Role of the Common PRSS1-PRSS2 Haplotype in Alcoholic and Non-Alcoholic Chronic Pancreatitis: Meta- and Re-Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search and Inclusion Criteria
2.2. Data Extraction
2.3. Statistical Analysis and Meta-Analysis with Respect to Risk Allele Frequencies in Patients and Controls
2.4. Evaluation of the Effect of rs10273639 on the Expression of PRSS1 and PRSS2 in Pancreatic Tissue
2.5. Re-Analysis for Association between the Common PRSS1-PRSS2 Haplotype and ACP/NACP Under Different Genetic Models
2.6. Re-Analysis to Test for Interaction between the Common PRSS1-PRSS2 Haplotype and Alcohol Consumption Status in CP
3. Results
3.1. Included Studies for Meta-Analysis
3.2. Allele-Based Meta-Analysis Confirmed an Association of the Common PRSS1-PRSS2 Haplotype with Both ACP and NACP
3.3. The Risk Allele Number is Positively Correlated with the Pancreatic PRSS2 mRNA Expression Level
3.4. The Additive Genetic Model Best Fits the Associations of the Common PRSS1-PRSS2 Haplotype with NACP and ACP
3.5. A Synergistic Interaction is Evident between the Common PRSS1-PRSS2 Haplotype and Alcohol Consumption Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mayerle, J.; Sendler, M.; Hegyi, E.; Beyer, G.; Lerch, M.M.; Sahin-Tóth, M. Genetics, cell biology, and pathophysiology of pancreatitis. Gastroenterology 2019, 156, 1951–1968.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleeff, J.; Whitcomb, D.C.; Shimosegawa, T.; Esposito, I.; Lerch, M.M.; Gress, T.; Mayerle, J.; Drewes, A.M.; Rebours, V.; Akisik, F.; et al. Chronic pancreatitis. Nat. Rev. Dis. Primers 2017, 3, 17060. [Google Scholar] [CrossRef] [PubMed]
- Hegyi, P.; Parniczky, A.; Lerch, M.M.; Sheel, A.R.G.; Rebours, V.; Forsmark, C.E.; Del Chiaro, M.; Rosendahl, J.; de-Madaria, E.; Szucs, A.; et al. International consensus guidelines for risk factors in chronic pancreatitis. Recommendations from the working group for the international consensus guidelines for chronic pancreatitis in collaboration with the international association of pancreatology, the American pancreatic association, the Japan pancreas society, and European pancreatic club. Pancreatology 2020, 20, 579–585. [Google Scholar] [CrossRef]
- Whitcomb, D.C.; Gorry, M.C.; Preston, R.; Furey, W.; Sossenheimer, M.J.; Ulrich, C.D.; Martin, S.P.; Gates, L.K.; Amann, S.T.; Toskes, P.P.; et al. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat. Genet. 1996, 14, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Le Maréchal, C.; Masson, E.; Chen, J.-M.; Morel, F.; Ruszniewski, P.; Levy, P.; Férec, C. Hereditary pancreatitis caused by triplication of the trypsinogen locus. Nat. Genet. 2006, 38, 1372–1374. [Google Scholar] [CrossRef]
- Whitcomb, D.C.; LaRusch, J.; Krasinskas, A.M.; Klei, L.; Smith, J.P.; Brand, R.E.; Neoptolemos, J.P.; Lerch, M.M.; Tector, M.; Sandhu, B.S.; et al. Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis. Nat. Genet. 2012, 44, 1349–1354. [Google Scholar] [CrossRef] [Green Version]
- Boulling, A.; Sato, M.; Masson, E.; Génin, E.; Chen, J.-M.; Férec, C. Identification of a functional PRSS1 promoter variant in linkage disequilibrium with the chronic pancreatitis-protecting rs10273639. Gut 2015, 64, 1837–1838. [Google Scholar] [CrossRef]
- Hegyi, E.; Sahin-Tóth, M. Genetic risk in chronic pancreatitis: The trypsin-dependent pathway. Dig. Dis. Sci. 2017, 62, 1692–1701. [Google Scholar] [CrossRef]
- Derikx, M.H.; Kovacs, P.; Scholz, M.; Masson, E.; Chen, J.-M.; Ruffert, C.; Lichtner, P.; Morsche, R.H.M.T.; Cavestro, G.M.; Férec, C.; et al. Polymorphisms at PRSS1–PRSS2 and CLDN2–MORC4 loci associate with alcoholic and non-alcoholic chronic pancreatitis in a European replication study. Gut 2015, 64, 1426–1433. [Google Scholar] [CrossRef] [Green Version]
- Hegyi, E.; Tóth, A.Z.; Vincze, Áron; Szentesi, A.; Hegyi, P.; Sahin-Tóth, M. Alcohol-dependent effect of PRSS1-PRSS2 haplotype in chronic pancreatitis. Gut 2020, 69, 1–2. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, V., Austria. Available online: https://www.R-project.org/ (accessed on 8 September 2020).
- Online Sample Size Estimator (OSSE). Available online: Http://osse.Bii.A-star.Edu.Sg/calculation1.Php (accessed on 4 September 2020).
- Review Manager (RevMan). Version 5.3. Copenhagen: The Nordic Cochrane Centre, T.C.C., 2014. Available online: https://review-manager.software.informer.com/5.3/ (accessed on 8 September 2020).
- Sterne, J.A.C.; Sutton, A.J.; Ioannidis, J.P.A.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rücker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011, 343, d4002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedgwick, P.; Marston, L. How to read a funnel plot in a meta-analysis. BMJ 2015, 351, h4718. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PROSPERO (International Prospective Register of Systematic Reviews). Available online: Https://www.Crd.York.Ac.Uk/prospero/ (accessed on 6 October 2020).
- The Genotype-Tissue Expression (GTEX) Dataset. Available online: Http://www.Gtexportal.Org/home/ (accessed on 16 July 2020).
- Lewis, C.M. Genetic association studies: Design, analysis and interpretation. Briefings Bioinform. 2002, 3, 146–153. [Google Scholar] [CrossRef]
- Balduzzi, S.; Rücker, G.; Schwarzer, G. How to perform a meta-analysis with R: A practical tutorial. Évid. Based Ment. Heal. 2019, 22, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Kazma, R.; Babron, M.-C.; Génin, E. Genetic association and gene-environment interaction: A new method for overcoming the lack of exposure information in controls. Am. J. Epidemiol. 2010, 173, 225–235. [Google Scholar] [CrossRef] [Green Version]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S., Fourth Edition. Springer: New York. Available online: Http://www.Stats.Ox.Ac.Uk/pub/mass4 (accessed on 8 September 2020).
- Khoury, M.J.; Flanders, W.D. Nontraditional epidemiologic approaches in the analysis of gene-environment interaction: Case-control studies with no controls! Am. J. Epidemiol. 1996, 144, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Ottman, R. Gene-environment interaction: Definitions and study designs. Prev. Med. 1996, 25, 764–770. [Google Scholar] [CrossRef]
- Angsuwatcharakon, P.; Sodsai, P.; Rerknimitr, R.; Hirankarn, N. The polymorphisms at PRSS1-PRSS2 and MORC4 loci and the risk of post-ERCP pancreatitis. Gastroenterol. Res. Pr. 2018, 2018, 1064783. [Google Scholar] [CrossRef]
- Wolthers, B.O.; Frandsen, T.L.; Patel, C.J.; Abaji, R.; Attarbaschi, A.; Barzilai, S.; Colombini, A.; Escherich, G.; Grosjean, M.; Krajinovic, M.; et al. Trypsin-encoding PRSS1-PRSS2 variations influence the risk of asparaginase-associated pancreatitis in children with acute lymphoblastic leukemia: A Ponte di Legno toxicity working group report. Haematologica 2019, 104, 556–563. [Google Scholar] [CrossRef] [Green Version]
- Nabi, Z.; Talukdar, R.; Venkata, R.; Aslam, M.; Shava, U.; Reddy, D.N. Genetic evaluation of children with idiopathic recurrent acute pancreatitis. Dig. Dis. Sci. 2020, 65, 3000–3005. [Google Scholar] [CrossRef] [PubMed]
- Weiss, F.-U.; Hesselbarth, N.; Párniczky, A.; Mosztbacher, D.; Lämmerhirt, F.; Ruffert, C.; Kovacs, P.; Beer, S.; Seltsam, K.; Griesmann, H.; et al. Common variants in the CLDN2-MORC4 and PRSS1-PRSS2 loci confer susceptibility to acute pancreatitis. Pancreatology 2018, 18, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Polonikov, A.V.; Samgina, T.A.; Nazarenko, P.M.; Bushueva, O.Y.; Ivanov, V.P. Alcohol consumption and cigarette smoking are important modifiers of the association between acute pancreatitis and the PRSS1-PRSS2 locus in men. Pancreas 2017, 46, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Rosendahl, J.; Kirsten, H.; Hegyi, E.; Kovacs, P.; Weiss, F.U.; Laumen, H.; Lichtner, P.; Ruffert, C.; Chen, J.-M.; Masson, E.; et al. Genome-wide association study identifies inversion in the CTRB1-CTRB2 locus to modify risk for alcoholic and non-alcoholic chronic pancreatitis. Gut 2018, 67, 1855–1863. [Google Scholar] [CrossRef] [Green Version]
- Chhatriya, B.; Paine, S.; Das, S.; Chatterjee, A.; Nath, D.; Mukherjee, A.; Basu, A.; Goswami, S. Single nucleotide polymorphisms in PRSS1 and CASR genes are associated with chronic pancreatitis in North-Eastern region of India. J. Gastrointest. Liver Dis. 2020, 29, 267–268. [Google Scholar] [CrossRef]
- Masamune, A.; Nakano, E.; Hamada, S.; Kakuta, Y.; Kume, K.; Shimosegawa, T. Common variants at PRSS1–PRSS2 and CLDN2–MORC4 loci associate with chronic pancreatitis in Japan. Gut 2015, 64, 1345–1346. [Google Scholar] [CrossRef]
- Giri, A.K.; Midha, S.; Banerjee, P.; Agrawal, A.; Mehdi, S.J.; Dhingra, R.; Kaur, I.; Kumar G., R.; Lakhotia, R.; Ghosh, S.; et al. Common variants in CLDN2 and MORC4 genes confer disease susceptibility in patients with chronic pancreatitis. PLoS ONE 2016, 11, e0147345. [Google Scholar] [CrossRef] [Green Version]
- Avanthi, S.U.; Kanth, V.V.R.; Agarwal, J.; Lakhtakia, S.; Gangineni, K.; Rao, G.V.; Reddy, D.N.; Talukdar, R. Association of claudin2 and PRSS1-PRSS2 polymorphisms with idiopathic recurrent acute and chronic pancreatitis: A case-control study from India. J. Gastroenterol. Hepatol. 2015, 30, 1796–1801. [Google Scholar] [CrossRef]
- Paliwal, S.; Bhaskar, S.; Reddy, D.N.; Rao, G.V.; Thomas, V.; Singh, S.P.; Chandak, G.R. Association analysis of PRSS1-PRSS2 and CLDN2-MORC4 variants in nonalcoholic chronic pancreatitis using tropical calcific pancreatitis as model. Pancreas 2016, 45, 1153–1157. [Google Scholar] [CrossRef]
- Campa, D.; Pastore, M.; Capurso, G.; Hackert, T.; Di Leo, M.; Izbicki, J.R.; Khaw, K.-T.; Gioffreda, D.; Kupcinskas, J.; Pasquali, C.; et al. Do pancreatic cancer and chronic pancreatitis share the same genetic risk factors? A PANcreatic Disease ReseArch (PANDoRA) consortium investigation. Int. J. Cancer 2018, 142, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Wells, G.A.; Shea, B.; O’connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Available online: Http://www.Ohri.Ca/programs/clinical_epidemiology/oxford.Asp (accessed on 6 October 2020).
- Deng, Y.; Li, Z. Effects of PRSS1-PRSS2 rs10273639, CLDN2 rs7057398 and MORC4 rs12688220 polymorphisms on individual susceptibility to pancreatitis: A meta-analysis. Genomics 2020, 112, 848–852. [Google Scholar] [CrossRef] [PubMed]
- Witt, H.; Sahin-Tóth, M.; Landt, O.; Chen, J.-M.; Kähne, T.; Drenth, J.P.; Kukor, Z.; Szepessy, E.; Halangk, W.; Dahm, S.; et al. A degradation-sensitive anionic trypsinogen (PRSS2) variant protects against chronic pancreatitis. Nat. Genet. 2006, 38, 668–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masson, E.; Le Maréchal, C.; Chandak, G.R.; Lamoril, J.; Bezieau, S.; Mahurkar, S.; Bhaskar, S.; Reddy, D.N.; Chen, J.-M.; Férec, C. Trypsinogen copy number mutations in patients with idiopathic chronic pancreatitis. Clin. Gastroenterol. Hepatol. 2008, 6, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Masson, E.; Chen, J.-M.; Cooper, D.N.; Férec, C. PRSS1 copy number variants and promoter polymorphisms in pancreatitis: Common pathogenetic mechanism, different genetic effects. Gut 2018, 67, 592–593. [Google Scholar] [CrossRef]
- Wan, J.; Haddock, A.; Edenfield, B.; Ji, B.; Bi, Y. Transgenic expression of human PRSS2 exacerbates pancreatitis in mice. Gut 2020, 69, 2051–2052. [Google Scholar] [CrossRef]
- Irving, H.; Samokhvalov, A.V.; Rehm, J. Alcohol as a risk factor for pancreatitis. A systematic review and meta-analysis. JOP 2009, 10, 387–392. [Google Scholar]
- LaRusch, J.; Lozano-Leon, A.; Stello, K.; Moore, A.; Muddana, V.; O’connell, M.; Diergaarde, B.; Yadav, D.; Whitcomb, D.C. The common chymotrypsinogen C (CTRC) variant G60G (C.180T) increases risk of chronic pancreatitis but not recurrent acute pancreatitis in a North American population. Clin. Transl. Gastroenterol. 2015, 6, e68. [Google Scholar] [CrossRef]
Study | Study Population(s) | Risk Allele of the Tagging SNP | Number of Patients/Controls | Allele Frequency in Patients | Allele Frequency in Controls | OR (95% CI) | p Value (χ2 Test) |
---|---|---|---|---|---|---|---|
ACP | |||||||
Whitcomb et al. [6] | Mainly Americans with European ancestry and a small number of German and British subjects | rs10273639[C] | 447 a/8029 | 69.6% (622/894) | 57.6% (9249/16,058) | 1.68 (1.45–1.95) | 2.03 × 10−12 |
Derikx et al. [9] | European (from 9 countries) | rs10273639[C] | 1854/5065 | 69.0% (2560/3708) | 57.6% (5835/10,130) | 1.64 (1.52–1.78) | 2.20 × 10−16 |
Masamune et al. [32] | Japanese | rs10273639[C] | 272/480 | 32.5% (177/544) | 22.2% (213/960) | 1.69 (1.34–2.14) | 1.43 × 10−5 |
Giri et al. [33] | Indian | rs2855983[G] | 85/1288 | 48.8% (83/170) | 34.0% (876/2576) | 1.85 (1.36–2.53) | 0.00012 |
Hegyi et al. [10] | Hungarian | rs6666[C] | 120/296 | 70.0% (168/240) | 57.3% (339/592) | 1.74 (1.26–2.40) | 0.00086 |
NACP | |||||||
Whitcomb et al. [6] | Mainly Americans with European ancestry and a small number of German and British subjects | rs10273639[C] | 1129 b/8029 | 63.4% (1431/2258) | 57.6% (9249/16,058) | 1.27 (1.16–1.40) | 2.10 × 10−7 |
Derikx et al. [9] | European (from three countries) | rs10273639[C] | 1192/4323 | 59.6% (1421/2384) | 57.6% (4981/8646) | 1.09 (0.99–1.19) | 0.085 |
Masamune et al. [32] | Japanese | rs10273639[C] | 197/480 | 30.5% (120/394) | 22.2% (213/960) | 1.54 (1.18–2.00) | 0.0017 |
Avanthi et al. [34] | Indian | rs10273639[C] | 96/156 | 30.7% (59/192) | 28.9% (90/312) | 1.09 (0.74–1.62) | 0.73 |
Giri et al. [33] | Indian | rs2855983[G] | 434/1288 | 42.0% (364/868) | 34.0% (876/2576) | 1.40 (1.20–1.64) | 3.07 × 10−5 |
Paliwal et al. [35] | Indian | rs10273639[C] | 551/801 | 33.8% (372/1102) | 26.9% (431/1602) | 1.38 (1.17–1.64) | 0.00015 |
Campa et al. [36] | European (from 8 countries) | rs10273639[C] | 345/4580 | 64.4% (444/690) | 57.8% (5292/9160) | 1.32 (1.12–1.55) | 0.00085 |
Hegyi et al. [10] | Hungarian | rs6666[C] | 103/296 | 63.1% (130/206) | 57.3% (339/592) | 1.28 (0.92–1.77) | 0.17 |
Population | Number of Patients/Controls | Allele Frequency in Patients | Allele Frequency in Controls | OR (95% CI) | p Value (χ2 Test) |
---|---|---|---|---|---|
German | 690/2825 | 62.97% (869/1380) | 58.50% (3305/5650) | 1.21 (1.07–1.36) | 0.0027 |
French | 415/1064 | 54.10% (449/830) | 54.61% (1162/2128) | 0.98 (0.83–1.15) | 0.83 |
Dutch | 87/434 | 59.20% (103/174) | 59.22% (514/868) | 1.00 (0.72–1.39) | 1.00 |
NACP Cohort | Genotypes of rs10273639 | Dominant Model | Recessive Model | Additive Model | General Model | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CC | CT | TT | CC | CT | TT | CC | CT | TT | CC | CT | TT | CC | CT | TT | |
Pearson’s Residuals | Pearson’s Residuals | Pearson’s Residuals | Pearson’s Residuals | ||||||||||||
German a | |||||||||||||||
Patients | 274 | 321 | 95 | 1.97 | 2.31 | 1.89 | 2.10 | 1.88 | 2.03 | 2.26 | 1.90 | 2.04 | 2.31 | ||
Controls | 985 | 1335 | 505 | −0.51 | −0.43 | −0.52 | −0.48 | −0.53 | −0.47 | −0.44 | −0.53 | −0.49 | −0.43 | ||
Japanese b | |||||||||||||||
Patients | 17 | 86 | 94 | 1.36 | 1.75 | 1.14 | 1.60 | 1.12 | 1.41 | 1.75 | 1.14 | 1.40 | 1.75 | ||
Controls | 22 | 169 | 289 | −0.73 | −0.57 | −0.88 | −0.63 | −0.89 | −0.71 | −0.57 | −0.90 | −0.71 | −0.57 | ||
Indian c | |||||||||||||||
Patients | 68 | 236 | 247 | 1.09 | 1.33 | 0.99 | 1.23 | 0.97 | 1.13 | 1.32 | 0.99 | 1.12 | 1.33 | ||
Controls | 67 | 297 | 437 | −0.91 | −0.75 | −1.01 | −0.81 | −1.03 | −0.88 | −0.76 | −1.01 | −0.89 | −0.75 | ||
OR (95% CI); p value | German | 1.36 (1.08–1.73); 0.010 | 1.23 (1.04–1.46); 0.017 | 1.20 (1.07–1.36); 0.0027 | - | ||||||||||
Japanese | 1.66 (1.19–2.32); 0.0029 | 1.97 (1.02–3.79); 0.040 | 1.55 (1.19–2.03); 0.0013 | - | |||||||||||
Indian | 1.48 (1.19–1.84); 0.00044 | 1.54 (1.08–2.20); 0.017 | 1.36 (1.16–1.61); 0.00020 | - | |||||||||||
AIC | German | 3478.59 | 3479.89 | 3476.41 | 3478.101 | ||||||||||
Japanese | 811.68 | 816.59 | 810.28 | 812.27 | |||||||||||
Indian | 1819.40 | 1826.12 | 1817.92 | 1819.79 | |||||||||||
ANOVA test against General model (p value) | German | 0.115 | 0.052 | 0.581 | - | ||||||||||
Japanese | 0.235 | 0.0120 | 0.945 | - | |||||||||||
Indian | 0.205 | 0.00389 | 0.710 | - |
Association | Genotypes of rs10273639 | Dominant Model | Recessive Model | Additive Model | General Model | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CC | CT | TT | CC | CT | TT | CC | CT | TT | CC | CT | TT | CC | CT | TT | |
Pearson’s Residuals | Pearson’s Residuals | Pearson’s Residuals | Pearson’s Residuals | ||||||||||||
Dataset 1 | |||||||||||||||
ACP patients | 433 | 358 | 73 | 1.71 | 2.63 | 1.51 | 2.07 | 1.50 | 1.96 | 2.56 | 1.51 | 1.93 | 2.63 | ||
Healthy controls | 985 | 1335 | 505 | −0.58 | −0.38 | −0.66 | −0.48 | −0.67 | −0.51 | −0.39 | −.66 | −0.52 | −0.38 | ||
Dataset 2 | |||||||||||||||
ACP patients | 433 | 358 | 73 | 0.97 | 1.43 | 0.80 | 1.19 | 0.81 | 1.10 | 1.50 | 0.81 | 1.13 | 1.43 | ||
AD controls | 281 | 456 | 150 | −1.04 | −0.70 | −1.24 | −0.84 | −1.23 | −0.90 | −0.67 | −1.24 | −0.89 | −0.70 | ||
Dataset 3 | |||||||||||||||
ACP patients | 433 | 358 | 73 | 0.81 | 1.29 | 0.72 | 0.98 | 0.71 | 0.93 | 1.22 | 0.72 | 0.91 | 1.29 | ||
ALC controls | 226 | 296 | 121 | −1.23 | −0.78 | −1.38 | −1.02 | −1.41 | −1.07 | −0.82 | −1.38 | −1.10 | −0.78 | ||
OR (95% CI); p value | Dataset 1 | 2.36 (1.83–3.08); 7.5 × 10−11 | 1.87 (1.61–2.19); 1.2 × 10−15 | 1.70 (1.52–1.92); < 2 × 10−16 | |||||||||||
Dataset 2 | 2.21 (1.64–2.98); 1.8 × 10−7 | 2.17 (1.79–2.63); 6.4 × 10−15 | 1.83 (1.59–2.13); 2.3 × 10−16 | ||||||||||||
Dataset 3 | 2.51 (1.85–3.44); 6.3 × 10−9 | 1.85 (1.50–2.29); 9.1× 10−9 | 1.72 (1.48–2.01); 2.6 × 10−12 | ||||||||||||
AIC | Dataset 1 | 3970.12 | 3956.1 | 3934.80 | 3936.334 | ||||||||||
Dataset 2 | 2402.35 | 2369.12 | 2360.65 | 2361.82 | |||||||||||
Dataset 3 | 2025.64 | 2026.78 | 2010.17 | 2011.12 | |||||||||||
ANOVA against General Model (p-value) | Dataset 1 | 2.20 × 10−9 | 3.08 × 10−6 | 0.496 | |||||||||||
Dataset 2 | 6.89 × 10−11 | 0.0023 | 0.362 | ||||||||||||
Dataset 3 | 4.8 × 10−5 | 2.6 × 10−5 | 0.307 |
Population a | OR (95% CI) b | p Value |
---|---|---|
German | 1.43 (1.23–1.66) | 4.14 × 10−6 |
French | 1.54 (1.11–2.15) | 0.010 |
Dutch | 1.84 (1.25–2.73) | 0.0022 |
Japanese | 1.11 (0.83–1.49) | 0.48 |
Hungarian | 1.34 (0.91–1.98) | 0.14 |
Pooled (fixed effect model) | 1.41 (1.26–1.58) | 2.80 × 10−9 |
Groups | Population a | Genotypes of the Common Haplotype b | OR (95% CI) c | ||
---|---|---|---|---|---|
CC | CT | TT | |||
Controls | German | 985 | 1335 | 505 | |
French | 316 | 530 | 218 | ||
Dutch | 146 | 222 | 66 | ||
Japanese | 22 | 169 | 289 | ||
Hungarian | 98 | 143 | 55 | ||
NACP | German | 274 | 321 | 95 | 1.16 (1.07–1.26) |
French | 130 | 189 | 96 | ||
Dutch | 28 | 47 | 12 | ||
Japanese | 17 | 86 | 94 | ||
Hungarian | 44 | 42 | 17 | ||
ACP | German | 433 | 358 | 73 | 1.69 (1.54–1.84) |
French | 36 | 45 | 9 | ||
Dutch | 115 | 102 | 15 | ||
Japanese | 23 | 131 | 118 | ||
Hungarian | 59 | 50 | 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herzig, A.F.; Génin, E.; Cooper, D.N.; Masson, E.; Férec, C.; Chen, J.-M. Role of the Common PRSS1-PRSS2 Haplotype in Alcoholic and Non-Alcoholic Chronic Pancreatitis: Meta- and Re-Analyses. Genes 2020, 11, 1349. https://doi.org/10.3390/genes11111349
Herzig AF, Génin E, Cooper DN, Masson E, Férec C, Chen J-M. Role of the Common PRSS1-PRSS2 Haplotype in Alcoholic and Non-Alcoholic Chronic Pancreatitis: Meta- and Re-Analyses. Genes. 2020; 11(11):1349. https://doi.org/10.3390/genes11111349
Chicago/Turabian StyleHerzig, Anthony F., Emmanuelle Génin, David N. Cooper, Emmanuelle Masson, Claude Férec, and Jian-Min Chen. 2020. "Role of the Common PRSS1-PRSS2 Haplotype in Alcoholic and Non-Alcoholic Chronic Pancreatitis: Meta- and Re-Analyses" Genes 11, no. 11: 1349. https://doi.org/10.3390/genes11111349
APA StyleHerzig, A. F., Génin, E., Cooper, D. N., Masson, E., Férec, C., & Chen, J.-M. (2020). Role of the Common PRSS1-PRSS2 Haplotype in Alcoholic and Non-Alcoholic Chronic Pancreatitis: Meta- and Re-Analyses. Genes, 11(11), 1349. https://doi.org/10.3390/genes11111349