Physical Activity Might Reduce the Adverse Impacts of the FTO Gene Variant rs3751812 on the Body Mass Index of Adults in Taiwan
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Measurements
2.2. Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Organization, W.H. Obesity and Overweight: Fact Sheet N 311. 2015. Available online: http://www who int/mediacentre/factsheets/fs311/en (accessed on 1 March 2018).
- Pan, W.H.; Wu, H.J.; Yeh, C.J.; Chuang, H.Y.; Yeh, N.H.; Hsieh, Y.T. Diet and Health Trends in Taiwan: Comparison of Two Nutrition and Health Surveys from 1993–1996 and 2005–2008. Asia Pac. J. Clin. Nutr. 2011, 20, 238–250. [Google Scholar] [PubMed]
- Oqden, C.L.; Carroll, M.D.; Curtin, L.R.; McDowell, M.A.; Tabak, C.J.; Fleqal, K.M. Prevalence of Overweight and Obesity in the United States, 1999–2004. JAMA 2006, 295, 1549–1555. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.S.; Woo, J. Prevention of Overweight and Obesity: How Effective is the Current Public Health Approach. Int. J. Environ. Res. Public Health 2010, 7, 765–783. [Google Scholar] [CrossRef] [PubMed]
- Saldaña-Alvarez, Y.; Salas-Martínez, M.G.; García-Ortiz, H.; Luckie-Duque, A.; García-Cárdenas, G.; Vicenteño-Ayala, H.; Cordova, E.J.; Esparza-Aguilar, M.; Contreras-Cubas, C.; Carnevale, A.; et al. Gender-Dependent Association of FTO Polymorphisms with Body Mass Index in Mexicans. PLoS ONE 2016, 11, e0145984. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Consortium, W.T.C.C. Genome-Wide Association Study of 14,000 Cases of Seven Common Diseases and 3000 Shared Controls. Nature 2007, 447, 661–678. [Google Scholar]
- Berulava, T.; Horsthemke, B. The Obesity-Associated SNPs in Intron 1 of the FTO Gene Affect Primary Transcript Levels. Eur. J. Hum. Genet. 2010, 18, 1054–1056. [Google Scholar] [CrossRef]
- Hertel, J.K.; Johansson, S.; Raeder, H.; Midthjell, K.; Lyssenko, V.; Groop, L.; Molven, A.; Njølstad, P.R. Genetic Analysis of Recently Identified Type 2 Diabetes Loci in 1,638 Unselected Patients with Type 2 Diabetes and 1,858 Control Participants from a Norwegian Population-Based Cohort (the HUNT Study). Diabetologia 2008, 51, 971–977. [Google Scholar] [CrossRef][Green Version]
- Hotta, K.; Nakata, Y.; Matsuo, T.; Kamohara, S.; Kotani, K.; Komatsu, R.; Itoh, N.; Mineo, I.; Wada, J.; Masuzaki, H.; et al. Variations in the FTO Gene are Associated with Severe Obesity in the Japanese. J. Hum. Genet. 2008, 53, 546–553. [Google Scholar] [CrossRef]
- Villalobos-Comparán, M.; Flores-Dorantes, M.T.; Villarreal-Molina, M.T.; Rodríguez-Cruz, M.; García-Ulloa, A.C.; Robles, L.; Huertas-Vázquez, A.; Saucedo-Villarreal, N.; López-Alarcón, M.; Sánchez-Muñoz, F.; et al. The FTO Gene is Associated with Adulthood Obesity in the Mexican Population. Obesity 2008, 16, 2296–2301. [Google Scholar] [CrossRef]
- Liu, G.; Zhu, H.; Lagou, V.; Gutin, B.; Stallmann-Jorgensen, I.S.; Treiber, F.A.; Dong, Y.; Snieder, H. FTO Variant Rs9939609 is Associated with Body Mass Index and Waist Circumference, but not with Energy Intake or Physical Activity in European-And African-American Youth. BMC Med. Genet. 2010, 11, 57. [Google Scholar] [CrossRef]
- Speliotes, E.K.; Willer, C.J.; Berndt, S.I.; Monda, K.L.; Thorleifsson, G.; Jackson, A.U.; Lango Allen, H.; Lindgren, C.M.; Luan, J.; Mägi, R.; et al. Association Analyses of 249,796 Individuals Reveal 18 New Loci Associated with Body Mass Index. Nat. Genet. 2010, 42, 937–948. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yang, Y.; Sun, B.-F.; Zhao, Y.-L.; Yang, Y.-G. FTO and Obesity: Mechanisms of Association. Curr. Diabetes Rep. 2014, 14, 486. [Google Scholar] [CrossRef]
- Yeo, G.S.; O’Rahilly, S. Uncovering the Biology of FTO. Mol. Metab. 2012, 1, 32–36. [Google Scholar] [CrossRef]
- Fischer, J.; Koch, L.; Emmerling, C.; Vierkotten, J.; Peters, T.; Brüning, J.C.; Rüther, U. Inactivation of the FTO Gene Protects from Obesity. Nature 2009, 458, 894–898. [Google Scholar] [CrossRef]
- Stratigopoulos, G.; Carli, J.F.M.; O’Day, D.R.; Wang, L.; Leduc, C.A.; Lanzano, P.; Chung, W.K.; Rosenbaum, M.; Egli, D.; Doherty, D.A.; et al. Hypomorphism for RPGRIP1L, a Ciliary Gene Vicinal to the FTO Locus, Causes Increased Adiposity in Mice. Cell Metab. 2014, 19, 767–779. [Google Scholar] [CrossRef]
- Smemo, S.; Tena, J.J.; Kim, K.-H.; Gamazon, E.R.; Sakabe, N.J.; Gómez-Marín, C.; Aneas, I.; Credidio, F.L.; Sobreira, D.R.; Wasserman, N.F.; et al. Obesity-Associated Variants within FTO form Long-Range Functional Connections with IRX3. Nature 2014, 507, 371–375. [Google Scholar] [CrossRef]
- Ragvina, A.; Moroc, E.; Fredmand, D.; Navratilova, P.; Drivenes, Ø.; Engström, P.G.; Alonso, M.E.; de la Calle Mustienes, E.; Gómez Skarmeta, J.L.; Tavares, M.J.; et al. Long-Range Gene Regulation Links Genomic Type 2 Diabetes and Obesity Risk Regions to HHEX, SOX4, and IRX3. Proc. Natl. Acad. Sci. USA 2011, 108, 775–780. [Google Scholar] [CrossRef]
- Jowett, J.B.; Curran, J.E.; Johnson, M.P.; Carless, M.A.; Göring, H.H.H.; Dyer, T.D.; Cole, S.A.; Comuzzie, A.G.; MacCluer, J.W.; Moses, E.K.; et al. Genetic Variation at the FTO Locus Influences RBL2 Gene Expression. Diabetes 2010, 59, 726–732. [Google Scholar] [CrossRef]
- Rampersaud, E.; Mitchell, B.D.; Pollin, T.I.; Fu, M.; Shen, H.; O’Connell, J.R.; Ducharme, J.L.; Hines, S.; Sack, P.; Naglieri, R.; et al. Physical Activity and the Association of Common FTO Gene Variants with Body Mass Index and Obesity. Arch. Intern. Med. 2008, 168, 1791–1797. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, C.H.; Stender-Petersen, K.L.; Mogensen, M.S.; Torekov, S.S.; Wegner, L.; Andersen, G.; Nielsen, A.L.; Albrechtsen, A.; Borch-Johnsen, K.; Rasmussen, S.S.; et al. Low Physical Activity Accentuates the Effect of the FTO Rs9939609 Polymorphism on Body Fat Accumulation. Diabetes 2008, 57, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Vimaleswaran, K.S.; Li, S.; Zhao, J.H.; Luan, J.A.; Bingham, S.; Khaw, K.-T.; Ekelund, U.; Wareham, N.J.; Loos, R.J. Physical Activity Attenuates the Body Mass Index–Increasing Influence of Genetic Variation in the FTO Gene. Am. J. Clin. Nutr. 2009, 90, 425–428. [Google Scholar] [CrossRef]
- Tan, J.T.; Dorajoo, R.; Seielstad, M.; Sim, X.L.; Ong, R.T.-H.; Chia, K.S.; Wong, T.Y.; Saw, S.M.; Chew, S.K.; Aung, T.; et al. FTO Variants Are Associated with Obesity in the Chinese and Malay Populations in Singapore. Diabetes 2008, 57, 2851–2857. [Google Scholar] [CrossRef]
- Jónsson, Á.; Renström, F.; Lyssenko, V.; Brito, E.C.; Isomaa, B.; Berglund, G.; Nilsson, P.M.; Groop, L.; Franks, P.W. Assessing the Effect of Interaction between an FTO Variant (Rs9939609) and Physical Activity on Obesity in 15,925 Swedish and 2,511 Finnish adults. Diabetologia 2009, 52, 1334–1338. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Harbron, J.; Van Der Merwe, L.; Zaahl, M.G.; Kotze, M.J.; Senekal, M. Fat Mass and Obesity-Associated (FTO) Gene Polymorphisms Are Associated with Physical Activity, Food Intake, Eating Behaviors, Psychological Health, and Modeled Change in Body Mass Index in Overweight/Obese Caucasian Adults. Nutrients 2014, 6, 3130–3152. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; DeMenna, J.T.; Puppala, S.; Chittoor, G.; Schneider, J.; Duggirala, R.; Mandarino, L.J.; Shaibi, G.Q.; Coletta, D.K. Physical Activity and FTO Genotype by Physical Activity Interactive Influences on Obesity. BMC Genet. 2016, 17, 1549. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kilpeläinen, T.O.; Qi, L.; Brage, S.; Sharp, S.J.; Sonestedt, E.; Demerath, E.; Ahmad, T.; Mora, S.; Kaakinen, M.; Sandholt, C.H.; et al. Physical Activity Attenuates the Influence of FTO Variants on Obesity Risk: A Meta-Analysis of 218,166 Adults and 19,268 Children. PLoS Med. 2011, 8, e1001116. [Google Scholar] [CrossRef]
- Wu, J.; Xu, J.; Zhang, Z.; Ren, J.; Li, Y.; Wang, J.; Cao, Y.; Rong, F.; Zhao, R.; Huang, X.; et al. Association of FTO Polymorphisms with Obesity and Metabolic Parameters in Han Chinese Adolescents. PLoS ONE 2014, 9, e98984. [Google Scholar] [CrossRef]
- Fawcett, K.A.; Barroso, I. The Genetics of Obesity: FTO Leads the Way. Trends Genet. 2010, 26, 266–274. [Google Scholar] [CrossRef]
- Gostynski, M.; Gutzwiller, F.; Kuulasmaa, K.; Döring, A.; Ferrario, M.; Grafnetter, D.; Pajak, A. Analysis of the Relationship between Total Cholesterol, Age, Body Mass Index among Males and Females in the WHO MONICA Project. Int. J. Obes. 2004, 28, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Walli, R.R.; Almosrati, R.A.; Zaied, A.A.; Shummakhi, F.M.E.; Bredae, E.G.; Shalaka, O.K. The Relationship between Habitual Coffee and Tea Consumption and Type 2 Diabetes Mellitus among Libyan Adults. Int. J. Pharma Res. Rev. 2015, 4, 34–39. [Google Scholar]
- Wang, T.; Huang, T.; Kang, J.H.; Zheng, Y.; Jensen, M.K.; Wiggs, J.L.; Pasquale, L.R.; Fuchs, C.S.; Campos, H.; Rimm, E.B.; et al. Habitual Coffee Consumption and Genetic Predisposition to Obesity: Gene-Diet Interaction Analyses in Three US Prospective Studies. BMC Med. 2017, 15, 97. [Google Scholar] [CrossRef]
- Ahmad, S.; Rukh, G.; Varga, T.V.; Ali, A.; Kurbasic, A.; Shungin, D.; Ericson, U.; Koivula, R.W.; Chu, A.Y.; Rose, L.M.; et al. Gene × Physical Activity Interactions in Obesity: Combined Analysis of 111,421 Individuals of European Ancestry. PLoS Genet. 2013, 9, e1003607. [Google Scholar] [CrossRef] [PubMed]
- Plurphanswat, N.; Rodu, B. The Association of Smoking and Demographic Characteristics on Body Mass Index and Obesity among Adults in the U.S., 1999–2012. BMC Obes. 2014, 1, 18. [Google Scholar] [CrossRef] [PubMed]
- Chiolero, A.; Faeh, D.; Paccaud, F.; Cornuz, J. Consequences of Smoking for Body Weight, Body Fat Distribution, and Insulin Resistance. Am. J. Clin. Nutr. 2008, 87, 801–809. [Google Scholar] [CrossRef]
- Tonstad, S.; Butler, T.; Yan, R.; Fraser, G.E. Type of Vegetarian Diet, Body Weight, and Prevalence of Type 2 Diabetes. Diabetes Care 2009, 32, 791–796. [Google Scholar] [CrossRef] [PubMed]
Parameters | Total | GG (n = 8321) | TG (n = 2343) | TT (n = 168) | p-Value |
---|---|---|---|---|---|
Age (years) | 48.68 ± 0.11 | 48.64 ± 0.12 | 48.78 ± 0.23 | 49.13 ± 0.90 | 0.7433 |
BMI (kg/m2) | 24.35 ± 0.03 | 24.27 ± 0.04 | 24.58 ± 0.08 | 25.21 ± 0.26 | <0.0001 |
Fasting blood glucose(mg/dl) | 96.49 ± 0.20 | 96.36 ± 0.23 | 96.69 ± 0.43 | 100.43 ± 2.18 | 0.0398 |
Total cholesterol (mg/dl) | 193.76 ± 0.34 | 193.93 ± 0.39 | 193.10 ± 0.74 | 194.58 ± 2.43 | 0.5763 |
Sex (n, %) | |||||
Male | 5219 (48.09) | 4002 (48.06) | 1106 (47.20) | 101 (60.12) | 0.0053 |
Female | 5634 (51.91) | 4319 (51.90) | 1237 (52.80) | 67 (39.88) | |
Alcohol intake | |||||
Never/Former | 9992 (92.08) | 7641 (91.84) | 2180 (93.04) | 151 (89.88) | 0.0930 |
Current | 860 (7.92) | 679 (8.16) | 163 (6.96) | 17 (10.12) | |
Smoking | |||||
No | 7451 (68.70) | 5743 (69.50) | 1583 (67.65) | 111 (66.07) | 0.3299 |
Yes | 3395 (31.30) | 2574 (30.95) | 757 (32.35) | 57 (33.93) | |
Physical activity | |||||
No | 6426 (59.21) | 4944 (59.42) | 1368 (58.39) | 102 (60.71) | 0.6154 |
Yes | 4426 (40.79) | 3376 (40.58) | 975 (41.61) | 66 (39.29) | |
Tea consumption | |||||
No 5655 (63.06) | 4353 (63.26) | 1213 (62.82) | 78 (56.52) | 0.2591 | |
Yes | 3312 (36.94) | 2528 (36.74) | 718 (37.18) | 60 (43.48) | |
Coffee consumption | |||||
No | 6086 (67.87) | 4668 (67.84) | 1320 (68.36) | 84 (60.87) | 0.1910 |
Yes | 2881 (32.13) | 2213 (32.16) | 611 (31.64) | 54 (39.13) | |
Vegetarian Diet | |||||
Never/Former | 8551 (95.36) | 6570 (95.48) | 1836 (95.08) | 129 (93.48) | 0.4335 |
Current | 416 (4.64) | 311 (4.52) | 95 (4.92) | 9 (6.52) |
Parameters | Physically Active (n = 4426) | Physically Inactive (n = 6426) | p-Value |
---|---|---|---|
rs3751812 (n, %) | |||
GG | 3376 (76.43) | 4944 (77.08) | 0.6154 |
TG | 975 (22.07) | 1368 (21.33) | |
TT | 66 (1.49) | 102 (1.59) | |
Age (years) | 53.36 ± 0.15 | 45.45 ± 0.13 | <0.0001 |
BMI (kg/m2) | 24.24 ± 0.05 | 24.42 ± 0.05 | 0.0083 |
Fasting glucose (mg/dl) | 97.93 ± 0.32 | 95.50 ± 0.26 | <0.0001 |
Total cholesterol (mg/dl) | 195.68 ± 0.53 | 192.44 ± 0.45 | <0.0001 |
Sex (n, %) | |||
Male | 2158 (48.76) | 3061 (47.63) | 0.2500 |
Female | 2268 (51.24) | 3365 (52.37) | |
Alcohol drinking | |||
Never/Former | 4080 (92.18) | 5911 (92.00) | 0.7294 |
Current | 346 (7.82) | 514 (8.00) | |
Smoking | |||
No | 3144 (71.05) | 4306 (67.07) | <0.0001 |
Yes | 1281 (28.95) | 2114 (32.93) | |
Tea consumption | |||
No | 2340 (62.37) | 3315 (63.57) | 0.2455 |
Yes | 1412 (37.63) | 1900 (36.43) | |
Coffee consumption | |||
No | 2581 (68.79) | 3505 (67.21) | 0.1140 |
Yes | 1171 (31.21) | 1710 (32.79) | |
Vegetarian diet | |||
Never/Former | 3598 (95.90) | 4953 (94.98) | 0.0411 |
Current | 154 (4.10) | 262 (5.02) |
β | p-Value | |
---|---|---|
rs3751812 | ||
GG | - | |
TG | 0.381 | <0.0001 |
TT | 0.684 | 0.0204 |
p for trend < 0.0001 | ||
Physical activity | −0.389 | <0.0001 |
Sex | 1.384 | <0.0001 |
Age | 0.020 | <0.0001 |
Total cholesterol | 0.008 | <0.0001 |
Alcohol intake | 0.092 | 0.5267 |
Smoking | 0.501 | <0.0001 |
Tea consumption | 0.492 | <0.0001 |
Coffee consumption | 0.108 | 0.1723 |
Vegetarian diet | −0.343 | 0.0493 |
GG | TG | TT | ||||
---|---|---|---|---|---|---|
β | p-Value | β | p-Value | β | p-Value | |
Physical activity | −0.368 | <0.0001 | −0.414 | 0.0175 | −1.059 | 0.1099 |
Sex | 1.461 | <0.0001 | 1.196 | <0.0001 | 0.850 | 0.1984 |
Age | 0.019 | <0.0001 | 0.026 | 0.0013 | 0.014 | 0.6146 |
Total cholesterol | 0.008 | <0.0001 | 0.008 | 0.0003 | 0.004 | 0.6724 |
Alcohol intake | 0.060 | 0.7148 | −0.008 | 0.9819 | 2.065 | 0.0337 |
Smoking | 0.387 | 0.0003 | 0.860 | <0.0001 | 0.885 | 0.2209 |
Tea consumption | 0.488 | <0.0001 | 0.516 | 0.0031 | 0.499 | 0.3737 |
Coffee consumption | 0.212 | 0.0179 | −0.215 | 0.2260 | −0.641 | 0.2823 |
Vegetarian diet | −0.516 | 0.0098 | 0.166 | 0.6626 | 0.401 | 0.7291 |
Physical Activity | Physical Inactivity | |||
---|---|---|---|---|
β | p-Value | β- | p-Value | |
rs3751812 | ||||
GG | - | - | - | - |
TG | 0.360 | 0.0032 | 0.381 | 0.0021 |
TT | 0.245 | 0.5606 | 0.950 | 0.0188 |
p trend = 0.0002 | ||||
Sex | 1.150 | <0.0001 | 1.517 | <0.0001 |
Age | 0.006 | 0.2077 | 0.030 | <0.0001 |
Total cholesterol | 0.003 | 0.0741 | 0.011 | <0.0001 |
Alcohol drinking | 0.460 | 0.0241 | −0.192 | 0.3374 |
Smoking | 0.439 | 0.0012 | 0.514 | <0.0001 |
Tea consumption | 0.565 | <0.0001 | 0.417 | 0.0001 |
Coffee consumption | 0.270 | 0.0150 | −0.017 | 0.8746 |
Vegetarian diet | −0.626 | 0.0152 | −0.224 | 0.3401 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liaw, Y.-C.; Liaw, Y.-P.; Lan, T.-H. Physical Activity Might Reduce the Adverse Impacts of the FTO Gene Variant rs3751812 on the Body Mass Index of Adults in Taiwan. Genes 2019, 10, 354. https://doi.org/10.3390/genes10050354
Liaw Y-C, Liaw Y-P, Lan T-H. Physical Activity Might Reduce the Adverse Impacts of the FTO Gene Variant rs3751812 on the Body Mass Index of Adults in Taiwan. Genes. 2019; 10(5):354. https://doi.org/10.3390/genes10050354
Chicago/Turabian StyleLiaw, Yi-Ching, Yung-Po Liaw, and Tsuo-Hung Lan. 2019. "Physical Activity Might Reduce the Adverse Impacts of the FTO Gene Variant rs3751812 on the Body Mass Index of Adults in Taiwan" Genes 10, no. 5: 354. https://doi.org/10.3390/genes10050354
APA StyleLiaw, Y.-C., Liaw, Y.-P., & Lan, T.-H. (2019). Physical Activity Might Reduce the Adverse Impacts of the FTO Gene Variant rs3751812 on the Body Mass Index of Adults in Taiwan. Genes, 10(5), 354. https://doi.org/10.3390/genes10050354