Cigarette Smoke Exposure Leads to Organic and Mineral Bone Component Changes: The Importance of Rho Kinase Function in These Events
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Groups
- Control Group (C). Animals remained in the animal facility receiving filtered air ventilation (n = 9).
- Smoke Group (S). Animals were exposed to cigarette smoke for 6 weeks (n = 9).
- Control and Rho Kinase Inhibitor Group (C-RI). Animals remained in the animal facility receiving filtered air ventilation and were treated with intraperitoneal injections of a Rho kinase inhibitor (n = 8).
- Smoke and Rho Kinase Inhibitor Group (S-RI). Animals were exposed to cigarette smoke for 6 weeks and treated with intraperitoneal injections of a Rho kinase inhibitor (n = 8).
2.2. Cigarette Smoke Exposure Model
2.3. Treatment with a Rho Kinase Inhibitor and the Application of Tetracycline
2.4. Euthanasia for Tissue Collection
2.5. Bone Histological Preparation
2.6. Immunofluorescence for Type I Collagen
2.7. Histomorphometry
2.8. Immunohistochemistry for MEPE
2.9. Ethical Declarations
3. Results
3.1. Structural Parameters
3.2. Remodeling Parameters
Resorptive Indices
3.3. Formative Indices
3.4. Proportion of Type I Collagen and MEPE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Report on the Global Tobacco Epidemic, 2023 Protect People from Tobacco Smoke Fresh and Alive; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Barbosa, A.P.; Lourenço, J.D.; Junqueira, J.J.M.; Larissa Emidio de França, S.; Martins, J.S.; Oliveira Junior, M.C.; Begalli, I.; Velosa, A.P.P.; Olivo, C.R.; Bastos, T.B.; et al. The Deleterious Effects of Smoking in Bone Mineralization and Fibrillar Matrix Composition. Life Sci. 2020, 241, 117132. [Google Scholar] [CrossRef]
- Kohler, J.B.; da Silva, A.F.; Farias, W.A.; Sampaio, B.F.C.; Neves, M.A.S.; Lima, L.G.; Lourenço, J.D.; Moreira, A.R.; Barbosa, A.P.; de Fátima Lopes Calvo Tibério, I.; et al. Smoking Induces Increased Apoptosis in Osteoblasts: Changes in Bone Matrix Organic Components. Sci. Rep. 2023, 13, 6938. [Google Scholar] [CrossRef] [PubMed]
- Junqueira, J.J.M.; Lourenço, J.D.; da Silva, K.R.; Jorgetti, V.; Vieira, R.P.; de Araujo, A.A.; De Angelis, K.; Correia, A.T.; Alves, L.H.V.; de Fátima Lopes Calvo Tibério, I.; et al. Increased Bone Resorption by Long-Term Cigarette Smoke Exposure in Animal Model. Heliyon 2021, 7, e08587. [Google Scholar] [CrossRef] [PubMed]
- Orimo, H. The Mechanism of Mineralization and the Role of Alkaline Phosphatase in Health and Disease. J. Nippon. Med. Sch. 2010, 77, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, G.; Saito, Y.; Madaule, P.; Ishizaki, T.; Fujisawa, K.; Morii, N.; Mukai, H.; Ono, Y.; Kakizuka, A.; Narumiya, S. Protein Kinase N (PKN) and PKN-Related Protein as Targets of Small GTPase Rho. Science (1979) 1996, 271, 645–648. [Google Scholar]
- Katoh, K.; Kano, Y.; Noda, Y. Rho-Associated Kinase-Dependent Contraction of Stress Fibres and the Organization of Focal Adhesions. J. R. Soc. Interface 2011, 8, 305–311. [Google Scholar]
- Zhang, X.; Li, C.; Gao, H.; Nabeka, H.; Shimokawa, T.; Wakisaka, H.; Matsuda, S.; Kobayashi, N. Rho kinase inhibitors stimulate the migration of human cultured osteoblastic cells by regulating actomyosin activity. Cell Mol. Biol. Lett. 2011, 16, 279–295. [Google Scholar] [CrossRef]
- Wang, L.; You, X.; Zhang, L.; Zhang, C.; Zou, W. Mechanical regulation of bone remodeling. Bone Res. 2022, 10, 16. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Shao, Y.; Shi, D.; Chen, T.; Cui, D.; Jiang, X. Synthetic osteogenic growth peptide promotes differentiation of human bone marrow mesenchymal stem cells to osteoblasts via RhoA/ROCK pathway. Mol. Cell Biochem. 2011, 358, 221–227. [Google Scholar] [CrossRef]
- Brakebusch, C. Cells Editorial Rho GTPase Signaling in Health and Disease: A Complex Signaling Network. Cells 2021, 10, 401. [Google Scholar] [CrossRef]
- Strzelecka-Kiliszek, A.; Mebarek, S.; Roszkowska, M.; Buchet, R.; Magne, D.; Pikula, S. Functions of Rho Family of Small GTPases and Rho-Associated Coiled-Coil Kinases in Bone Cells during Differentiation and Mineralization. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 1009–1023. [Google Scholar] [PubMed]
- Shi, W.; Xu, C.; Gong, Y.; Wang, J.; Ren, Q.; Yan, Z.; Mei, L.; Tang, C.; Ji, X.; Hu, X.; et al. RhoA/Rock Activation Represents a New Mechanism for Inactivating Wnt/β-Catenin Signaling in the Aging-Associated Bone Loss. Cell Regen. 2021, 10, 8. [Google Scholar] [CrossRef]
- Prowse, P.D.H.; Elliott, C.G.; Hutter, J.; Hamilton, D.W. Inhibition of Rac and ROCK Signalling Influence Osteoblast Adhesion, Differentiation and Mineralization on Titanium Topographies. PLoS ONE 2013, 8, e58898. [Google Scholar] [CrossRef]
- Dos Santos, T.M.; Righetti, R.F.; Camargo, L.D.N.; Saraiva-Romanholo, B.M.; Aristoteles, L.R.C.R.B.; de Souza, F.C.R.; Fukuzaki, S.; Alonso-Vale, M.I.C.; Cruz, M.M.; Prado, C.M.; et al. Effect of Anti-IL17 Antibody Treatment Alone and in Combination With Rho-Kinase Inhibitor in a Murine Model of Asthma. Front. Physiol. 2018, 9, 1183. [Google Scholar] [CrossRef]
- Takeda, K.; Jin, M.B.; Fujita, M.; Fukai, M.; Sakurai, T.; Nakayama, M.; Taniguchi, M.; Suzuki, T.; Shimamura, T.; Furukawa, H.; et al. A novel inhibitor of Rho-associated protein kinase, Y-27632, ameliorates hepatic ischemia and reperfusion injury in rats. Surgery 2003, 133, 197–206. [Google Scholar] [CrossRef]
- Staines, K.A.; MacKenzie, N.C.W.; Clarkin, C.E.; Zelenchuk, L.; Rowe, P.S.; MacRae, V.E.; Farquharson, C. MEPE Is a Novel Regulator of Growth Plate Cartilage Mineralization. Bone 2012, 51, 418–430. [Google Scholar] [CrossRef]
- Argiro, L.; Desbarats, M.; Glorieux, F.H.; Ecarot, B. Mepe, the gene encoding a tumor-secreted protein in oncogenic hypophosphatemic osteomalacia, is expressed in bone. Genomics 2001, 74, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Petersen, D.N.; Tkalcevic, G.T.; Mansolf, A.L.; Rivera-Gonzalez, R.; Brown, T.A. Identification of osteoblast/osteocyte factor 45 (OF45), a bone-specific cDNA encoding an RGD-containing protein that is highly expressed in osteoblasts and osteocytes. J. Biol. Chem. 2000, 275, 36172–36180. [Google Scholar] [CrossRef] [PubMed]
- Gowen, L.C.; Petersen, D.N.; Mansolf, A.L.; Qi, H.; Stock, J.L.; Tkalcevic, G.T. Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J. Biol. Chem. 2003, 278, 1998–2007. [Google Scholar] [CrossRef]
- Vestergaard, P.; Mosekilde, L. Fracture risk associated with smoking: A meta-analysis. J. Intern. Med. 2003, 254, 572–583. [Google Scholar]
- Yoon, V.; Maalouf, N.M.; Sakhaee, K. The effects of smoking on bone metabolism. Osteoporos. Int. 2012, 23, 2081–2092. [Google Scholar] [CrossRef] [PubMed]
- Bender, D.; Jefferson-Keil, T.; Biglari, B.; Swing, T.; Schmidmaier, G.; Moghaddam, A. Cigarette smoking and its impact on fracture healing. Trauma. 2014, 16, 18–22. [Google Scholar] [CrossRef]
- Bjarnason, N.H.; Christiansen, C. The influence of thinness and smoking on bone loss and response to hormone replacement therapy in early postmenopausal women. J. Clin. Endocrinol. Metab. 2000, 85, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, J.; Iki, M.; Fujita, Y.; Kouda, K.; Yura, A.; Kadowaki, E.; Sato, Y.; Moon, J.S.; Tomioka, K.; Okamoto, N.; et al. Impact of smoking on bone mineral density and bone metabolism in elderly men: The Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) study. Osteoporos. Int. 2011, 22, 133–141. [Google Scholar] [CrossRef]
- Kohler, J.B.; Junqueira, J.J.; da Silva, T.C.; Filho, M.A.; Tibério, I.D.; Lopes, F.D.; Barbosa, A.P. Smoking-Induced Oxidative Stress in Bone: The Effects on Bone Turnover. J. Orthop. Orthop. Surg. 2021, 2, 14–23. [Google Scholar] [CrossRef]
- La Vignera, S. Increased Expression of Endothelial-Platelet Dysfunctional Pathway in Patients with Arterial Erectile Dysfunction. Int. Angiol. 2011, 30, 408–414. [Google Scholar]
- Donadee, C.; Raat, N.J.H.; Kanias, T.; Tejero, J.; Lee, J.S.; Kelley, E.E.; Zhao, X.; Liu, C.; Reynolds, H.; Azarov, I.; et al. Nitric Oxide Scavenging by Red Blood Cell Microparticles and Cell-Free Hemoglobin as a Mechanism for the Red Cell Storage Lesion. Circulation 2011, 124, 465–476. [Google Scholar] [CrossRef]
- Tsimerman, G.; Roguin, A.; Bachar, A.; Melamed, E.; Brenner, B.; Aharon, A. Involvement of Microparticles in Diabetic Vascular Complications. Thromb. Haemost. 2011, 106, 310–321. [Google Scholar] [CrossRef]
- Gao, C.; Li, R.; Liu, Y.; Ma, L.; Wang, S. Rho-Kinase-Dependent F-Actin Rearrangement Is Involved in the Release of Endothelial Microparticles during IFN-α-Induced Endothelial Cell Apoptosis. J. Trauma. Acute Care Surg. 2012, 73, 1152–1160. [Google Scholar] [CrossRef]
- Del Re, D.P.; Miyamoto, S.; Brown, J.H. Focal Adhesion Kinase as a RhoA-Activable Signaling Scaffold Mediating Akt Activation and Cardiomyocyte Protection. J. Biol. Chem. 2008, 283, 35622–35629. [Google Scholar] [CrossRef]
- Duong-Quy, S.; Dao, P.; Hua-Huy, T.; Guilluy, C.; Pacaud, P.; Dinh-Xuan, A.T. Increased Rho-kinase expression and activity and pulmonary endothelial dysfunction in smokers with normal lung function. Eur. Respir. J. 2011, 37, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Hidaka, T.; Hata, T.; Soga, J.; Fujii, Y.; Idei, N.; Fujimura, N.; Kihara, Y.; Noma, K.; Liao, J.K.; Higashi, Y. Increased leukocyte rho kinase (ROCK) activity and endothelial dysfunction in cigarette smokers. Hypertens. Res. 2010, 33, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Noma, K.; Higashi, Y.; Jitsuiki, D.; Hara, K.; Kimura, M.; Nakagawa, K.; Goto, C.; Oshima, T.; Yoshizumi, M.; Chayama, K. Smoking activates rho-kinase in smooth muscle cells of forearm vasculature in humans. Hypertension 2003, 41, 1102–1105. [Google Scholar] [CrossRef] [PubMed]
- Bei, Y.; Duong-Quy, S.; Hua-Huy, T.; Dao, P.; Le-Dong, N.N.; Dinh-Xuan, A.T. Activation of RhoA/Rho-kinase pathway accounts for pulmonary endothelial dysfunction in patients with chronic obstructive pulmonary disease. Physiol. Rep. 2013, 1, e00105. [Google Scholar] [CrossRef]
- Noma, K.; Goto, C.; Nishioka, K.; Hara, K.; Kimura, M.; Umemura, T.; Jitsuiki, D.; Nakagawa, K.; Oshima, T.; Chayama, K.; et al. Smoking, endothelial function, and Rho-kinase in humans. Arter. Thromb. Vasc. Biol. 2005, 25, 2630–2635. [Google Scholar] [CrossRef]
- Hiroki, J.; Shimokawa, H.; Mukai, Y.; Ichiki, T.; Takeshita, A. Divergent effects of estrogen and nicotine on Rho-kinase expression in human coronary vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 2005, 326, 154–159. [Google Scholar] [CrossRef]
Histomorphometric parameters | ||
Structural parameters: | Abbreviation | Unit |
Ratio of trabecular bone volume to total bone volume | BV/TV | % |
Trabecular thickness | Tb.Th | μm |
Resorptive remodeling parameters: | ||
Area of eroded surface | ES/BS | % |
Osteoclastic surface | Oc.S/BS | % |
Formative remodeling parameters: | ||
Osteoid thickness | O.Th | μm |
Osteoblastic surface | Ob.S/BS | % |
Mineralizing surface | MS/BS | % |
Mineral apposition rate | MAR | μm/d |
Mineralization lag time | Mlt | d |
Bone formation rate (S) | BFR/BS | μm3/μm2/d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, A.F.; Lima, F.J.; Moreira, A.R.; Silva, C.d.N.; de Oliveira, I.B.; Callera, A.F.; Porfirio, A.L.; Alves, L.H.V.; Tibério, I.d.F.L.C.; Velosa, A.P.P.; et al. Cigarette Smoke Exposure Leads to Organic and Mineral Bone Component Changes: The Importance of Rho Kinase Function in These Events. Cells 2025, 14, 503. https://doi.org/10.3390/cells14070503
da Silva AF, Lima FJ, Moreira AR, Silva CdN, de Oliveira IB, Callera AF, Porfirio AL, Alves LHV, Tibério IdFLC, Velosa APP, et al. Cigarette Smoke Exposure Leads to Organic and Mineral Bone Component Changes: The Importance of Rho Kinase Function in These Events. Cells. 2025; 14(7):503. https://doi.org/10.3390/cells14070503
Chicago/Turabian Styleda Silva, Alex Ferreira, Franciele Jesus Lima, Alyne Riani Moreira, Cintia do Nascimento Silva, Ivone Braga de Oliveira, Alexandra Fernandes Callera, Ana Luiza Porfirio, Luan Henrique Vasconcelos Alves, Iolanda de Fátima Lopes Calvo Tibério, Ana Paula Pereira Velosa, and et al. 2025. "Cigarette Smoke Exposure Leads to Organic and Mineral Bone Component Changes: The Importance of Rho Kinase Function in These Events" Cells 14, no. 7: 503. https://doi.org/10.3390/cells14070503
APA Styleda Silva, A. F., Lima, F. J., Moreira, A. R., Silva, C. d. N., de Oliveira, I. B., Callera, A. F., Porfirio, A. L., Alves, L. H. V., Tibério, I. d. F. L. C., Velosa, A. P. P., Jorgetti, V., Teodoro, W. R., & Lopes, F. D. T. Q. D. S. (2025). Cigarette Smoke Exposure Leads to Organic and Mineral Bone Component Changes: The Importance of Rho Kinase Function in These Events. Cells, 14(7), 503. https://doi.org/10.3390/cells14070503