Genomic Imprinting, Epigenetic Dysregulation, and Neuropsychiatric Mechanisms in Prader–Willi Syndrome: A Multi-Level Integrative Review
Highlights
- Genomic imprinting defects at the chromosome region 15q11-q13 are responsible for epigenetic and transcriptional abnormalities that contribute to neurodevelopmental vulnerability in individuals with Prader–Willi syndrome.
- Deletion-type and maternal uniparental disomy (mUPD) forms of Prader–Willi syndrome involve distinct molecular pathways that partially overlap in their downstream effects on neurotransmitter systems and neural circuitry.
- Prader–Willi syndrome is an example of a natural model that relates psychiatric phenotype to the regulation of genes by imprinting-dependent mechanisms.
- Understanding shared and subtype-specific pathways may inform biomarker development and mechanism-based stratification in neuropsychiatric research.
Abstract
1. Introduction
2. Mechanistic Basis of PWS
3. Deletion Mechanisms
4. Epigenetic Dysregulation in mUPD
5. Comparative Insights: Imprinting Defects as a Model for Behavioral–Cognitive Vulnerability
6. Neurobiological Mechanisms
6.1. Molecular and Epigenetic Disruption: From Imprinting to Neuronal Dysfunction
Insights from Patient-Derived iPSC Models
6.2. Neurochemical Imbalance and Circuit-Level Consequences
Neuroimaging Correlates of Psychiatric Vulnerability in Prader–Willi Syndrome
6.3. Integrative Mechanistic Framework: From Imprinting to Behavior
7. Discussion
8. Limitations
9. Future Directions
10. Overall Significance
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cassidy, S.B.; Schwartz, S.; Miller, J.L.; Driscoll, D.J. Prader-Willi syndrome. Genet. Med. 2012, 14, 10–26. [Google Scholar] [CrossRef] [PubMed]
- Cheon, C.K. Genetics of Prader-Willi syndrome and Prader-Will-Like syndrome. Ann. Pediatr. Endocrinol. Metab. 2016, 21, 126–135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Butler, M.G.; Miller, J.L.; Forster, J.L. Prader-Willi Syndrome—Clinical Genetics, Diagnosis and Treatment Approaches: An Update. Curr. Pediatr. Rev. 2019, 15, 207–244. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Angulo, M.A.; Butler, M.G.; Cataletto, M.E. Prader-Willi syndrome: A review of clinical, genetic, and endocrine findings. J. Endocrinol. Investig. 2015, 38, 1249–1263. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, V.K.; Mao, R.; Toth, J.N.; Fulmer, M.L.; Egense, A.S.; Shankar, S.P. Prader-Willi and Angelman Syndromes: Mechanisms and Management. Appl. Clin. Genet. 2023, 16, 41–52. [Google Scholar]
- Bieth, E.; Eddiry, S.; Gaston, V.; Lorenzini, F.; Buffet, A.; Conte Auriol, F.; Molinas, C.; Cailley, D.; Rooryck, C.; Arveiler, B.; et al. Highly restricted deletion of the SNORD116 region is implicated in Prader-Willi Syndrome. Eur. J. Hum. Genet. 2015, 23, 252–255. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barelle, P.Y.; Sicardi, A.; Schaller, F.; Buron, J.; Becquet, D.; Omnes, F.; Watrin, F.; Alifrangis, M.S.; Santos, C.; Menuet, C.; et al. Investigation of a mouse model of Prader-Willi Syndrome with combined disruption of Necdin and Magel2. JCI Insight 2025, 10, e185159. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Queen, N.J.; Zou, X.; Anderson, J.M.; Huang, W.; Appana, B.; Komatineni, S.; Wevrick, R.; Cao, L. Hypothalamic AAV-BDNF genetherapy improves metabolic function and behavior in the Magel2-null mouse model of Prader–Willi syndrome. Mol. Ther. Methods Clin. Dev. 2022, 27, 131–148. [Google Scholar] [CrossRef]
- Heimdörfer, D.; Vorleuter, A.; Eschlböck, A.; Spathopoulou, A.; Suarez-Cubero, M.; Farhan, H.; Reiterer, V.; Spanjaard, M.; Schaaf, C.P.; Huber, L.A.; et al. Truncated variants of MAGEL2 are involved in the etiologies of the Schaaf-Yang and Prader-Willi syndromes. Am. J. Hum. Genet. 2024, 111, 1383–1404, Erratum in Am. J. Hum. Genet. 2025, 112, 2562. https://doi.org/10.1016/j.ajhg.2025.09.005. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Driscoll, D.J.; Miller, J.L.; Cassidy, S.B. Prader-Willi Syndrome. In GeneReviews®; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Alves, C.; Franco, R.R. Prader–Willi syndrome: Endocrine manifestations and management. Arch. Endocrinol. Metab. 2020, 64, 223–234. [Google Scholar] [CrossRef]
- Szabadi, S.; Sila, Z.; Dewey, J.; Rowland, D.; Penugonda, M.; Ergun-Longmire, B. A Review of Prader–Willi Syndrome. Endocrines 2022, 3, 329–348. [Google Scholar] [CrossRef]
- Crinò, A.; Fintini, D.; Bocchini, S.; Grugni, G. Obesity management in Prader-Willi syndrome: Current perspectives. Diabetes Metab. Syndr. Obes. 2018, 11, 579–593. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heksch, R.; Kamboj, M.; Anglin, K.; Obrynba, K. Review of Prader-Willi syndrome: The endocrine approach. Transl. Pediatr. 2017, 6, 274–285. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Daley, S.F.; Gutierrez, M.A.F.; Mendez, M.D. Prader–Willi Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK553161/ (accessed on 4 January 2026).
- Mahmoud, R.; Kimonis, V.; Butler, M.G. Clinical trials in Prader–Willi syndrome: A review. Int. J. Mol. Sci. 2023, 24, 2150. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, R.B.; Liu, Y.; Stoddard, C.E.; Chung, M.S.; Carmichael, G.G.; Cotney, J. Identifying key underlying regulatory networks and predicting targets of orphan C/D box SNORD116 snoRNAs in Prader-Willi syndrome. Nucleic Acids Res. 2024, 52, 13757–13774. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baldini, L.; Robert, A.; Charpentier, B.; Labialle, S. Phylogenetic and Molecular Analyses Identify SNORD116 Targets Involved in the Prader-Willi Syndrome. Mol. Biol. Evol. 2022, 39, msab348. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holmes, T.L.; Chabronova, A.; Denning, C.; James, V.; Peffers, M.J.; Smith, J.G.W. Footprints in the Sno: Investigating the cellular and molecular mechanisms of SNORD116. Open Biol. 2025, 15, 240371. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Coulson, R.L.; Powell, W.T.; Yasui, D.H.; Dileep, G.; Resnick, J.; LaSalle, J.M. Prader-Willi locus Snord116 RNA processing requires an active endogenous allele and neuron-specific splicing by Rbfox3/NeuN. Hum. Mol. Genet. 2018, 27, 4051–4060. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dufour, D.; Menuet, C.; Muscatelli, F.; Val, P.; Martinez, A. Prader-Willi syndrome proteins NDN and MAGEL2 are implicated in HPA axis regulation. Endocr. Abstr. 2022, 83, AP1. [Google Scholar] [CrossRef]
- Wang, S.E.; Cheng, Y.; Lim, J.; Jang, M.A.; Forrest, E.N.; Kim, Y.; Donahue, M.; Jo, S.; Qiao, S.N.; Lee, D.E.; et al. Mechanism of EHMT2-mediated genomic imprinting associated with Prader-Willi syndrome. Nat. Commun. 2025, 16, 6125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Good, D.J.; Kocher, M.A. Phylogenetic Analysis of the SNORD116 Locus. Genes 2017, 8, 358. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salles, J.; Eddiry, S.; Lacassagne, E.; Laurier, V.; Molinas, C.; Bieth, É.; Franchitto, N.; Salles, J.P.; Tauber, M. Patients with PWS and related syndromes display differentially methylated regions involved in neurodevelopmental and nutritional trajectory. Clin. Epigenetics 2021, 13, 159. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rohm, D.; Black, J.B.; McCutcheon, S.R.; Barrera, A.; Morone, D.J.; Nuttle, X.; de Esch, C.E.; Tai, D.J.C.; Talkowski, M.E.; Iglesias, N.; et al. Activation of the imprinted Prader-Willi Syndrome locus by CRISPR-based epigenome editing. Cell Genom. 2025, 5, 100770. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dong, Y.; Lu, R.; Cao, H.; Zhang, J.; Wu, X.; Deng, Y.; Li, J.-D. Deficiency in Prader–Willi syndrome gene necdin leads to attenuated cardiac contractility. iScience 2024, 27, 109974. [Google Scholar] [CrossRef]
- Mercer, R.E.; Kwolek, E.M.; Bischof, J.M.; van Eede, M.; Henkelman, R.M.; Wevrick, R. Regionally reduced brain volume, altered serotonin neurochemistry, and abnormal behavior in mice null for the circadian rhythm output gene Magel2. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2009, 150B, 1085–1099. [Google Scholar] [CrossRef]
- Victor, A.K.; Donaldson, M.; Johnson, D.; Miller, W.; Reiter, L.T. Molecular Changes in Prader-Willi Syndrome Neurons Reveals Clues About Increased Autism Susceptibility. Front. Mol. Neurosci. 2021, 14, 747855. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Whittington, J.; Holland, A. Next Steps in Prader-Willi Syndrome Research: On the Relationship between Genotype and Phenotype. Int. J. Mol. Sci. 2022, 23, 12089. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, Z.; Zhang, X.; Yang, X.; Ding, S.; Cai, J. Aberrant brain intra- and internetwork functional connectivity in children with Prader–Willi syndrome. Neuroradiology 2023, 66, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Soni, S.; Whittington, J.; Holland, A.J.; Webb, T.; Maina, E.; Boer, H.; Clarke, D. The course and outcome of psychiatric illness in people with Prader-Willi syndrome: Implications for management and treatment. J. Intellect. Disabil. Res. 2007, 51, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Schubert, T.; Schaaf, C.P. MAGEL2 (patho-)physiology and Schaaf-Yang syndrome. Dev. Med. Child Neurol. 2025, 67, 35–48. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sinnema, M.; Boer, H.; Collin, P.; Maaskant, M.A.; van Roozendaal, K.E.; Schrander-Stumpel, C.T.R.M.; Curfs, L.M.G. Psychiatric illness in a cohort of adults with Prader–Willi syndrome. Res. Dev. Disabil. 2011, 32, 1729–1735. [Google Scholar] [CrossRef]
- Lukoshe, A.; van Dijk, S.E.; van den Bosch, G.E.; van der Lugt, A.; White, T.; Hokken-Koelega, A.C.S. Altered functional resting-state hypothalamic connectivity and abnormal pituitary morphology in children with Prader–Willi syndrome. J. Neurodev. Disord. 2017, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.A.; Ferreira, I.R.; Cintra, H.A.; Gomes, L.H.F.; Guida, L.C. Genotype–phenotype relationships and endocrine findings in Prader–Willi syndrome. Front. Endocrinol. 2019, 10, 864. [Google Scholar] [CrossRef] [PubMed]
- Tauber, M.; Höybye, C. Endocrine disorders in Prader–Willi syndrome: A model to understand and treat hypothalamic dysfunction. Lancet Diabetes Endocrinol. 2021, 9, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Madeo, S.F.; Zagaroli, L.; Vandelli, S.; Calcaterra, V.; Crinò, A.; De Sanctis, L.; Faienza, M.F.; Fintini, D.; Guazzarotti, L.; Licenziati, M.R.; et al. Endocrine features of Prader–Willi syndrome: A narrative review focusing on genotype–phenotype correlation. Front. Endocrinol. 2024, 15, 1382583. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, H.; Qiu, S.; Tian, J.; Wen, X.; Miller, J.L.; von Deneen, K.M.; Zhou, Z.; Gold, M.S.; Liu, Y. Altered functional brain networks in Prader-Willi syndrome. NMR Biomed. 2013, 26, 622–629. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, Z.; Cai, J. Progress in Brain Magnetic Resonance Imaging of Individuals with Prader-Willi Syndrome. J. Clin. Med. 2023, 12, 1054. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, Z.; Zheng, H.; Wang, L.; Ding, S.; Li, R.; Qing, Y.; Peng, S.; Zhu, M.; Cai, J. Aberrant brain structural-functional coupling and structural/functional network topology explain developmental delays in pediatric Prader-Willi syndrome. Eur. Child Adolesc. Psychiatry 2025, 34, 2155–2167. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brown, S.S.G.; Manning, K.E.; Fletcher, P.; Holland, A. In vivo neuroimaging evidence of hypothalamic alteration in Prader-Willi syndrome. Brain Commun. 2022, 4, fcac229. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crespi, B.; Badcock, C. Psychosis and autism as diametrical disorders of the social brain. Behav. Brain Sci. 2008, 31, 241–261. [Google Scholar] [CrossRef]
- Prapasrat, C.; Onsod, P.; Korkiatsakul, V.; Rerkamnuaychoke, B.; Wattanasirichaigoon, D.; Chareonsirisuthigul, T. The utilization of MS-MLPA as the first-line test for the diagnosis of Prader–Willi syndrome in Thai patients. J. Pediatr. Genet. 2022, 12, 273–279. [Google Scholar] [CrossRef] [PubMed]


| Biological Level | Deletion-Type PWS (15q11–q13 del) | mUPD PWS | Representative References |
|---|---|---|---|
| Primary genetic mechanism | Loss of paternal genes (MAGEL2, SNORD116, NDN) | Maternal uniparental disomy with silencing of paternal allele | Cassidy et al., 2012 [1]; Angulo et al., 2015 [4] |
| Epigenetic profile | Reduced expression of imprinted genes, mild chromatin dysregulation | Genome-wide imprinting loss; increased methylation; broader chromatin repression | Coulson et al., 2018 [20]; Dong et al., 2024 [26] |
| Transcriptomic effects | Impaired neuronal maturation, synaptic gene downregulation | Altered expression of neurotransmitter pathway genes; GABA/DOPA shifts | Mercer et al., 2009 [27]; Victor et al., 2021 [28] |
| Neuromodulatory hypotheses (serotonin/dopamine) | Preclinical evidence suggests serotonergic pathway alterations (e.g., in Magel2-null models); direct human neurochemical comparisons cross PWS subtypes remain limited. | Human evidence for subtype-specific monoaminergic profiles is limited; transcriptional/epigenetic studies suggest altered expression of neurotransmitter pathway genes, supporting a hypothesis of neuromodulatory imbalance. | Mercer et al., 2009 [27] |
| Circuit-level alterations | Hypoactivity in OFC, ACC; impaired top–down control | Prefrontal–limbic dysconnectivity; DMN–salience instability | Whittington & Holland, 2022 [29]; Huang et al., 2023 [30] |
| Dominant psychiatric phenotype | Compulsivity, affective rigidity, anxiety | Mood instability, psychosis-like symptoms, cognitive-perceptual disturbances | Soni et al., 2007 [31]; Schubert & Schaaf, 2025 [32] |
| Translational implications | Serotonergic-targeting research models; synaptic maturation target | Dopamine-modulating experimental paradigms; epigenetic therapeutic candidates | Whittington & Holland, 2022 [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Śledzikowska, Z.; Żukow, X.E.; Antos, Z.M.; Waszkiewicz, N. Genomic Imprinting, Epigenetic Dysregulation, and Neuropsychiatric Mechanisms in Prader–Willi Syndrome: A Multi-Level Integrative Review. Cells 2026, 15, 268. https://doi.org/10.3390/cells15030268
Śledzikowska Z, Żukow XE, Antos ZM, Waszkiewicz N. Genomic Imprinting, Epigenetic Dysregulation, and Neuropsychiatric Mechanisms in Prader–Willi Syndrome: A Multi-Level Integrative Review. Cells. 2026; 15(3):268. https://doi.org/10.3390/cells15030268
Chicago/Turabian StyleŚledzikowska, Zofia, Xawery Eryk Żukow, Zuzanna Małgorzata Antos, and Napoleon Waszkiewicz. 2026. "Genomic Imprinting, Epigenetic Dysregulation, and Neuropsychiatric Mechanisms in Prader–Willi Syndrome: A Multi-Level Integrative Review" Cells 15, no. 3: 268. https://doi.org/10.3390/cells15030268
APA StyleŚledzikowska, Z., Żukow, X. E., Antos, Z. M., & Waszkiewicz, N. (2026). Genomic Imprinting, Epigenetic Dysregulation, and Neuropsychiatric Mechanisms in Prader–Willi Syndrome: A Multi-Level Integrative Review. Cells, 15(3), 268. https://doi.org/10.3390/cells15030268

