, P.; Poole, L.B.; Mongkolsuk, S. Novel organic hydroperoxide-sensing and responding mechanisms for OhrR, a major bacterial sensor and regulator of organic hydroperoxide stress. J. Bacteriol. 2006, 188, 1389–1395. [Google Scholar] [CrossRef] [Green Version]
- Orkin, S. Molecular cloning—A laboratory manual. Nature 1990, 343, 604–605. [Google Scholar] [CrossRef]
- D’Haeze, W.; Mergaert, P.; Promé, J.-C.; Holsters, M. Nod Factor Requirements for Efficient Stem and Root Nodulation of the Tropical Legume Sesbania rostrata. J. Biol. Chem. 2000, 275, 15676–15684. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Metcalf, W.W.; Jiang, W.; Daniels, L.L.; Kim, S.K.; Haldimann, A.; Wanner, B.L. Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 1996, 35, 1–13. [Google Scholar] [CrossRef]
- Cao, H.; Yang, M.; Zheng, H.; Zhang, J.; Zhong, Z.; Zhu, J. Complex quorum-sensing regulatory systems regulate bacterial growth and symbiotic nodulation in Mesorhizobium tianshanense. Arch. Microbiol. 2009, 191, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Van Schaik, W.; Wang, H.; Chen, S.; Zhang, J.; Rothenbacher, F.P.; Jiang, T.; Kan, B.; Zhong, Z.; Zhu, J. Catalases Promote Resistance of Oxidative Stress in Vibrio cholerae. PLoS ONE 2012, 7, e53383. [Google Scholar] [CrossRef] [Green Version]
- You, M.L. Thermal Hazard Evaluation of Cumene Hydroperoxide-Metal Ion Mixture Using DSC, TAM III, and GC/MS. Molecules 2016, 21, 562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahn, C.E.; Charkowski, A.O.; Willis, D.K. Evaluation of isolation methods and RNA integrity for bacterial RNA quantitation. J. Microbiol. Methods 2008, 75, 318–324. [Google Scholar] [CrossRef]
- Ling, J.; Wang, H.; Wu, P.; Li, T.; Tang, Y.; Naseer, N.; Zheng, H.; Masson-Boivin, C.; Zhong, Z.; Zhu, J. Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island. Proc. Natl. Acad. Sci. USA 2016, 113, 13875–13880. [Google Scholar] [CrossRef] [Green Version]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Akakura, R.; Winans, S.C. Mutations in the occQ operator that decrease OccR-induced DNA bending do not cause constitutive promoter activity. J. Biol. Chem. 2002, 277, 15773–15780. [Google Scholar] [CrossRef] [Green Version]
- Frederix, M.; Edwards, A.; McAnulla, C.; Downie, J.A. Co-ordination of quorum-sensing regulation in Rhizobium leguminosarum by induction of an anti-repressor. Mol. Microbiol. 2011, 81, 994–1007. [Google Scholar] [CrossRef]
- Liu, M.; Hao, G.; Li, Z.; Zhou, Y.; Garcia-Sillas, R.; Li, J.; Wang, H.; Kan, B.; Zhu, J. CitAB Two-Component System-Regulated Citrate Utilization Contributes to Vibrio cholerae Competitiveness with the Gut Microbiota. Infect. Immun. 2019, 87, e00746-18. [Google Scholar] [CrossRef] [Green Version]
- Bussmann, M.; Baumgart, M.; Bott, M. RosR (Cg1324), a hydrogen peroxide-sensitive MarR-type transcriptional regulator of Corynebacterium glutamicum. J. Biol. Chem. 2010, 285, 29305–29318. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yang, M.; Peterfreund, G.L.; Tsou, A.M.; Selamoglu, N.; Daldal, F.; Zhong, Z.; Kan, B.; Zhu, J. Vibrio cholerae anaerobic induction of virulence gene expression is controlled by thiol-based switches of virulence regulator AphB. Proc. Natl. Acad. Sci. USA 2010, 108, 810–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, S.; Aono, T.; Lee, K.B.; Suzuki, T.; Liu, C.T.; Miwa, H.; Wakao, S.; Iki, T.; Oyaizu, H. Rhizobial factors required for stem nodule maturation and maintenance in Sesbania rostrata-Azorhizobium caulinodans ORS571 symbiosis. Appl. Environ. Microbiol. 2007, 73, 6650–6659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bendahmane, M.; Berrabah, F.; Bourcy, M.; Cayrel, A.; Eschstruth, A.; Mondy, S.; Ratet, P.; Gourion, B. Growth Conditions Determine the DNF2 Requirement for Symbiosis. PLoS ONE 2014, 9, e91866. [Google Scholar] [CrossRef]
- Chuchue, T.; Tanboon, W.; Prapagdee, B.; Dubbs, J.M.; Vattanaviboon, P.; Mongkolsuk, S. ohrR and ohr are the primary sensor/regulator and protective genes against organic hydroperoxide stress in Agrobacterium tumefaciens. J. Bacteriol. 2006, 188, 842–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atichartpongkul, S.; Fuangthong, M.; Vattanaviboon, P.; Mongkolsuk, S. Analyses of the Regulatory Mechanism and Physiological Roles of Pseudomonas aeruginosa OhrR, a Transcription Regulator and a Sensor of Organic Hydroperoxides. J. Bacteriol. 2010, 192, 2093–2101. [Google Scholar] [CrossRef] [Green Version]
- Caswell, C.C.; Baumgartner, J.E.; Martin, D.W.; Roop, R.M. Characterization of the Organic Hydroperoxide Resistance System of Brucella abortus 2308. J. Bacteriol. 2012, 194, 5065–5072. [Google Scholar] [CrossRef] [Green Version]
- Alloing, G.; Mandon, K.; Boncompagni, E.; Montrichard, F.; Frendo, P. Involvement of Glutaredoxin and Thioredoxin Systems in the Nitrogen-Fixing Symbiosis between Legumes and Rhizobia. Antioxidants 2018, 7, 182. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.; Price, D.H. Analysis of factor interactions with RNA polymerase II elongation complexes using a new electrophoretic mobility shift assay. Nucleic Acids Res. 2008, 36, e135. [Google Scholar] [CrossRef] [Green Version]
- Soonsanga, S.; Lee, J.W.; Helmann, J.D. Conversion of Bacillus subtilis OhrR from a 1-Cys to a 2-Cys peroxide sensor. J. Bacteriol. 2008, 190, 5738–5745. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wang, H.; Zhou, Z.; Naseer, N.; Xiang, F.; Kan, B.; Goulian, M.; Zhu, J. Differential Thiol-Based Switches Jump-Start Vibrio cholerae Pathogenesis. Cell Rep. 2016, 14, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Pande, A.; Veale, T.C.; Grove, A. Gene Regulation by Redox-Sensitive Burkholderia thailandensis OhrR and Its Role in Bacterial Killing of Caenorhabditis elegans. Infect. Immun. 2018, 86, e00322-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.; Lyu, M.; Wen, Y.; Song, Y.; Li, J.; Chen, Z. Organic Peroxide-Sensing Repressor OhrR Regulates Organic Hydroperoxide Stress Resistance and Avermectin Production in Streptomyces avermitilis. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.T.; Lee, K.B.; Wang, Y.S.; Peng, M.H.; Lee, K.T.; Suzuki, S.; Suzuki, T.; Oyaizu, H. Involvement of the azorhizobial chromosome partition gene (parA) in the onset of bacteroid differentiation during Sesbania rostrata stem nodule development. Appl. Environ. Microbiol. 2011, 77, 4371–4382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreyfus, B.L.; Dommergues, Y.R. Nitrogen-fixing nodules induced by Rhizobium on the stem of the tropical legume Sesbania rostrata. FEMS Microbiol. Lett. 1981, 10, 313–317. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, Y.; Guo, D.; Deng, S.; Lu, X.; Zhu, J.; Rao, B.; Cao, Y.; Jiang, G.; Yu, D.; Zhong, Z.; et al. Ohr and OhrR Are Critical for Organic Peroxide Resistance and Symbiosis in Azorhizobium caulinodans ORS571. Genes 2020, 11, 335. https://doi.org/10.3390/genes11030335
Si Y, Guo D, Deng S, Lu X, Zhu J, Rao B, Cao Y, Jiang G, Yu D, Zhong Z, et al. Ohr and OhrR Are Critical for Organic Peroxide Resistance and Symbiosis in Azorhizobium caulinodans ORS571. Genes. 2020; 11(3):335. https://doi.org/10.3390/genes11030335
Chicago/Turabian StyleSi, Yang, Dongsen Guo, Shuoxue Deng, Xiuming Lu, Juanjuan Zhu, Bei Rao, Yajun Cao, Gaofei Jiang, Daogeng Yu, Zengtao Zhong, and et al. 2020. "Ohr and OhrR Are Critical for Organic Peroxide Resistance and Symbiosis in Azorhizobium caulinodans ORS571" Genes 11, no. 3: 335. https://doi.org/10.3390/genes11030335
APA StyleSi, Y., Guo, D., Deng, S., Lu, X., Zhu, J., Rao, B., Cao, Y., Jiang, G., Yu, D., Zhong, Z., & Zhu, J. (2020). Ohr and OhrR Are Critical for Organic Peroxide Resistance and Symbiosis in Azorhizobium caulinodans ORS571. Genes, 11(3), 335. https://doi.org/10.3390/genes11030335