Clinical Genetics Can Solve the Pitfalls of Genome-Wide Investigations: Lesson from Mismapping a Loss-of-Function Variant in KANSL1
Abstract
1. Introduction
2. Materials and Methods
2.1. Analyses on Genomic DNA
2.2. Analyses on mRNA
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koolen, D.A.; Vissers, L.E.; Pfundt, R.; de Leeuw, N.; Knight, S.J.; Regan, R.; Kooy, R.F.; Reyniers, E.; Romano, C.; Fichera, M.; et al. A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nat. Genet. 2006, 38, 999–1001. [Google Scholar] [CrossRef] [PubMed]
- Shaw-Smith, C.; Pittman, A.M.; Willatt, L.; Martin, H.; Rickman, L.; Gribble, S.; Curley, R.; Cumming, S.; Dunn, C.; Kalaitzopoulos, D.; et al. Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nat. Genet. 2006, 38, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Sharp, A.J.; Hansen, S.; Selzer, R.R.; Cheng, Z.; Regan, R.; Hurst, J.A.; Stewart, H.; Price, S.M.; Blair, E.; Hennekam, R.C.; et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat. Genet. 2006, 38, 1038–1042. [Google Scholar] [CrossRef] [PubMed]
- Koolen, D.A.; Sharp, A.J.; Hurst, J.A.; Firth, H.V.; Knight, S.J.; Goldenberg, A.; Saugier-Veber, P.; Pfundt, R.; Vissers, L.E.; Destrée, A.; et al. Clinical and molecular delineation of the 17q21.31 microdeletion syndrome. J. Med. Genet. 2008, 45, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Zollino, M.; Orteschi, D.; Murdolo, M.; Lattante, S.; Battaglia, D.; Stefanini, C.; Mercuri, E.; Chiurazzi, P.; Neri, G.; Marangi, G. Mutations in KANSL1 cause the 17q21.31 microdeletion syndrome phenotype. Nat. Genet. 2012, 44, 636–638. [Google Scholar] [CrossRef] [PubMed]
- Koolen, D.A.; Kramer, J.M.; Neveling, K.; Nillesen, W.M.; Moore-Barton, H.L.; Elmslie, F.V.; Toutain, A.; Amiel, J.; Malan, V.; Tsai, A.C.; et al. Mutations in the chromatin modifier gene KANSL1 cause the 17q21.31 microdeletion syndrome. Nat. Genet. 2012, 44, 639–641. [Google Scholar] [CrossRef] [PubMed]
- Zollino, M.; Marangi, G.; Ponzi, E.; Orteschi, D.; Ricciardi, S.; Lattante, S.; Murdolo, M.; Battaglia, D.; Contaldo, I.; Mercuri, E.; et al. Intragenic KANSL1 mutations and chromosome 17q21.31 deletions: Broadening the clinical spectrum and genotype-phenotype correlations in a large cohort of patients. J. Med. Genet. 2015, 52, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Koolen, D.A.; Pfundt, R.; Linda, K.; Beunders, G.; Veenstra-Knol, H.E.; Conta, J.H.; Fortuna, A.M.; Gillessen-Kaesbach, G.; Dugan, S.; Halbach, S.; et al. The Koolen-de Vries syndrome: A phenotypic comparison of patients with a 17q21.31 microdeletion versus a KANSL1 sequence variant. Eur. J. Hum. Genet. 2016, 24, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Boettger, L.M.; Handsaker, R.E.; Zody, M.C.; McCarroll, S.A. Structural haplotypes and recent evolution of the human 17q21.31 region. Nat. Genet. 2012, 44, 881–885. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, K.M.; Antonacci, F.; Sudmant, P.H.; Kidd, J.M.; Campbell, C.D.; Vives, L.; Malig, M.; Scheinfeldt, L.; Beggs, W.; Ibrahim, M.; et al. Structural diversity and African origin of the 17q21.31 inversion polymorphism. Nat. Genet. 2012, 44, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Squeo, G.M.; Augello, B.; Massa, V.; Milani, D.; Colombo, E.A.; Mazza, T.; Castellana, S.; Piccione, M.; Maitz, S.; Petracca, A.; et al. Customised next-generation sequencing multigene panel to screen a large cohort of individuals with chromatin-related disorder. J. Med. Genet. 2020. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Bjornsson, H.T. The Mendelian disorders of the epigenetic machinery. Genome Res. 2015, 25, 1473–1481. [Google Scholar] [CrossRef] [PubMed]
- Larizza, L.; Finelli, P. Developmental disorders with intellectual disability driven by chromatin dysregulation: Clinical overlaps and molecular mechanisms. Clin. Genet. 2019, 95, 231–240. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bigoni, S.; Marangi, G.; Frangella, S.; Panfili, A.; Ognibene, D.; Squeo, G.M.; Merla, G.; Zollino, M. Clinical Genetics Can Solve the Pitfalls of Genome-Wide Investigations: Lesson from Mismapping a Loss-of-Function Variant in KANSL1. Genes 2020, 11, 1177. https://doi.org/10.3390/genes11101177
Bigoni S, Marangi G, Frangella S, Panfili A, Ognibene D, Squeo GM, Merla G, Zollino M. Clinical Genetics Can Solve the Pitfalls of Genome-Wide Investigations: Lesson from Mismapping a Loss-of-Function Variant in KANSL1. Genes. 2020; 11(10):1177. https://doi.org/10.3390/genes11101177
Chicago/Turabian StyleBigoni, Stefania, Giuseppe Marangi, Silvia Frangella, Arianna Panfili, Davide Ognibene, Gabriella Maria Squeo, Giuseppe Merla, and Marcella Zollino. 2020. "Clinical Genetics Can Solve the Pitfalls of Genome-Wide Investigations: Lesson from Mismapping a Loss-of-Function Variant in KANSL1" Genes 11, no. 10: 1177. https://doi.org/10.3390/genes11101177
APA StyleBigoni, S., Marangi, G., Frangella, S., Panfili, A., Ognibene, D., Squeo, G. M., Merla, G., & Zollino, M. (2020). Clinical Genetics Can Solve the Pitfalls of Genome-Wide Investigations: Lesson from Mismapping a Loss-of-Function Variant in KANSL1. Genes, 11(10), 1177. https://doi.org/10.3390/genes11101177