Matrix Metalloproteinases in Ureteropelvic Junction Obstruction: Their Role in Pathogenesis and Their Use as Clinical Markers
Abstract
:1. Introduction
2. Etiology and Features of UPJO
2.1. Pathological Classification
2.2. Functional Obstruction Causes
3. Animal Models to Study Ureteral Obstruction
4. Pathological Changes in Obstructive Nephropathy at the Tissue and Molecular Levels
5. MMPs as Potential Biomarkers in Infants with UPJO
5.1. MMP Structure, Classification, and Function
5.2. Roles of MMPs in UPJO Development and Progression
5.3. Dysregulation of MMPs and TIMPs in UPJO
6. MMP and TIMP Roles in Other Renal Conditions
7. Current Treatment of UPJO and Future Therapeutic Strategies
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tseng, T.Y.; Stoller, M.L. Obstructive uropathy. Clin. Geriatr. Med. 2009, 25, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, R.L. Obstructive uropathy: State of the art. Pediatr. Med. Chir. 2002, 24, 95–97. [Google Scholar] [PubMed]
- Chen, F. Genetic and developmental basis for urinary tract obstruction. Pediatr. Nephrol. 2009, 24, 1621–1632. [Google Scholar] [CrossRef] [PubMed]
- Warady, B.A.; Chadha, V. Chronic kidney disease in children: The global perspective. Pediatr. Nephrol. 2007, 22, 1999–2009. [Google Scholar] [CrossRef]
- McHugh, K.M. Megabladder mouse model of congenital obstructive nephropathy: Genetic etiology and renal adaptation. Pediatr. Nephrol. 2014, 29, 645–650. [Google Scholar] [CrossRef]
- Wilhide, M.E.; Feller, J.D.; Li, B.; Mohamed, A.Z.; Becknell, B.; Jackson, A.R.; McHugh, K.M.; Ingraham, S.E. Renal epithelial miR-205 expression correlates with disease severity in a mouse model of congenital obstructive nephropathy. Pediatr. Res. 2016, 80, 602–609. [Google Scholar] [CrossRef]
- Peters, C.A. Animal models of fetal renal disease. Prenat. Diagn. 2001, 21, 917–923. [Google Scholar] [CrossRef]
- Chevalier, R.L.; Goyal, S.; Thornhill, B.A. EGF improves recovery following relief of unilateral ureteral obstruction in the neonatal rat. J. Urol. 1999, 162, 1532–1536. [Google Scholar] [CrossRef]
- Claesson, G.; Josephson, S.; Robertson, B. Experimental partial ureteric obstruction in newborn rats. VII. Are the long -erm effects on renal morphology avoided by release of the obstruction? J. Urol. 1986, 136, 1330–1334. [Google Scholar] [CrossRef]
- Waikar, S.S.; Betensky, R.A.; Bonventre, J.V. Creatinine as the gold standard for kidney injury biomarker studies? Nephrol. Dial. Transplant. 2009, 24, 3263–3265. [Google Scholar] [CrossRef]
- Taha, M.A.; Shokeir, A.A.; Osman, H.G.; Abd El-Aziz, A.e.l.-A.; Farahat, S.E. Obstructed versus dilated nonobstructed kidneys in children with congenital ureteropelvic junction narrowing: Role of urinary tubular enzymes. J. Urol. 2007, 178, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Berry, S.M.; Lecolier, B.; Smith, R.S.; Bercau, G.; Dombrowski, M.P.; Puder, K.S.; Kithier, K.; Bidat, L.; Johnson, M.P.; Cotton, D.B. Predictive value of fetal serum beta 2-microglobulin for neonatal renal function. Lancet 1995, 345, 1277–1278. [Google Scholar] [PubMed]
- Carr, M.C.; Peters, C.A.; Retik, A.B.; Mandell, J. Urinary levels of the renal tubular enzyme N-acetyl-beta-D-glucosaminidase in unilateral obstructive uropathy. J. Urol. 1994, 151, 442–445. [Google Scholar] [PubMed]
- Genovese, F.; Manresa, A.A.; Leeming, D.J.; Karsdal, M.A.; Boor, P. The extracellular matrix in the kidney: A source of novel non-invasive biomarkers of kidney fibrosis? Fibrogenesis Tissue Repair. 2014, 7, 4. [Google Scholar] [CrossRef]
- Tokito, A.; Jougasaki, M. Matrix Metalloproteinases in Non-Neoplastic Disorders. Int. J. Mol. Sci. 2016, 17, 1178. [Google Scholar] [CrossRef]
- Musiał, K.; Bargenda, A.; Zwolińska, D. Urine survivin, E-cadherin and matrix metalloproteinases as novel biomarkers in children with chronic kidney disease. Biomarkers 2015, 20, 177–182. [Google Scholar] [CrossRef]
- Tan, T.K.; Zheng, G.; Hsu, T.T.; Wang, Y.; Lee, V.W.; Tian, X.; Wang, Y.; Cao, Q.; Wang, Y.; Harris, D.C. Macrophage matrix metalloproteinase-9 mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells. Am. J. Pathol. 2010, 176, 1256–1270. [Google Scholar]
- Eddy, A.A. Molecular basis of renal fibrosis. Pediatr. Nephrol. 2000, 15, 290–301. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Y.; Tan, R.; Xiong, M.; He, W.; Fang, L.; Wen, P.; Jiang, L.; Yang, J. Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy. Am. J. Physiol. Renal Physiol. 2010, 299, F973–F982. [Google Scholar]
- Tian, F.; Gu, C.; Zhao, Z.; Li, L.; Lu, S.; Li, Z. Urinary Emmprin, matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 as potential biomarkers in children with ureteropelvic junction narrowing on conservative treatment. Nephrology 2015, 20, 194–200. [Google Scholar]
- Karami, H.; Kazemi, B.; Jabbari, M.; Rahjoo, T.; Golshan, A. Mutations in intron 8 and intron 9 of Wilms’ tumor genes in members of family with ureteropelvic junction obstruction. Urology 2009, 74, 116–118. [Google Scholar] [PubMed]
- Ingraham, S.E.; McHugh, K.M. Current perspectives on congenital obstructive nephropathy. Pediatr. Nephrol. 2011, 26, 1453–1461. [Google Scholar] [PubMed]
- Chevalier, R.L. Molecular and cellular pathophysiology of obstructive nephropathy. Pediatr. Nephrol. 1999, 13, 612–619. [Google Scholar] [CrossRef]
- Chevalier, R.L.; Cachat, F. Role of angiotensin II in chronic ureteral obstruction. Contrib. Nephrol. 2001, 135, 250–260. [Google Scholar]
- Chevalier, R.L.; Thornhill, B.A.; Forbes, M.S.; Kiley, S.C. Mechanisms of renal injury and progression of renal disease in congenital obstructive nephropathy. Pediatr. Nephrol. 2010, 25, 687–697. [Google Scholar]
- Fefer, S.; Ellsworth, P. Prenatal hydronephrosis. Pediatr. Clin. N. Am. 2006, 53, 429–447. [Google Scholar]
- Zhang, P.L.; Peters, C.A.; Rosen, S. Ureteropelvic junction obstruction: Morphological and clinical studies. Pediatr. Nephrol. 2000, 14, 820–826. [Google Scholar]
- Ellerkamp, V.; Kurth, R.R.; Schmid, E.; Zundel, S.; Warmann, S.W.; Fuchs, J. Differences between intrinsic and extrinsic ureteropelvic junction obstruction related to crossing vessels: Histology and functional analyses. World J. Urol. 2016, 34, 577–583. [Google Scholar]
- McLean, R.H.; Gearhart, J.P.; Jeffs, R. Neonatal obstructive uropathy. Pediatr. Nephrol. 1988, 2, 48–55. [Google Scholar]
- Yaxley, J.; Yaxley, W. Obstructive uropathy—Acute and chronic medical management. World J. Nephrol. 2023, 12, 1–9. [Google Scholar]
- Woolf, A.S.; Davies, J.A. Cell biology of ureter development. J. Am. Soc. Nephrol. 2013, 24, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Lye, C.M.; Fasano, L.; Woolf, A.S. Ureter myogenesis: Putting Teashirt into context. J. Am. Soc. Nephrol. 2010, 21, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Lange-Sperandio, B.; Rosenblum, N.D. Pediatric obstructive uropathy. In Pediatric Nephrology; Emma, F., Goldstein, S., Bagga, A., Bates, C.M., Shroff, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–30. [Google Scholar]
- Cancian, M.; Pareek, G.; Caldamone, A.; Aguiar, L.; Wang, H.; Amin, A. Histopathology in Ureteropelvic Junction Obstruction With and Without Crossing Vessels. Urology 2017, 107, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Hosgor, M.; Karaca, I.; Ulukus, C.; Ozer, E.; Ozkara, E.; Sam, B.; Ucan, B.; Kurtulus, S.; Karkiner, A.; Temir, G. Structural changes of smooth muscle in congenital ureteropelvic junction obstruction. J. Pediatr. Surg. 2005, 40, 1632–1636. [Google Scholar] [CrossRef]
- Matsell, D.G.; Tarantal, A.F. Experimental models of fetal obstructive nephropathy. Pediatr. Nephrol. 2002, 17, 470–476. [Google Scholar] [CrossRef]
- Kumar, K.; Ahmad, A.; Kumar, S.; Choudhry, V.; Tiwari, R.K.; Singh, M.; Muzaffar, M.A. Evaluation of Renal Histopathological Changes, as a Predictor of Recoverability of Renal Function Following Pyeloplasty for Ureteropelvic Junction Obstruction. Nephrourol. Mon. 2015, 7, e28051. [Google Scholar] [CrossRef]
- Elder, J.S.; Stansbrey, R.; Dahms, B.B.; Selzman, A.A. Renal histological changes secondary to ureteropelvic junction obstruction. J. Urol. 1995, 154, 719–722. [Google Scholar] [CrossRef]
- Peters, C.A. Obstruction of the fetal urinary tract. J. Am. Soc. Nephrol. 1997, 8, 653–663. [Google Scholar] [CrossRef]
- Jensen, M.E.; Odgaard, E.; Christensen, M.H.; Praetorius, H.A.; Leipziger, J. Flow-induced [Ca2+]i increase depends on nucleotide release and subsequent purinergic signaling in the intact nephron. J. Am. Soc. Nephrol. 2007, 18, 2062–2070. [Google Scholar] [CrossRef]
- Babu, R.; Vittalraj, P.; Sundaram, S.; Shalini, S. Pathological changes in ureterovesical and ureteropelvic junction obstruction explained by fetal ureter histology. J. Pediatr. Urol. 2019, 15, 240.e1–240.e7. [Google Scholar] [CrossRef]
- Richstone, L.; Seideman, C.A.; Reggio, E.; Bluebond-Langner, R.; Pinto, P.A.; Trock, B.; Kavoussi, L.R. Pathologic findings in patients with ureteropelvic junction obstruction and crossing vessels. Urology 2009, 73, 716–719. [Google Scholar] [PubMed]
- Huang, W.Y.; Peters, C.A.; Zurakowski, D.; Borer, J.G.; Diamond, D.A.; Bauer, S.B.; McLellan, D.L.; Rosen, S. Renal biopsy in congenital ureteropelvic junction obstruction: Evidence for parenchymal maldevelopment. Kidney Int. 2006, 69, 137–143. [Google Scholar] [PubMed]
- Nagle, R.B.; Bulger, R.E. Unilateral obstructive nephropathy in the rabbit. II. Late morphologic changes. Lab. Investig. 1978, 38, 270–278. [Google Scholar] [PubMed]
- Chevalier, R.L.; Kaiser, D.L. Chronic partial ureteral obstruction in the neonatal guinea pig. I. Influence of uninephrectomy on growth and hemodynamics. Pediatr. Res. 1984, 18, 1266–1271. [Google Scholar]
- Buerkert, J.; Head, M.; Klahr, S. Effects of acute bilateral ureteral obstruction on deep nephron and terminal collecting duct function in the young rat. J. Clin. Investig. 1977, 59, 1055–1065. [Google Scholar] [CrossRef]
- Chevalier, R.L.; Jones, C.E. Contribution of endogenous vasoactive compounds to renal vascular resistance in neonatal chronic partial ureteral obstruction. J. Urol. 1986, 136, 532–535. [Google Scholar]
- Chevalier, R.L.; Forbes, M.S.; Thornhill, B.A. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int. 2009, 75, 1145–1152. [Google Scholar] [CrossRef]
- Zhao, Q.; Yang, Y.; Wang, C.L.; Hou, Y.; Chen, H. Screening and identification of the differential proteins in kidney with complete unilateral ureteral obstruction. Int. J. Clin. Exp. Pathol. 2015, 8, 2615–2626. [Google Scholar]
- Klahr, S. Obstructive nephropathy. Intern. Med. 2000, 39, 355–361. [Google Scholar] [CrossRef]
- Thornhill, B.A.; Burt, L.E.; Chen, C.; Forbes, M.S.; Chevalier, R.L. Variable chronic partial ureteral obstruction in the neonatal rat: A new model of ureteropelvic junction obstruction. Kidney Int. 2005, 67, 42–52. [Google Scholar]
- Thornhill, B.A.; Chevalier, R.L. Variable partial unilateral ureteral obstruction and its release in the neonatal and adult mouse. Methods Mol. Biol. 2012, 886, 381–392. [Google Scholar] [PubMed]
- Josephson, S. Experimental obstructive hydronephrosis in newborn rats. III. Long-term effects on renal function. J. Urol. 1983, 129, 396–400. [Google Scholar] [PubMed]
- Nørregaard, R.; Mutsaers, H.A.M.; Frøkiær, J.; Kwon, T.H. Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis. Physiol. Rev. 2023, 103, 2827–2872. [Google Scholar] [PubMed]
- Klahr, S.; Morrison, A.; Buerkert, J. Effects of urinary tract obstruction on renal function. Contrib. Nephrol. 1980, 23, 34–46. [Google Scholar]
- Klahr, S.; Harris, K.; Purkerson, M.L. Effects of obstruction on renal functions. Pediatr. Nephrol. 1988, 2, 34–42. [Google Scholar]
- Wang, K.; Liao, Q.; Chen, X. Research progress on the mechanism of renal interstitial fibrosis in obstructive nephropathy. Heliyon. 2023, 9, e18723. [Google Scholar]
- Nagle, R.B.; Bulger, R.E.; Cutler, R.E.; Jervis, H.R.; Benditt, E.P. Unilateral obstructive nephropathy in the rabbit I. Early morphologic, physiologic and histological changes. Lab. Investig. 1973, 28, 456–467. [Google Scholar]
- Sharma, A.K.; Mauer, S.M.; Kim, Y.; Michael, A.F. Interstitial fibrosis in obstructive nephropathy. Kidney Int. 1993, 44, 774–780. [Google Scholar]
- Waasdorp, M.; de Rooij, D.M.; Florquin, S.; Duitman, J.; Spek, C.A. Protease-activated receptor-1 contributes to renal injury and interstitial fibrosis during chronic obstructive nephropathy. J. Cell Mol. Med. 2019, 23, 1268–1279. [Google Scholar]
- Kaneto, H.; Morrissey, J.; Klahr, S. Increased expression of TGF-β1 mRNA in the obstructed kidney of rats with unilateral ligation. Kidney Int. 1993, 44, 313–321. [Google Scholar]
- Kim, J.; Seok, Y.M.; Jung, K.J.; Park, K.M. Reactive oxygen species/oxidative stress contributes to progression of kidney fibrosis following transient ischemic injury in mice. Am. J. Physiol. Renal Physiol. 2009, 297, F461–F470. [Google Scholar] [PubMed]
- Higgins, D.F.; Kimura, K.; Bernhardt, W.M.; Shrimanker, N.; Akai, Y.; Hohenstein, B.; Saito, Y.; Johnson, R.S.; Kretzler, M.; Cohen, C.D.; et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J. Clin. Investig. 2007, 117, 3810–3820. [Google Scholar] [PubMed]
- Klahr, S.; Morrissey, J. Obstructive nephropathy and renal fibrosis: The role of bone morphogenic protein-7 and hepatocyte growth factor. Kidney Int. Suppl. 2003, 87, S105–S112. [Google Scholar] [CrossRef] [PubMed]
- Klahr, S.; Morrissey, J. Obstructive nephropathy and renal fibrosis. Am. J. Physiol. Renal Physiol. 2002, 283, F861–F875. [Google Scholar]
- el-Dahr, S.S.; Gee, J.; Dipp, S.; Hanss, B.G.; Vari, R.C.; Chao, J. Upregulation of renin-angiotensin system and downregulation of kallikrein in obstructive nephropathy. Am. J. Physiol. 1993, 264, F874–F881. [Google Scholar]
- Yarger, W.E.; Schocken, D.D.; Harris, R.H. Obstructive nephropathy in the rat: Possible roles for the renin-angiotensin system, prostaglandins, and thromboxanes in postobstructive renal function. J. Clin. Investig. 1980, 65, 400–412. [Google Scholar] [CrossRef]
- Nakatani, T.; Tamada, S.; Asai, T.; Iwai, Y.; Kim, T.; Tsujino, T.; Kumata, N.; Uchida, J.; Tashiro, K.; Kuwabara, N.; et al. Role of renin-angiotensin system and nuclear factor-kappaB in the obstructed kidney of rats with unilateral ureteral obstruction. Jpn. J. Pharmacol. 2002, 90, 361–364. [Google Scholar]
- Engelmeyer, E.; Van Goor, H.; Edwards, D.R.; Diamond, J. Differential mRNA expression of renal cortical tissue inhibitor of metalloproteinase 1, -2, -3 in experimental hydronephrosis. J. Am. Soc. Nephrol. 1995, 5, 1675–1683. [Google Scholar]
- Hou, T.; Yang, X.; Hai, B.; Li, B.; Li, W.; Pan, F.; Chen, M.; Zeng, F.; Han, X. Aberrant differentiation of urothelial cells in patients with ureteropelvic junction obstruction. Int. J. Clin. Exp. Pathol. 2014, 7, 5837–5845. [Google Scholar]
- Kim, I.Y.; Lee, M.Y.; Park, M.W.; Seong, E.Y.; Lee, D.W.; Lee, S.B.; Bae, S.S.; Kim, S.S.; Song, S.H. Deletion of Akt1 Promotes Kidney Fibrosis in a Murine Model of Unilateral Ureteral Obstruction. Biomed. Res. Int. 2020, 2020, 6143542. [Google Scholar]
- Fu, H.; Chu, L.; Yuan, Y.S.; Liao, S.; Wang, G.H. Circular RNA ACTR2 activates M2 polarization of macrophages through activating Yes-associated protein signalling and contributes to renal fibrosis. Immunology 2022, 167, 606–621. [Google Scholar] [PubMed]
- Zhao, S.; Li, W.; Yu, W.; Rao, T.; Li, H.; Ruan, Y.; Yuan, R.; Li, C.; Ning, J.; Li, S.; et al. Exosomal miR-21 from tubular cells contributes to renal fibrosis by activating fibroblasts via targeting PTEN in obstructed kidneys. Theranostics 2021, 11, 8660–8673. [Google Scholar] [CrossRef] [PubMed]
- Begou, O.; Pavlaki, A.; Deda, O.; Bollenbach, A.; Drabert, K.; Gika, H.; Farmaki, E.; Dotis, J.; Printza, N.; Theodoridis, G.; et al. Diminished Systemic Amino Acids Metabolome and Lipid Peroxidation in Ureteropelvic Junction Obstruction (UPJO) Infants Requiring Surgery. J. Clin. Med. 2021, 10, 1467. [Google Scholar] [CrossRef] [PubMed]
- Tourchi, A.; Kajbafzadeh, A.M.; Ebadi, M.; Tavangar, S.M.; Jarooghi, N. The association between impaired autophagy and the development of congenital ureteropelvic junction obstruction. Urology 2014, 84, 1467–1474. [Google Scholar]
- Zarjou, A.; Yang, S.; Abraham, E.; Agarwal, A.; Liu, G. Identification of a microRNA signature in renal fibrosis: Role of miR-21. Am. J. Physiol. Renal Physiol. 2011, 301, F793–F801. [Google Scholar] [CrossRef]
- Qin, W.; Chung, A.C.; Huang, X.R.; Meng, X.M.; Hui, D.S.; Yu, C.M.; Sung, J.J.; Lan, H.Y. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J. Am. Soc. Nephrol. 2011, 22, 1462–1474. [Google Scholar] [CrossRef]
- Chau, B.N.; Xin, C.; Hartner, J.; Ren, S.; Castano, A.P.; Linn, G.; Li, J.; Tran, P.T.; Kaimal, V.; Huang, X.; et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl. Med. 2012, 4, 121ra18. [Google Scholar]
- Wang, G.; Kwan, B.C.; Lai, F.M.; Chow, K.M.; Li, P.K.; Szeto, C.C. Urinary miR-21, miR-29, and miR-93: Novel biomarkers of fibrosis. Am. J. Nephrol. 2012, 36, 412–418. [Google Scholar]
- Kou, M.; Huang, L.; Yang, J.; Chiang, Z.; Chen, S.; Liu, J.; Guo, L.; Zhang, X.; Zhou, X.; Xu, X.; et al. Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: A next generation therapeutic tool? Cell Death Dis. 2022, 13, 580. [Google Scholar]
- Li, B.; Qi, C.; Zhang, Y.; Shi, L.; Zhang, J.; Qian, H.; Ji, C. Frontier role of extracellular vesicles in kidney disease. J. Nanobiotechnol. 2024, 22, 583. [Google Scholar]
- Alberti, G.; Sánchez-López, C.M.; Andres, A.; Santonocito, R.; Campanella, C.; Cappello, F.; Marcilla, A. Molecular Profile Study of Extracellular Vesicles for the Identification of Useful Small “Hit” in Cancer Diagnosis. Appl. Sci. 2021, 11, 10787. [Google Scholar] [CrossRef]
- Alberti, G.; Sánchez-López, C.M.; Marcilla, A.; Barone, R.; Caruso Bavisotto, C.; Graziano, F.; Conway de Macario, E.; Macario, A.J.L.; Bucchieri, F.; Cappello, F.; et al. Hsp70 and Calcitonin Receptor Protein in Extracellular Vesicles from Glioblastoma Multiforme: Biomarkers with Putative Roles in Carcinogenesis and Potential for Differentiating Tumor Types. Int. J. Mol. Sci. 2024, 25, 3415. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.; Alberti, G.; Corrao, S.; Borlongan, C.V.; Miceli, V.; Conaldi, P.G.; Di Gaudio, F.; La Rocca, G. The Truth Is Out There: Biological Features and Clinical Indications of Extracellular Vesicles from Human Perinatal Stem Cells. Cells 2023, 12, 2347. [Google Scholar] [CrossRef]
- Barekzai, J.; Refflinghaus, L.; Okpara, M.; Tasto, L.; Tertel, T.; Giebel, B.; Czermak, P.; Salzig, D. Process development for the production of mesenchymal stromal cell-derived extracellular vesicles in conventional 2D systems. Cytotherapy 2024, 26, 999–1012. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, Z.; Xing, X.; Deng, Y.; Li, W.; Xie, T.; Jiang, D. Matrix Remodeling-Associated Protein 5 in Urinary Exosomes as a Potential Novel Marker of Obstructive Nephropathy in Children With Ureteropelvic Junction Obstruction. Front. Pediatr. 2020, 8, 504. [Google Scholar] [CrossRef]
- Bu, L.; Zhang, L.; Wang, X.; Du, G.; Wu, R.; Liu, W. Association between NDUFS1 from urinary extracellular vesicles and decreased differential renal function in children with ureteropelvic junction obstruction. BMC Nephrol. 2024, 25, 158. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, H.; Wang, B.; Yuan, Y.; Klein, J.D.; Wang, X.H. Exogenous miR-26a suppresses muscle wasting and renal fibrosis in obstructive kidney disease. FASEB J. 2019, 33, 13590–13601. [Google Scholar] [CrossRef]
- Laronha, H.; Caldeira, J. Structure and Function of Human Matrix Metalloproteinases. Cells 2020, 9, 1076. [Google Scholar] [CrossRef]
- Nagase, H.; Visse, R.; Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 2006, 69, 562–573. [Google Scholar] [CrossRef]
- Tan, R.J.; Liu, Y. Matrix metalloproteinases in kidney homeostasis and diseases. Am. J. Physiol. Renal Physiol. 2012, 302, F1351–F1361. [Google Scholar] [CrossRef]
- Cabral-Pacheco, G.A.; Garza-Veloz, I.; Castruita-De la Rosa, C.; Ramirez-Acuña, J.M.; Perez-Romero, B.A.; Guerrero-Rodriguez, J.F.; Martinez-Avila, N.; Martinez-Fierro, M.L. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int. J. Mol. Sci. 2020, 21, 9739. [Google Scholar] [CrossRef] [PubMed]
- Provenzano, M.; Andreucci, M.; Garofalo, C.; Faga, T.; Michael, A.; Ielapi, N.; Grande, R.; Sapienza, P.; Franciscis, S.; Mastroroberto, P.; et al. The Association of Matrix Metalloproteinases with Chronic Kidney Disease and Peripheral Vascular Disease: A Light at the End of the Tunnel? Biomolecules 2020, 10, 154. [Google Scholar] [CrossRef] [PubMed]
- La Russa, A.; Serra, R.; Faga, T.; Crugliano, G.; Bonelli, A.; Coppolino, G.; Bolignano, D.; Battaglia, Y.; Ielapi, N.; Costa, D.; et al. Kidney Fibrosis and Matrix Metalloproteinases (MMPs). Front. Biosci. (Landmark Ed.) 2024, 29, 192. [Google Scholar]
- Raeeszadeh-Sarmazdeh, M.; Do, L.D.; Hritz, B.G. Metalloproteinases and Their Inhibitors: Potential for the Development of New Therapeutics. Cells 2020, 9, 1313. [Google Scholar] [CrossRef]
- Adamidis, K.N.; Kopaka, M.E.; Petraki, C.; Charitaki, E.; Apostolou, T.; Christodoulidou, C.; Nikolopoulou, N.; Giatromanolaki, A.; Vargemesis, V.; Passadakis, P. Glomerular expression of matrix metalloproteinases in systemic lupus erythematosus in association with activity index and renal function. Ren. Fail. 2019, 41, 229–237. [Google Scholar] [CrossRef]
- Ronco, P.; Chatziantoniou, C. Matrix metalloproteinases and matrix receptors in progression and reversal of kidney disease: Therapeutic perspectives. Kidney Int. 2008, 74, 873–878. [Google Scholar]
- Garcia-Fernandez, N.; Jacobs-Cachá, C.; Mora-Gutiérrez, J.M.; Vergara, A.; Orbe, J.; Soler, M.J. Matrix Metalloproteinases in Diabetic Kidney Disease. J. Clin. Med. 2020, 9, 472. [Google Scholar] [CrossRef]
- Enoksen, I.T.; Svistounov, D.; Norvik, J.V.; Stefansson, V.T.N.; Solbu, M.D.; Eriksen, B.O.; Melsom, T. Serum matrix metalloproteinase 7 and accelerated glomerular filtration rate decline in a general non-diabetic population. Nephrol. Dial. Transplant. 2022, 37, 1657–1667. [Google Scholar] [CrossRef]
- Schaefer, L.; Han, X.; Gretz, N.; Häfner, C.; Meier, K.; Matzkies, F.; Schaefer, R.M. Tubular gelatinase A (MMP-2) and its tissue inhibitors in polycystic kidney disease in the Han:SPRD rat. Kidney Int. 1996, 49, 75–81. [Google Scholar]
- Inkinen, K.A.; Soots, A.P.; Krogerus, L.A.; Lautenschlager, I.T.; Ahonen, J.P. Fibrosis and matrix metalloproteinases in rat renal allografts. Transpl. Int. 2005, 18, 506–512. [Google Scholar]
- Li, Q.; Park, P.W.; Wilson, C.L.; Parks, W.C. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 2002, 111, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Toth, M.; Chvyrkova, I.; Bernardo, M.M.; Hernandez-Barrantes, S.; Fridman, R. Pro-MMP-9 activation by the MT1-MMP/MMP-2 axis and MMP-3: Role of TIMP-2 and plasma membranes. Biochem. Biophys. Res. Commun. 2003, 308, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Morrison, C.J.; Butler, G.S.; Rodríguez, D.; Overall, C.M. Matrix metalloproteinase proteomics: Substrates, targets, and therapy. Curr. Opin. Cell Biol. 2009, 21, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Musiał, K.; Zwolińska, D. Matrix metalloproteinases (MMP-2,9) and their tissue inhibitors (TIMP-1,2) as novel markers of stress response and atherogenesis in children with chronic kidney disease (CKD) on conservative treatment. Cell Stress Chaperones 2011, 16, 97–103. [Google Scholar] [CrossRef]
- Okada, Y.; Gonoji, Y.; Naka, K.; Tomita, K.; Nakanishi, I.; Iwata, K.; Yamashita, K.; Hayakawa, T. Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT 1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymic properties. J. Biol. Chem. 1992, 267, 21712–21719. [Google Scholar] [CrossRef]
- Olson, M.W.; Toth, M.; Gervasi, D.C.; Sado, Y.; Ninomiya, Y.; Fridman, R. High affinity binding of latent matrix metalloproteinase-9 to the alpha2(IV) chain of collagen IV. J. Biol. Chem. 1998, 273, 10672–10681. [Google Scholar] [CrossRef]
- Brew, K.; Nagase, H. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity. Biochim. Biophys. Acta 2010, 1803, 55–71. [Google Scholar] [CrossRef]
- Hamze, A.B.; Wei, S.; Bahudhanapati, H.; Kota, S.; Acharya, K.R.; Brew, K. Constraining specificity in the N-domain of tissue inhibitor of metalloproteinases-1; gelatinase-selective inhibitors. Protein Sci. 2007, 16, 1905–1913. [Google Scholar] [CrossRef]
- Liu, Z.; Tan, R.J.; Liu, Y. The Many Faces of Matrix Metalloproteinase-7 in kidney diseases. Biomolecules 2020, 10, 960. [Google Scholar] [CrossRef]
- Parrish, A.R. Matrix Metalloproteinases in Kidney Disease: Role in Pathogenesis and Potential as a Therapeutic Target. Prog. Mol. Biol. Transl. Sci. 2017, 148, 31–65. [Google Scholar]
- Zhao, H.; Dong, Y.; Tian, X.; Tan, T.K.; Liu, Z.; Zhao, Y.; Zhang, Y.; Harris, D.C.; Zheng, G. Matrix metalloproteinases contribute to kidney fibrosis in chronic kidney diseases. World J. Nephrol. 2013, 2, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Aresu, L.; Benali, S.; Garbisa, S.; Gallo, E.; Castagnaro, M. Matrix metalloproteinases and their role in the renal epithelial mesenchymal transition. Histol. Histopathol. 2011, 26, 307–313. [Google Scholar] [PubMed]
- Sharma, A.K.; Mauer, S.M.; Kim, Y.; Michael, A.F. Altered expression of matrix metalloproteinase-2, TIMP, and TIMP-2 in obstructive nephropathy. J. Lab. Clin. Med. 1995, 125, 754–761. [Google Scholar]
- Tveitarås, M.K.; Skogstrand, T.; Leh, S.; Helle, F.; Iversen, B.M.; Chatziantoniou, C.; Reed, R.K.; Hultström, M. Matrix Metalloproteinase-2 Knockout and Heterozygote Mice Are Protected from Hydronephrosis and Kidney Fibrosis after Unilateral Ureteral Obstruction. PLoS ONE 2015, 10, e0143390. [Google Scholar]
- Nicksa, G.A.; O’Neil, E.; Yu, D.C.; Curatolo, A.S.; McNeish, B.L.; Barnewolt, C.E.; Zurakowski, D.; Buchmiller, T.L.; Moses, M.A.; Rosen, S.; et al. Correlation between prenatal urinary matrix metalloproteinase activity and the degree of kidney damage in a large animal model of congenital obstructive uropathy. J. Pediatr. Surg. 2010, 45, 1120–1125. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiao, X.; Tan, T.K.; Zhao, H.; Zhang, Y.; Liu, L.; Zhang, J.; Wang, L.; Cao, Q.; Wang, Y.; et al. Matrix metalloproteinase 9-dependent Notch signaling contributes to kidney fibrosis through peritubular endothelial-mesenchymal transition. Nephrol. Dial. Transplant. 2017, 32, 781–791. [Google Scholar]
- Zhao, Y.; Qiao, X.; Wang, L.; Tan, T.K.; Zhao, H.; Zhang, Y.; Zhang, J.; Rao, P.; Cao, Q.; Wang, Y.; et al. Matrix metalloproteinase 9 induces endothelial-mesenchymal transition via Notch activation in human kidney glomerular endothelial cells. BMC Cell Biol. 2016, 17, 21. [Google Scholar]
- Pavlaki, A.; Printza, N.; Farmaki, E.; Stabouli, S.; Taparkou, A.; Dotis, J.; Papachristou, F. Matrix metalloproteinases in ureteropelvic junction obstruction. Hippokratia 2017, 21, 136–139. [Google Scholar]
- Kaya, C.; Bogaert, G.; de Ridder, D.; Schwentner, C.; Fritsch, H.; Oswald, J.; Radmayr, C. Extracellular matrix degradation and reduced neural density in children with intrinsic ureteropelvic junction obstruction. Urology 2010, 76, 185–189. [Google Scholar]
- Wang, Z.; Famulski, K.; Lee, J.; Das, S.K.; Wang, X.; Halloran, P.; Oudit, G.Y.; Kassiri, Z. TIMP2 and TIMP3 have divergent roles in early renal tubulointerstitial injury. Kidney Int. 2014, 85, 82–93. [Google Scholar]
- Mello, M.F.; Thalita Dos Reis, S.; Kondo, E.Y.; de Bessa Júnior, J.; Dénes, F.T.; Lopes, R.I. Urinary extracellular matrix proteins as predictors of the severity of ureteropelvic junction obstruction in children. J. Pediatr. Urol. 2021, 17, 438.e1–438.e7. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.S.; Cho, P.S.; Zhi, H.; Kostel, S.A.; DiMartino, S.; Dagher, A.M.; Davis, K.H.; Cabour, L.D.; Shimmel, A.; Lee, J.; et al. Association between urinary biomarkers MMP-7/TIMP-2 and reduced renal function in children with ureteropelvic junction obstruction. PLoS ONE 2022, 17, e0270018. [Google Scholar] [CrossRef] [PubMed]
- Matsui, F.; Babitz, S.K.; Rhee, A.; Hile, K.L.; Zhang, H.; Meldrum, K.K. Mesenchymal stem cells protect against obstruction-induced renal fibrosis by decreasing STAT3 activation and STAT3-dependent MMP-9 production. Am. J. Physiol. Renal Physiol. 2017, 312, F25–F32. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.K.; Zheng, G.; Hsu, T.T.; Lee, S.R.; Zhang, J.; Zhao, Y.; Tian, X.; Wang, Y.; Wang, Y.M.; Cao, Q.; et al. Matrix metalloproteinase-9 of tubular and macrophage origin contributes to the pathogenesis of renal fibrosis via macrophage recruitment through osteopontin cleavage. Lab. Investig. 2013, 93, 434–449. [Google Scholar] [CrossRef]
- Reis, S.T.; Leite, K.R.M.; Viana, N.I.; Lopes, R.I.; Moura, C.M.; Ivanovic, R.F.; Machado, M.; Denes, F.T.; Giron, A.; Nahas, W.C.; et al. MMP9 overexpression is associated with good surgical outcome in children with UPJO: Preliminary results. BMC Urol. 2016, 16, 44. [Google Scholar] [CrossRef]
- Bieniaś, B.; Sikora, P. Selected Metal Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases as Potential Biomarkers for Tubulointerstitial Fibrosis in Children with Unilateral Hydronephrosis. Dis. Markers 2020, 2020, 9520309. [Google Scholar] [CrossRef]
- Mello, M.F.; de Bessa Júnior, J.; Reis, S.T.; Kondo, E.Y.; Yu, L.; Dénes, F.T.; Lopes, R.I. Evaluating TIMP-2 and IGFBP-7 as a predictive tool for kidney injury in ureteropelvic junction obstruction. Int. Braz. J. Urol. 2022, 48, 284–293. [Google Scholar] [CrossRef]
- Delrue, C.; Speeckaert, M.M. Tissue Inhibitor of Metalloproteinases-2 (TIMP-2) as a Prognostic Biomarker in Acute Kidney Injury: A Narrative Review. Diagnostics 2024, 14, 1350. [Google Scholar] [CrossRef]
- Papachristou, F.; Pavlaki, A.; Printza, N. Urinary and serum biomarkers in ureteropelvic junction obstruction: A systematic review. Biomarkers 2014, 19, 531–540. [Google Scholar] [CrossRef]
- El-Sherbiny, M.T.; Mousa, O.M.; Shokeir, A.A.; Ghoneim, M.A. Role of urinary transforming growth factor-beta1 concentration in the diagnosis of upper urinary tract obstruction in children. J. Urol. 2002, 168, 1798–1800. [Google Scholar] [CrossRef]
- Taranta-Janusz, K.; Wasilewska, A.; Dębek, W.; Fiłonowicz, R.; Michaluk-Skutnik, J. Urinary angiotensinogen as a novel marker of obstructive nephropathy in children. Acta Paediatr. 2013, 102, e429–e433. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiao, L.; Qiang, C.; Chen, C.; Shen, Z.; Ding, F.; Lv, L.; Zhu, T.; Lu, Y.; Cui, X. The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms. Biomed. Pharmacother. 2024, 171, 116116. [Google Scholar]
- Cheng, Z.; Zhang, X.; Zhang, Y.; Li, L.; Chen, P. Role of MMP-2 and CD147 in kidney fibrosis. Open Life Sci. 2022, 17, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Limbu, M.H.; Wang, Z.; Liu, J.; Liu, L.; Zhang, X.; Chen, P.; Liu, B. MMP-2 and 9 in Chronic Kidney Disease. Int. J. Mol. Sci. 2017, 18, 776. [Google Scholar] [CrossRef]
- Ke, B.; Fan, C.; Yang, L.; Fang, X. Matrix Metalloproteinases-7 and Kidney Fibrosis. Front. Physiol. 2017, 8, 21. [Google Scholar] [CrossRef]
- Hall, M.C.; Young, D.A.; Waters, J.G.; Rowan, A.D.; Chantry, A.; Edwards, D.R.; Clark, I.M. The comparative role of activator protein 1 and Smad factors in the regulation of Timp-1 and MMP-1 gene ex- pression by transforming growth factor-beta 1. J. Biol. Chem. 2003, 278, 10304–10313. [Google Scholar]
- Strutz, F.; Zeisberg, M.; Ziyadeh, F.N.; Yang, C.Q.; Kalluri, R.; Müller, G.A.; Neilson, E.G. Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int. 2002, 61, 1714–1728. [Google Scholar]
- Yang, J.; Shultz, R.W.; Mars, W.M.; Wegner, R.E.; Li, Y.; Dai, C.; Nejak, K.; Liu, Y. Disruption of tissue-type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy. J. Clin. Investig. 2002, 110, 1525–1538. [Google Scholar]
- Hu, K.; Yang, J.; Tanaka, S.; Gonias, S.L.; Mars, W.M.; Liu, Y. Tissue-type plasminogen activator acts as a cytokine that triggers intracellular signal transduction and induces matrix metalloproteinase-9 gene expression. J. Biol. Chem. 2006, 281, 2120–2127. [Google Scholar]
- Fernandez-Patron, C.; Leung, D. Emergence of a metallopro-teinase/phospholipase A2 axis of systemic inflammation. Met. Med. 2015, 2, 29–38. [Google Scholar]
- Özel, S.K.; Emir, H.; Dervişoğlu, S.; Akpolat, N.; Şenel, B.; Kazez, A.; Söylet, Y.; Çetin, G.; Danişmend, N.; Büyükünal, S.N. The roles of extracellular matrix proteins, apoptosis and c-kit positive cells in the pathogenesis of ureteropelvic junction obstruction. J. Pediatr. Urol. 2010, 6, 125–129. [Google Scholar] [PubMed]
- Kajbafzadeh, A.M.; Payabvash, S.; Salmasi, A.H.; Monajemzadeh, M.; Tavangar, S.M. Smooth muscle cell apoptosis and defective neural development in congenital ureteropelvic junction obstruction. J. Urol. 2006, 176, 718–723. [Google Scholar] [PubMed]
- Murakumo, M.; Nonomura, K.; Yamashita, T.; Ushiki, T.; Abe, K.; Koyanagi, T. Structural changes of collagen components and diminution of nerves in congenital ureteropelvic junction obstruction. J. Urol. 1997, 157, 1963–1968. [Google Scholar] [PubMed]
- Chirco, R.; Liu, X.W.; Jung, K.K.; Kim, H.R.C. Novel functions of TIMPs in cell signaling. Cancer Metastasis Rev. 2006, 25, 99–113. [Google Scholar]
- Forbes, M.S.; Thornhill, B.A.; Minor, J.J.; Gordon, K.A.; Galarreta, C.I.; Chevalier, R.L. Fight-or-flight: Murine unilateral ureteral obstruction causes extensive proximal tubular degeneration, collecting duct dilatation, and minimal fibrosis. Am. J. Physiol. Renal Physiol. 2012, 303, F120–F129. [Google Scholar]
- Passoni, N.M.; Peters, C.A. Managing Ureteropelvic Junction Obstruction in the Young Infant. Front. Pediatr. 2020, 8, 242. [Google Scholar]
- Kökény, G.; Németh, Á.; Kopp, J.B.; Chen, W.; Oler, A.J.; Manzéger, A.; Rosivall, L.; Mózes, M.M. Susceptibility to kidney fibrosis in mice is associated with early growth response-2 protein and tissue inhibitor of metalloproteinase-1 expression. Kidney Int. 2022, 102, 337–354. [Google Scholar]
- Tan, R.J.; Liu, Y. Matrix metalloproteinases in kidney homeostasis and diseases: An update. Am. J. Physiol. Renal Physiol. 2024, 327, F967–F984. [Google Scholar]
- Kim, K.P.; Williams, C.E.; Lemmon, C.A. Cell-Matrix Interactions in Renal Fibrosis. Kidney Dial. 2022, 2, 607–624. [Google Scholar] [CrossRef]
- Okada, R.; Kawai, S.; Naito, M.; Hishida, A.; Hamajima, N.; Shinchi, K.; Chowdhury Turin, T.; Suzuki, S.; Mantjoro, E.M.; Toyomura, K.; et al. Multi-Institutional Collaborative Cohort (J-MICC) Study Group. Matrix metalloproteinase-9 gene polymorphisms and chronic kidney disease. Am. J. Nephrol. 2012, 36, 444–450. [Google Scholar]
- Thrailkill, K.M.; Bunn, R.C.; Moreau, C.S.; Cockrell, G.E.; Simpson, P.M.; Coleman, H.N.; Frindik, J.P.; Kemp, S.F.; Fowlkes, J.L. Matrix metalloproteinase-2 dysregulation in type 1 diabetes. Diabetes Care 2007, 30, 2321–2326. [Google Scholar] [PubMed]
- Urushihara, M.; Kagami, S.; Kuhara, T.; Tamaki, T.; Kuroda, Y. Glomerular distribution and gelatinolytic activity of matrix metalloproteinases in human glomerulonephritis. Nephrol. Dial. Transplant. 2002, 17, 1189–1196. [Google Scholar] [PubMed]
- Nakamura, T.; Ushiyama, C.; Suzuki, S.; Ebihara, I.; Shimada, N.; Koide, H. Elevation of serum levels of metalloproteinase-1, tissue inhibitor of metalloproteinase-1 and type IV collagen, and plasma levels of metalloproteinase-9 in polycystic kidney disease. Am. J. Nephrol. 2000, 20, 32–36. [Google Scholar] [PubMed]
- Elster, E.A.; Hawksworth, J.S.; Cheng, O.; Leeser, D.B.; Ring, M.; Tadaki, D.K.; Kleiner, D.E.; Eberhardt, J.S.; Brown, T.S.; Mannon, R.B. Probabilistic (Bayesian) modeling of gene expression in transplant glomerulopathy. J. Mol. Diagn. 2010, 12, 653–663. [Google Scholar]
- Ling, X.B.; Sigdel, T.K.; Lau, K.; Ying, L.; Lau, I.; Schilling, J.; Sarwal, M.M. Integrative urinary peptidomics in renal transplantation identifies biomarkers for acute rejection. J. Am. Soc. Nephrol. 2010, 21, 646–653. [Google Scholar]
- Wong, W.; DeVito, J.; Nguyen, H.; Sarracino, D.; Porcheray, F.; Dargon, I.; Pelle, P.D.; Collins, A.B.; Tolkoff-Rubin, N.; Smith, R.N.; et al. Chronic humoral rejection of human kidney allografts is associated with MMP-2 accumulation in podocytes and its release in the urine. Am. J. Transplant. 2010, 10, 2463–2471. [Google Scholar]
- Montenegro, F.; Giannuzzi, F.; Picerno, A.; Cicirelli, A.; Stea, E.D.; Di Leo, V.; Sallustio, F. How Stem and Progenitor Cells Can Affect Renal Diseases. Cells 2024, 13, 1460. [Google Scholar] [CrossRef]
- Ji, Y.; Sun, L.; Fei, S.; Gao, X.; Chen, H.; Han, Z.; Tao, J.; Ju, X.; Wang, Z.; Tan, R.; et al. Long-term outcomes in rapamycin on renal allograft function: A 30-year follow-up from a single-center experience. BMC Nephrol. 2024, 25, 311. [Google Scholar]
- Chan, Y.Y.; Durbin-Johnson, B.; Sturm, R.M.; Kurzrock, E.A. Outcomes after pediatric open, laparoscopic, and robotic pyeloplasty at academic institutions. J. Pediatr. Urol. 2017, 13, 49.e1–49.e6. [Google Scholar]
Animal Models of UPJ Obstruction | Pathophysiology of Obstruction | References |
---|---|---|
Unilateral complete ureteral obstruction rabbit model | – Papillary necrosis within 7 days of obstruction with continued enlargement of the cortical interstitial area with a significant increase in fibroblasts – Sublethal cellular damage with loss of cellular specialization of the nephrons | [44] |
Unilateral partial ureteral obstruction newborn guinea pig model | – Impaired somatic growth – Mean arterial pressure unchanged – Increased renal vascular resistance related to a decrease in perfused glomeruli with respect to the hypertrophic contralateral kidney – Decreased glomerular filtration rate | [45] |
Bilateral ureteral obstruction young rat model | – Diminution of the single nephron glomerular filtration rate – Decrease in the reabsorption of Na and H2O before the bend of the loop of Henle – Alteration in fluid osmolality | [46] |
MMPs and TIMPs | In Vivo Studies | UPJ Obstruction Condition | Pathophysiological Aspects | References |
---|---|---|---|---|
TIMP-1, TIMP-2, TIMP-3 | Rat model | UUO | (i) In obstructed kidneys, increased TIMP-1 mRNA leads to the upregulation of TGF beta 1 post-UUO (ii) Reduction in the TIMP-3 mRNA expression levels after 24, 48, and 96 h (iii) The expression level of the TIMP-2 gene remains unchanged | [69] |
MMP-2, TIMP, TIMP-2 | Rabbit model | UUO | (i) Increased expression of mRNA of MMP-2 (ii) Significant growth of TIMPs in the UUO samples at all times (iii) TIMP-2 mRNA expression is biphasic, with peaks at both day 3 and day 16 of UUO | [114] |
MMP-2 and MMP-9 | Mouse model | UUO | (i) Elevated MMP-2 expression showed more histological damage (ii) Inactivation of MMP-2 protects mice against hydronephrosis and kidney fibrosis after UUO (iii) Inhibition of MMP-9 decreases the EMT and the fibrotic process during the early stages of onset or in the chronic phase, but not during the evolution of fibrosis | [19,115] |
MMP-2 and MMP-9 | Fetal ovine model | CUO | (i) Urinary MMP-9 constitutes a highly significant predictor of renal fibrosis and of higher degrees of fibrosis (ii) Urinary MMP-2 is found to be notably associated with a high degree of fibrosis | [116] |
MMP-9 | Mouse model | UUO | (i) MMP-9 also promotes the EMT of peritubular endothelial cells and contributes to kidney fibrosis (ii) MMP-9 induces the EMT via Notch activation in kidney glomerular endothelial cells | [117,118] |
MMP-2 | Human model (median age of 1.5 months) | UPJ | (i) The levels of MMP-2 expression represent matrix turnover in obstructed UPJ segments | [119] |
MMP-2 | Human model (mean age of 103.2 months) | UPJ | (i) Elevated levels of MMP-2 as compared to the healthy controls (ii) MMP-2 induces the replacement of smooth muscle cells with connective tissue | [120] |
MMP-1,-2,-9 and TIMP-1,-2 | Human model (children, 1 month–18 years) | UPJO | (i) Elevated levels of urinary MMP-2, TIMP-1, and TIMP-2 (ii) Elevated urinary TIMP-2 levels correlate with the severity of obstruction (iii) Urinary TIMP-1 and TIMP-2 decrease after pyeloplasty | [121,122] |
MMP-7 and TIMP-2 | Human model (median age of 3.3 years) | UPJO | (i) Increased levels of urinary MMP-7 and TIMP-2 as a prognostic and diagnostic tool for UPJO children | [123] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alberti, G.; Russo, E.; Lo Iacono, M.; Di Pace, M.R.; Grasso, F.; Baldanza, F.; Pensabene, M.; La Rocca, G.; Sergio, M. Matrix Metalloproteinases in Ureteropelvic Junction Obstruction: Their Role in Pathogenesis and Their Use as Clinical Markers. Cells 2025, 14, 520. https://doi.org/10.3390/cells14070520
Alberti G, Russo E, Lo Iacono M, Di Pace MR, Grasso F, Baldanza F, Pensabene M, La Rocca G, Sergio M. Matrix Metalloproteinases in Ureteropelvic Junction Obstruction: Their Role in Pathogenesis and Their Use as Clinical Markers. Cells. 2025; 14(7):520. https://doi.org/10.3390/cells14070520
Chicago/Turabian StyleAlberti, Giusi, Eleonora Russo, Melania Lo Iacono, Maria Rita Di Pace, Francesco Grasso, Fabio Baldanza, Marco Pensabene, Giampiero La Rocca, and Maria Sergio. 2025. "Matrix Metalloproteinases in Ureteropelvic Junction Obstruction: Their Role in Pathogenesis and Their Use as Clinical Markers" Cells 14, no. 7: 520. https://doi.org/10.3390/cells14070520
APA StyleAlberti, G., Russo, E., Lo Iacono, M., Di Pace, M. R., Grasso, F., Baldanza, F., Pensabene, M., La Rocca, G., & Sergio, M. (2025). Matrix Metalloproteinases in Ureteropelvic Junction Obstruction: Their Role in Pathogenesis and Their Use as Clinical Markers. Cells, 14(7), 520. https://doi.org/10.3390/cells14070520