Endothelial Protein C Receptor: A Multifunctional Mediator in the Pathophysiology of Rheumatoid Arthritis
Abstract
:1. Introduction
2. EPCR and Its Structure
3. PROCR Gene Mutations
4. The General Functions of EPCR
4.1. Regulation of Blood Coagulation
4.2. Regulation of Inflammation
4.3. Regulation of Cell Stemness
5. EPCR and Rheumatoid Arthritis
5.1. Role of EPCR in RA
5.1.1. Cell Membrane-Anchored EPCR
5.1.2. Soluble EPCR
5.1.3. PROCR Gene Variants
5.2. Potential Action Mechanisms of EPCR in RA
5.2.1. Ligand-Specific Functions of EPCR in RA
- Activated protein C
- Factor VII
- Secretory phospholipase A2 group V
- Antiphospholipid antibodies
- T cell receptor
5.2.2. Coagulation Cascade and EPCR in RA
5.2.3. Modulation of T Cell Functions
5.2.4. Regulation of RA Synovial Fibroblast Activity
5.2.5. sEPCR
6. Targeting EPCR Pathways for RA Treatment
6.1. Potential Therapeutic Strategies
6.2. Potential Risks and Mitigation Strategies
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nygaard, G.; Firestein, G.S. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat. Rev. Rheumatol. 2020, 16, 316–333. [Google Scholar] [CrossRef] [PubMed]
- McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011, 365, 2205–2219. [Google Scholar] [CrossRef]
- Conforti, A.; Di Cola, I.; Pavlych, V.; Ruscitti, P.; Berardicurti, O.; Ursini, F.; Berardicurti, O.; Ursini, F.; Giacomelli, R.; Cipriani, P. Beyond the joints, the extra-articular manifestations in rheumatoid arthritis. Autoimmun. Rev. 2021, 20, 102735. [Google Scholar] [CrossRef]
- Esmon, C.T. Structure and functions of the endothelial cell protein C receptor. Crit. Care Med. 2004, 32 (Suppl. S5), S298–S301. [Google Scholar] [CrossRef]
- Mohan Rao, L.V.; Esmon, C.T.; Pendurthi, U.R. Endothelial cell protein C receptor: A multiliganded and multifunctional receptor. Blood 2014, 124, 1553–1562. [Google Scholar] [CrossRef]
- Liang, Z.; Rosen, E.D.; Castellino, F.J. Nucleotide structure and characterization of the murine gene encoding the endothelial cell protein C receptor. Thromb. Haemost. 1999, 81, 585–588. [Google Scholar] [CrossRef]
- Simmonds, R.E.; Lane, D.A. Structural and functional implications of the intron/exon organization of the human endothelial cell protein C/activated protein C receptor (EPCR) gene: Comparison with the structure of CD1/major histocompatibility complex alpha1 and alpha2 domains. Blood 1999, 94, 632–641. [Google Scholar] [CrossRef]
- Gleeson, E.M.; O’Donnell, J.S.; Preston, R.J. The endothelial cell protein C receptor: Cell surface conductor of cytoprotective coagulation factor signaling. Cell Mol. Life Sci. 2012, 69, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Oganesyan, V.; Oganesyan, N.; Terzyan, S.; Qu, D.; Dauter, Z.; Esmon, N.L.; Esmon, C.T. The crystal structure of the endothelial protein C receptor and a bound phospholipid. J. Biol. Chem. 2002, 277, 24851–24854. [Google Scholar] [CrossRef]
- Nayak, R.C.; Sen, P.; Ghosh, S.; Gopalakrishnan, R.; Esmon, C.T.; Pendurthi, U.R.; Rao, L.V.M. Endothelial cell protein C receptor cellular localization and trafficking: Potential functional implications. Blood 2009, 114, 1974–1986. [Google Scholar] [CrossRef]
- Moody, D.B.; Porcelli, S.A. Intracellular pathways of CD1 antigen presentation. Nat. Rev. Immunol. 2003, 3, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Muller-Calleja, N.; Hollerbach, A.; Royce, J.; Ritter, S.; Pedrosa, D.; Madhusudhan, T.; Teifel, S.; Meineck, M.; Häuser, F.; Canisius, A.; et al. Lipid presentation by the protein C receptor links coagulation with autoimmunity. Science 2021, 371, eabc0956. [Google Scholar] [CrossRef] [PubMed]
- Erausquin, E.; Morán-Garrido, M.; Sáiz, J.; Barbas, C.; Dichiara-Rodríguez, G.; Urdiciain, A.; López-Sagaseta, J. Identification of a broad lipid repertoire associated to the endothelial cell protein C receptor (EPCR). Sci. Rep. 2022, 12, 15127. [Google Scholar] [CrossRef] [PubMed]
- Erausquin, E.; Rodríguez-Fernández, A.; Rodríguez-Lumbreras, L.; Fernández-Recio, J.; Dichiara-Rodríguez, M.G.; López-Sagaseta, J. Structural vulnerability in EPCR suggests functional modulation. Sci. Rep. 2024, 14, 2591. [Google Scholar] [CrossRef]
- Saposnik, B.; Reny, J.L.; Gaussem, P.; Emmerich, J.; Aiach, M.; Gandrille, S. A haplotype of the EPCR gene is associated with increased plasma levels of sEPCR and is a candidate risk factor for thrombosis. Blood 2004, 103, 1311–1318. [Google Scholar] [CrossRef]
- Saposnik, B.; Lesteven, E.; Lokajczyk, A.; Esmon, C.T.; Aiach, M.; Gandrille, S. Alternative mRNA is favored by the A3 haplotype of the EPCR gene PROCR and generates a novel soluble form of EPCR in plasma. Blood 2008, 111, 3442–3451. [Google Scholar] [CrossRef]
- Navarro, S.; Bonet, E.; Estellés, A.; Montes, R.; Hermida, J.; Martos, L.; España, F.; Medina, P. The endothelial cell protein C receptor: Its role in thrombosis. Thromb. Res. 2011, 128, 410–416. [Google Scholar] [CrossRef]
- Bai, L.; Liu, W.; Guo, P.; Bai, J.; Liu, Y.; Hua, Y.; Pang, C.; Zhang, W.; Yin, F.; Wang, Y. Elevated levels of soluble Endothelial protein C receptor in rheumatoid arthritis and block the therapeutic effect of protein C in collagen-induced arthritis. Int. Immunopharmacol. 2020, 81, 106255. [Google Scholar] [CrossRef]
- Xue, M.; Lin, H.; Lynch, T.; Bereza-Malcolm, L.; Sinnathurai, P.; Thomas, R.; Keen, H.; Hill, C.; Lester, S.; Wechalekar, M.; et al. Exploring the association between circulating endothelial protein C receptor and disease activity of rheumatoid arthritis in a pilot study. Rheumatol. Adv. Pract. 2024, 8, rkae096. [Google Scholar] [CrossRef]
- Xue, M.; Dervish, S.; Chan, B.; Jackson, C.J. The endothelial protein C receptor is a potential stem cell marker for epidermal keratinocytes. Stem Cells 2017, 35, 1786–1798. [Google Scholar] [CrossRef]
- Biguzzi, E.; Merati, G.; Liaw, P.C.; Bucciarelli, P.; Oganesyan, N.; Qu, D.; Gu, J.M.; Fetiveau, R.; Esmon, C.T.; Mannucci, P.M.; et al. A 23bp insertion in the endothelial protein C receptor (EPCR) gene impairs EPCR function. Thromb. Haemost. 2001, 86, 945–948. [Google Scholar] [PubMed]
- Medina, P.; Navarro, S.; Estelles, A.; Vaya, A.; Woodhams, B.; Mira, Y.; Villa, P.; Migaud-Fressart, M.; Ferrando, F.; Aznar, J.; et al. Contribution of polymorphisms in the endothelial protein C receptor gene to soluble endothelial protein C receptor and circulating activated protein C levels, and thrombotic risk. Thromb. Haemost. 2004, 91, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Saposnik, B.; Peynaud-Debayle, E.; Stepanian, A.; Baron, G.; Simansour, M.; Mandelbrot, L.; de Prost, D.; Gandrille, S. Elevated soluble endothelial cell protein C receptor (sEPCR) levels in women with preeclampsia: A marker of endothelial activation/damage? Thromb. Res. 2012, 129, 152–157. [Google Scholar] [CrossRef]
- Cole, J.W.; Xu, H.; Ryan, K.; Jaworek, T.; Dueker, N.; McArdle, P.; Gaynor, B.; Cheng, Y.C.; O’Connell, J.; Bevan, S.; et al. Genetics of the thrombomodulin-endothelial cell protein C receptor system and the risk of early-onset ischemic stroke. PLoS ONE 2018, 13, e0206554. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, J.; Huang, L.; Dai, H.; Chen, J.; Cai, Q.; Yang, Z. Polymorphisms in endothelial protein C receptor gene and Kawasaki disease susceptibility in a Chinese children. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2019, 44, 957–967. [Google Scholar] [PubMed]
- Medina, P.; Navarro, S.; Bonet, E.; Martos, L.; Estellés, A.; Bertina, R.M.; Vos, H.L.; España, F. Functional analysis of two haplotypes of the human endothelial protein C receptor gene. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Dennis, J.; Johnson, C.Y.; Adediran, A.S.; de Andrade, M.; Heit, J.A.; Morange, P.E.; Trégouët, D.A.; Gagnon, F. The endothelial protein C receptor (PROCR) Ser219Gly variant and risk of common thrombotic disorders: A HuGE review and meta-analysis of evidence from observational studies. Blood 2012, 119, 2392–2400. [Google Scholar] [CrossRef]
- Ireland, H.; Konstantoulas, C.J.; Cooper, J.A.; Hawe, E.; Humphries, S.E.; Mather, H.; Goodall, A.H.; Hogwood, J.; Juhan-Vague, I.; Yudkin, J.S.; et al. EPCR Ser219Gly: Elevated sEPCR, prothrombin F1+2, risk for coronary heart disease, and increased sEPCR shedding in vitro. Atherosclerosis 2005, 183, 283–292. [Google Scholar] [CrossRef]
- Tinholt, M.; Viken, M.K.; Dahm, A.E.; Vollan, H.K.; Sahlberg, K.K.; Garred, O.; Borresen-Dale, A.L.; Jacobsen, A.F.; Kristensen, V.; Bukholm, I.; et al. Increased coagulation activity and genetic polymorphisms in the F5, F10 and EPCR genes are associated with breast cancer: A case-control study. BMC Cancer 2014, 14, 845. [Google Scholar] [CrossRef]
- Cespedes, J.C.; Hibbert, J.; Krishna, S.; Yan, F.; Bharti, P.K.; Stiles, J.K.; Liu, M. Association of EPCR Polymorphism rs867186-GG With Severity of Human Malaria. Front. Genet. 2020, 11, 56. [Google Scholar] [CrossRef]
- Uitte de Willige, S.; Van Marion, V.; Rosendaal, F.R.; Vos, H.L.; de Visser, M.C.; Bertina, R.M. Haplotypes of the EPCR gene, plasma sEPCR levels and the risk of deep venous thrombosis. J. Thromb. Haemost. 2004, 2, 1305–1310. [Google Scholar] [CrossRef] [PubMed]
- Hermida, J.; Hurtado, V.; Villegas-Mendez, A.; Catto, A.J.; Philippou, H. Identification and characterization of a natural R96C EPCR variant. J. Thromb. Haemost. 2003, 1, 1850–1852. [Google Scholar] [CrossRef] [PubMed]
- Biguzzi, E.; Gu, J.M.; Merati, G.; Esmon, N.L.; Esmon, C.T. Point mutations in the endothelial protein C receptor (EPCR) promoter. Thromb. Haemost. 2002, 87, 1085–1086. [Google Scholar]
- Balazs, A.B.; Fabian, A.J.; Esmon, C.T.; Mulligan, R.C. Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood 2006, 107, 2317–2321. [Google Scholar] [CrossRef]
- Gur-Cohen, S.; Kollet, O.; Graf, C.; Esmon, C.T.; Ruf, W.; Lapidot, T. Regulation of long-term repopulating hematopoietic stem cells by EPCR/PAR1 signaling. Ann. N. Y. Acad. Sci. 2016, 1370, 65–81. [Google Scholar] [CrossRef]
- Willcox, C.R.; Pitard, V.; Netzer, S.; Couzi, L.; Salim, M.; Silberzahn, T.; Moreau, J.F.; Hayday, A.C.; Willcox, B.E.; Dechanet-Merville, J. Cytomegalovirus and tumor stress surveillance by binding of a human gammadelta T cell antigen receptor to endothelial protein C receptor. Nat. Immunol. 2012, 13, 872–879. [Google Scholar] [CrossRef]
- Xue, M.; Shen, K.; McKelvey, K.; Li, J.; Chan, Y.K.; Hatzis, V.; March, L.; Little, C.B.; Tonkin, M.; Jackson, C.J. Endothelial protein C receptor associated invasiveness of rheumatoid synovial fibroblasts is likely driven by group V secretory phospholipase A2. Arthritis Res. Ther. 2014, 16, R44. [Google Scholar] [CrossRef]
- Gu, J.M.; Crawley, J.T.; Ferrell, G.; Zhang, F.; Li, W.; Esmon, N.L.; Esmon, C.T. Disruption of the endothelial cell protein C receptor gene in mice causes placental thrombosis and early embryonic lethality. J. Biol. Chem. 2002, 277, 43335–43343. [Google Scholar] [CrossRef]
- Fukudome, K.; Esmon, C.T. Identification, cloning, and regulation of a novel endothelial cell protein c activated protein c receptor. J. Biol. Chem. 1994, 269, 26486–26491. [Google Scholar] [CrossRef]
- Danese, S.; Vetrano, S.; Zhang, L.; Poplis, V.A.; Castellino, F.J. The protein C pathway in tissue inflammation and injury: Pathogenic role and therapeutic implications. Blood 2010, 115, 1121–1130. [Google Scholar] [CrossRef]
- Preston, R.J.; Ajzner, E.; Razzari, C.; Karageorgi, S.; Dua, S.; Dahlback, B.; Lane, D.A. Multifunctional Specificity of the Protein C/Activated Protein C Gla Domain. J. Biol. Chem. 2006, 281, 28850–28857. [Google Scholar] [CrossRef] [PubMed]
- Kondreddy, V.; Wang, J.; Keshava, S.; Esmon, C.T.; Rao, L.V.M.; Pendurthi, U.R. Factor VIIa induces anti-inflammatory signaling via EPCR and PAR1. Blood 2018, 131, 2379–2392. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.P.; Kerschen, E.J.; Hernandez, I.; Basu, S.; Zogg, M.; Botros, F.; Jia, S.; Hessner, M.J.; Griffin, J.H.; Ruf, W.; et al. EPCR-dependent PAR2 activation by the blood coagulation initiation complex regulates LPS-triggered interferon responses in mice. Blood 2015, 125, 2845–2854. [Google Scholar] [CrossRef]
- Stavenuiter, F.; Mosnier, L.O. Noncanonical PAR3 activation by factor Xa identifies a novel pathway for Tie2 activation and stabilization of vascular integrity. Blood 2014, 124, 3480–3489. [Google Scholar] [CrossRef]
- Turner, L.; Lavstsen, T.; Berger, S.S.; Wang, C.W.; Petersen, J.E.; Avril, M.; Brazier, A.J.; Freeth, J.; Jespersen, J.S.; Nielsen, M.A.; et al. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 2013, 498, 502–505. [Google Scholar] [CrossRef]
- Kurosawa, S.; Esmon, C.T.; Stearns-Kurosawa, D.J. The soluble endothelial protein C receptor binds to activated neutrophils: Involvement of proteinase-3 and CD11b/CD18. J. Immunol. 2000, 165, 4697–4703. [Google Scholar] [CrossRef]
- Fink, K.; Busch, H.J.; Bourgeois, N.; Schwarz, M.; Wolf, D.; Zirlik, A.; Peter, K.; Bode, C.; von Zur Muhlen, C. Mac-1 directly binds to the endothelial protein C-receptor: A link between the protein C anticoagulant pathway and inflammation? PLoS ONE 2013, 8, e53103. [Google Scholar] [CrossRef]
- Yoshida, K.; Akita, N.; Okamoto, T.; Asanuma, K.; Uchida, A.; Sudo, A.; Shimaoka, M.; Suzuki, K.; Hayashi, T. Activated protein C suppresses osteoclast differentiation via endothelial protein C receptor, protease-activated receptor-1, sphingosine 1-phosphate receptor, and apolipoprotein E receptor 2. Thromb. Res. 2018, 163, 30–40. [Google Scholar] [CrossRef]
- Finigan, J.H.; Dudek, S.M.; Singleton, P.A.; Chiang, E.T.; Jacobson, J.R.; Camp, S.M.; Ye, S.Q.; Garcia, J.G. Activated protein C mediates novel lung endothelial barrier enhancement: Role of sphingosine 1-phosphate receptor transactivation. J. Biol. Chem. 2005, 280, 7. [Google Scholar] [CrossRef]
- Xue, M.; Dervish, S.; McKelvey, K.J.; March, L.; Wang, F.; Little, C.B.; Jackson, C.J. Activated protein C targets immune cells and rheumatoid synovial fibroblasts to prevent inflammatory arthritis in mice. Rheumatology 2019, 58, 1850–1860. [Google Scholar] [CrossRef]
- Lopez-Sagaseta, J.; Puy, C.; Tamayo, I.; Allende, M.; Cervero, J.; Velasco, S.E.; Esmon, C.T.; Montes, R.; Hermida, J. sPLA2-V inhibits EPCR anticoagulant and antiapoptotic properties by accommodating lysophosphatidylcholine or PAF in the hydrophobic groove. Blood 2012, 119, 2914–2921. [Google Scholar] [CrossRef] [PubMed]
- Bouwens, E.A.; Stavenuiter, F.; Mosnier, L.O. Mechanisms of anticoagulant and cytoprotective actions of the protein C pathway. J. Thromb. Haemost. 2013, 11 (Suppl. S1), 242–253. [Google Scholar] [CrossRef]
- Pepler, L.; Yu, P.; Dwivedi, D.J.; Trigatti, B.L.; Liaw, P.C. Characterization of mice harboring a variant of EPCR with impaired ability to bind protein C: Novel role of EPCR in hematopoiesis. Blood 2015, 126, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Kishi, Y.; Kondo, T.; Xiao, S.; Yosef, N.; Gaublomme, J.; Wu, C.; Wang, C.; Chihara, N.; Regev, A.; Joller, N.; et al. Protein C receptor (PROCR) is a negative regulator of Th17 pathogenicity. J. Exp. Med. 2016, 213, 2489–2501. [Google Scholar] [CrossRef]
- Kondreddy, V.; Keshava, S.; Esmon, C.T.; Pendurthi, U.R.; Rao, L.V.M. A critical role of endothelial cell protein C receptor in the intestinal homeostasis in experimental colitis. Sci. Rep. 2020, 10, 20569. [Google Scholar] [CrossRef]
- Lal, N.; Willcox, C.R.; Beggs, A.; Taniere, P.; Shikotra, A.; Bradding, P.; Adams, R.; Fisher, D.; Middleton, G.; Tselepis, C.; et al. Endothelial protein C receptor is overexpressed in colorectal cancer as a result of amplification and hypomethylation of chromosome 20q. J. Pathol. Clin. Res. 2017, 3, 155–170. [Google Scholar] [CrossRef]
- Anton, I.; Molina, E.; Luis-Ravelo, D.; Zandueta, C.; Valencia, K.; Ormazabal, C.; Martinez-Canarias, S.; Perurena, N.; Pajares, M.J.; Agorreta, J.; et al. Receptor of Activated Protein C Promotes Metastasis and Correlates with Clinical Outcome in Lung Adenocarcinoma. Am. J. Respir. Crit. Care Med. 2012, 186, 96–105. [Google Scholar] [CrossRef]
- Kager, L.M.; Schouten, M.; Wiersinga, W.J.; de Boer, J.D.; Lattenist, L.C.; Roelofs, J.J.; Meijers, J.C.; Levi, M.; Dondorp, A.M.; Esmon, C.T.; et al. Overexpression of the endothelial protein C receptor is detrimental during pneumonia-derived gram-negative sepsis (Melioidosis). PLoS Negl. Trop. Dis. 2013, 7, e2306. [Google Scholar] [CrossRef]
- Izmirly, P.M.; Barisoni, L.; Buyon, J.P.; Kim, M.Y.; Rivera, T.L.; Schwartzman, J.S.; Weisstuch, J.M.; Liu, D.T.; Bernstein, S.; Tseng, C.E.; et al. Expression of endothelial protein C receptor in cortical peritubular capillaries associates with a poor clinical response in lupus nephritis. Rheumatology 2009, 48, 513–519. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, Z.; Wang, Y.; Li, Y.; Lu, J.; Cui, L.; Yu, Z.; Ding, Y.; Guo, C.; Zhang, X.; et al. Infliximab modifies regulatory T cells and co-inhibitory receptor expression on circulating T cells in psoriasis. Int. Immunopharmacol. 2021, 96, 107722. [Google Scholar] [CrossRef]
- Keshava, S.; Magisetty, J.; Tucker, T.A.; Kujur, W.; Mulik, S.; Esmon, C.T.; Idell, S.; Rao, L.V.M.; Pendurthi, U.R. Endothelial Cell Protein C Receptor Deficiency Attenuates Streptococcus Pneumoniae-induced Pleural Fibrosis. Am. J. Respir. Cell Mol. Biol. 2021, 64, 14. [Google Scholar] [CrossRef] [PubMed]
- Magisetty, J.; Pendurthi, U.R.; Esmon, C.T.; Rao, L.V.M. EPCR deficiency or function-blocking antibody protects against joint bleeding-induced pathology in hemophilia mice. Blood 2020, 135, 2211–2223. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Lin, H.; Liang, H.; Bereza-Malcolm, L.; Lynch, T.; Sinnathurai, P.; Weiler, H.; Jackson, C.; March, L. EPCR deficiency ameliorates inflammatory arthritis in mice via suppressing the activation and migration of T cells and dendritic cells. Rheumatology 2024, 63, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Fares, I.; Chagraoui, J.; Lehnertz, B.; MacRae, T.; Mayotte, N.; Tomellini, E.; Aubert, L.; Roux, P.P.; Sauvageau, G. EPCR expression marks UM171-expanded CD34(+) cord blood stem cells. Blood 2017, 129, 3344–3351. [Google Scholar] [CrossRef]
- Kohlscheen, S.; Schenk, F.; Rommel, M.G.E.; Cullmann, K.; Modlich, U. Endothelial protein C receptor supports hematopoietic stem cell engraftment and expansion in Mpl-deficient mice. Blood 2019, 133, 1465–1478. [Google Scholar] [CrossRef]
- Rothbarth, K.; Dabaghian, A.R.; Stammer, H.; Werner, D. One single mRNA encodes the centrosomal protein CCD41 and the endothelial cell protein C receptor (EPCR). FEBS Lett. 1999, 458, 77–80. [Google Scholar] [CrossRef]
- Gekas, C.; Graf, T. CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood 2013, 121, 4463–4472. [Google Scholar] [CrossRef]
- Do, M.H.; Shi, W.; Ji, L.; Ladewig, E.; Zhang, X.; Srivastava, R.M.; Capistrano, K.J.; Edwards, C.; Malik, I.; Nixon, B.G.; et al. Reprogramming tumor-associated macrophages to outcompete endovascular endothelial progenitor cells and suppress tumor neoangiogenesis. Immunity 2023, 56, 2555–2569.e5. [Google Scholar] [CrossRef]
- Ivanova, N.B.; Dimos, J.T.; Schaniel, C.; Hackney, J.A.; Moore, K.A.; Lemischka, I.R. A Stem Cell Molecular Signature. Science 2002, 298, 601–604. [Google Scholar] [CrossRef]
- Ruf, W.; Schaffner, F. Role of the protein C receptor in cancer progression. Thromb. Res. 2014, 133 (Suppl. S2), S85–S89. [Google Scholar] [CrossRef]
- Zheng, X.; Li, W.; Song, Y.; Hu, Y.; Ferrell, G.L.; Esmon, N.L.; Esmon, C.T. Non-hematopoietic EPCR regulates the coagulation and inflammatory responses during endotoxemia. J. Thromb. Haemost. 2007, 5, 1394–1400. [Google Scholar] [CrossRef]
- Kirino, Y.; Remmers, E.F. Genetic architectures of seropositive and seronegative rheumatic diseases. Nat. Rev. Rheumatol. 2015, 11, 401–414. [Google Scholar] [CrossRef] [PubMed]
- van den Oever, I.A.; Sattar, N.; Nurmohamed, M.T. Thromboembolic and cardiovascular risk in rheumatoid arthritis: Role of the haemostatic system. Ann. Rheum. Dis. 2014, 73, 954–957. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, N.; Takayanagi, H. Mechanisms of joint destruction in rheumatoid arthritis-immune cell-fibroblast-bone interactions. Nat. Rev. Rheumatol. 2022, 18, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; March, L.; Sambrook, P.N.; Fukudome, K.; Jackson, C.J. Endothelial protein C receptor is overexpressed in rheumatoid arthritic (RA) synovium and mediates the anti-inflammatory effects of activated protein C in RA monocytes. Ann. Rheum. Dis. 2007, 66, 1574–1580. [Google Scholar] [CrossRef]
- Liu, X.; Huo, Y.; Zhao, J.; Wang, G.; Liu, H.; Yin, F.; Pang, C.; Wang, Y.; Bai, L. Endothelial cell protein C receptor regulates neutrophil extracellular trap-mediated rheumatoid arthritis disease progression. Int. Immunopharmacol. 2022, 112, 109249. [Google Scholar] [CrossRef]
- Chen, J.; Cao, Y.; Xiao, J.; Hong, Y.; Zhu, Y. The emerging role of neutrophil extracellular traps in the progression of rheumatoid arthritis. Front. Immunol. 2024, 15, 1438272. [Google Scholar] [CrossRef]
- Healy, L.D.; Puy, C.; Fernandez, J.A.; Mitrugno, A.; Keshari, R.S.; Taku, N.A.; Chu, T.T.; Xu, X.; Gruber, A.; Lupu, F.; et al. Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo. J. Biol. Chem. 2017, 292, 8616–8629. [Google Scholar] [CrossRef]
- Stacey, D.; Chen, L.; Stanczyk, P.J.; Howson, J.M.M.; Mason, A.M.; Burgess, S.; MacDonald, S.; Langdown, J.; McKinney, H.; Downes, K.; et al. Elucidating mechanisms of genetic cross-disease associations at the PROCR vascular disease locus. Nat. Commun. 2022, 13, 1222. [Google Scholar] [CrossRef]
- Medina, P.; Navarro, S.; Corral, J.; Zorio, E.; Roldán, V.; Estellés, A.; Santamaría, A.; Marín, F.; Rueda, J.; Bertina, R.M.; et al. Endothelial protein C receptor polymorphisms and risk of myocardial infarction. Haematologica 2008, 93, 1358–1363. [Google Scholar] [CrossRef]
- Mosnier, L.O.; Zlokovic, B.V.; Griffin, J.H. The cytoprotective protein C pathway. Blood 2007, 109, 3161–3172. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, F.; Mariani, G. Biochemical, molecular and clinical aspects of coagulation factor VII and its role in hemostasis and thrombosis. Haematologica 2021, 106, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Bordy, R.; Totoson, P.; Prati, C.; Marie, C.; Wendling, D.; Demougeot, C. Microvascular endothelial dysfunction in rheumatoid arthritis. Nat. Rev. Rheumatol. 2018, 14, 404–420. [Google Scholar] [CrossRef]
- Bokarewa, M.I.; Morrissey, J.; Tarkowski, A. Intra-articular tissue factor/factor VII complex induces chronic arthritis. Inflamm. Res. 2002, 51, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Ait-Oufella, H.; Mallat, Z.; Tedgui, A. Lp-PLA2 and sPLA2, cardiovascular biomarkers. Med. Sci. 2014, 30, 526–531. [Google Scholar]
- Pruzanski, W.; Vadas, P. Phospholipase A2—A mediator between proximal and distal effectors of inflammation. Immunol. Today 1991, 12, 143–146. [Google Scholar] [CrossRef]
- Leistad, L.; Feuerherm, A.J.; Ostensen, M.; Faxvaag, A.; Johansen, B. Presence of secretory group IIa and V phospholipase A2 and cytosolic group IValpha phospholipase A2 in chondrocytes from patients with rheumatoid arthritis. Clin. Chem. Lab. Med. 2004, 42, 602–610. [Google Scholar] [CrossRef]
- Masuda, S.; Murakami, M.; Komiyama, K.; Ishihara, M.; Ishikawa, Y.; Ishii, T.; Kudo, I. Various secretory phospholipase A2 enzymes are expressed in rheumatoid arthritis and augment prostaglandin production in cultured synovial cells. FEBS J. 2005, 272, 655–672. [Google Scholar] [CrossRef]
- Tamayo, I.; Velasco, S.E.; Puy, C.; Esmon, C.T.; Dichiara, M.G.; Montes, R.; Hermida, J. Group V secretory phospholipase A2 impairs endothelial protein C receptor-dependent protein C activation and accelerates thrombosis in vivo. J. Thromb. Haemost. 2014, 12, 1921–1927. [Google Scholar] [CrossRef]
- Kim, K.J.; Baek, I.W.; Park, K.S.; Kim, W.U.; Cho, C.S. Association between antiphospholipid antibodies and arterial thrombosis in patients with rheumatoid arthritis. Lupus 2017, 26, 88–94. [Google Scholar] [CrossRef]
- Vrzic Petronijevic, S.; Vilotic, A.; Bojic-Trbojevic, Z.; Kostic, S.; Petronijevic, M.; Vicovac, L.; Jovanovic Krivokuca, M. Trophoblast Cell Function in the Antiphospholipid Syndrome. Biomedicines 2023, 11, 2681. [Google Scholar] [CrossRef] [PubMed]
- Rampoldi, F.; Prinz, I. Three Layers of Intestinal γδ T Cells Talk Different Languages with the Microbiota. Front. Immunol. 2022, 13, 849954. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.S.; Severson, K.M.; Vaishnava, S.; Behrendt, C.L.; Yu, X.; Benjamin, J.L.; Ruhn, K.A.; Hou, B.; DeFranco, A.L.; Yarovinsky, F.; et al. Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc. Natl. Acad. Sci. USA 2011, 108, 8743–8748. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, Q.; Li, Y.; Lu, L.; Xiang, Z.; Yin, Z.; Kabelitz, D.; Wu, Y. γδ T cells: Origin and fate, subsets, diseases and immunotherapy. Signal Transduct. Target. Ther. 2023, 8, 434. [Google Scholar] [CrossRef]
- Chien, Y.H.; Meyer, C.; Bonneville, M. γδ T cells: First line of defense and beyond. Annu. Rev. Immunol. 2014, 32, 121–155. [Google Scholar] [CrossRef]
- Chu, C.Q. The bacterial link with rheumatoid arthritis. Int. J. Rheum. Dis. 2023, 26, 603–604. [Google Scholar] [CrossRef]
- Vetrano, S.; Ploplis, V.A.; Sala, E.; Sandoval-Cooper, M.; Donahue, D.L.; Correale, C.; Arena, V.; Spinelli, A.; Repici, A.; Malesci, A.; et al. Unexpected role of anticoagulant protein C in controlling epithelial barrier integrity and intestinal inflammation. Proc. Natl. Acad. Sci. USA 2011, 108, 19830–19835. [Google Scholar] [CrossRef]
- Faioni, E.M.; Ferrero, S.; Fontana, G.; Gianelli, U.; Ciulla, M.M.; Vecchi, M.; Saibeni, S.; Biguzzi, E.; Cordani, N.; Franchi, F.; et al. Expression of endothelial protein C receptor and thrombomodulin in the intestinal tissue of patients with inflammatory bowel disease. Crit. Care Med. 2004, 32, S266–S270. [Google Scholar] [CrossRef]
- Bank, I. The Role of Gamma Delta T Cells in Autoimmune Rheumatic Diseases. Cells 2020, 9, 462. [Google Scholar] [CrossRef]
- Andreu, J.L.; Trujillo, A.; Alonso, J.M.; Mulero, J.; Martínez, C. Selective expansion of T cells bearing the gamma/delta receptor and expressing an unusual repertoire in the synovial membrane of patients with rheumatoid arthritis. Arthritis Rheum. 1991, 34, 808–814. [Google Scholar] [CrossRef]
- Mo, W.X.; Yin, S.S.; Chen, H.; Zhou, C.; Zhou, J.X.; Zhao, L.D.; Fei, Y.Y.; Yang, H.X.; Guo, J.B.; Mao, Y.J.; et al. Chemotaxis of Vδ2 T cells to the joints contributes to the pathogenesis of rheumatoid arthritis. Ann. Rheum. Dis. 2017, 76, 2075–2084. [Google Scholar] [CrossRef]
- Peterman, G.M.; Spencer, C.; Sperling, A.I.; Bluestone, J.A. Role of gamma delta T cells in murine collagen-induced arthritis. J. Immunol. 1993, 151, 6546–6558. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Lupu, F.; Esmon, C.T. Inflammation, innate immunity and blood coagulation. Hamostaseologie 2010, 30, 8–9. [Google Scholar] [CrossRef]
- Boissier, M.C.; Semerano, L. From coagulation to inflammation: Novel avenues for treating rheumatoid arthritis with activated protein C. Rheumatology 2019, 58, 1710–1711. [Google Scholar] [CrossRef] [PubMed]
- Vyas, S.P.; Hansda, A.K.; Goswami, R. Rheumatoid arthritis: ‘melting pot’ of T helper subsets. Int. Rev. Immunol. 2019, 38, 212–231. [Google Scholar] [CrossRef]
- Azzazene, D.; Al Thawadi, H.; Al Farsi, H.; Besbes, S.; Geyl, C.; Mirshahi, S.; Pardo, J.; Faussat, A.M.; Jeannette, S.; Therwath, A.; et al. Plasma endothelial protein C receptor influences innate immune response in ovarian cancer by decreasing the population of natural killer and TH17 helper cells. Int. J. Oncol. 2013, 43, 1011–1018. [Google Scholar] [CrossRef]
- Noss, E.H.; Brenner, M.B. The role and therapeutic implications of fibroblast-like synoviocytes in inflammation and cartilage erosion in rheumatoid arthritis. Immunol. Rev. 2008, 223, 252–270. [Google Scholar] [CrossRef]
- Huber, L.C.; Distler, O.; Tarner, I.; Gay, R.E.; Gay, S.; Pap, T. Synovial fibroblasts: Key players in rheumatoid arthritis. Rheumatology 2006, 45, 669–675. [Google Scholar] [CrossRef]
- Pap, T.; Meinecke, I.; Muller-Ladner, U.; Gay, S. Are fibroblasts involved in joint destruction? Ann. Rheum. Dis. 2005, 64 (Suppl. S4), iv52–iv54. [Google Scholar] [CrossRef]
- Komatsu, N.; Okamoto, K.; Sawa, S.; Nakashima, T.; Oh-Hora, M.; Kodama, T.; Tanaka, S.; Bluestone, J.A.; Takayanagi, H. Pathogenic conversion of Foxp3(+) T cells into TH17 cells in autoimmune arthritis. Nat. Med. 2014, 20, 62–68. [Google Scholar] [CrossRef]
- Muller-Ladner, U.; Kriegsmann, J.; Franklin, B.N.; Matsumoto, S.; Geiler, T.; Gay, R.E.; Gay, S. Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am. J. Pathol. 1996, 149, 1607–1615. [Google Scholar] [PubMed]
- Tolboom, T.C.; van der Helm-Van Mil, A.H.; Nelissen, R.G.; Breedveld, F.C.; Toes, R.E.; Huizinga, T.W. Invasiveness of fibroblast-like synoviocytes is an individual patient characteristic associated with the rate of joint destruction in patients with rheumatoid arthritis. Arthritis Rheum. 2005, 52, 1999–2002. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.M.; Kiener, H.P.; Agarwal, S.K.; Noss, E.H.; Watts, G.F.; Chisaka, O.; Takeichi, M.; Brenner, M.B. Cadherin-11 in synovial lining formation and pathology in arthritis. Science 2007, 315, 1006–1010. [Google Scholar] [CrossRef]
- Griffin, J.H.; Zlokovic, B.V.; Mosnier, L.O. Activated protein C: Biased for translation. Blood 2015, 125, 2898–2907. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Xue, M.; Lin, H.; Smith, M.; Liang, H.; Weiler, H.; Griffin, J.H.; Jackson, C.J. A recombinant signalling-selective activated protein C that lacks anticoagulant activity is efficacious and safe in cutaneous wound preclinical models. Wound Repair. Regen. 2024, 32, 90–103. [Google Scholar] [CrossRef]
- Williams, P.D.; Zlokovic, B.V.; Griffin, J.H.; Pryor, K.E.; Davis, T.P. Preclinical safety and pharmacokinetic profile of 3K3A-APC, a novel, modified activated protein C for ischemic stroke. Curr. Pharm. Des. 2012, 18, 4215–4222. [Google Scholar] [CrossRef]
- de Oliveira, A.S.; de Almeida, V.H.; Gomes, F.G.; Rezaie, A.R.; Monteiro, R.Q. TR47, a PAR1-based peptide, inhibits melanoma cell migration in vitro and metastasis in vivo. Biochem. Biophys. Res. Commun. 2018, 495, 1300–1304. [Google Scholar] [CrossRef]
- Li, W.; Zheng, X.; Gu, J.M.; Ferrell, G.L.; Brady, M.; Esmon, N.L.; Esmon, C.T. Extraembryonic expression of EPCR is essential for embryonic viability. Blood 2005, 106, 2716–2722. [Google Scholar] [CrossRef]
Haplotype (H) | Frequency | Rare Allele Tagged | Related Protein Level | Effects |
---|---|---|---|---|
H1 | ~40% | 4678G/C (rs9574) [17] | ↓sEPCR ↑APC [22] | ↓VTE [22], pregnancy loss [23]. ↑Early onset ischemic stroke [24] and Kawasaki disease [25]. |
H2 | ~43% | No [17] | No changes | Standard function |
H3 | 10–21% | 4600A>G (rs867186) [17] | ↑sEPCR [15], PC and FVII [17] ↓mEPCR [26] | ↑VTE [27], pregnancy loss [23], coronary heart disease [28], and breast cancer [29]. ↓Severe malaria in adults [30]. |
H4 | ~5% | 3811G/A [17] | ↑sEPCR slightly [31] | ↑VTE slightly [31] |
Ligand | Functions When Bound to EPCR |
---|---|
Activated protein C Protein C (APC/PC) | Enhances the generation and prolongs APC’s presence [39]. Promotes APC’s anticoagulant, cytoprotective, and anti-inflammatory effects [40]. |
Antiphospholipid antibodies | Promotes pro-inflammatory and pro-thrombotic effects [12]. |
Factor VII | Initiates the coagulation [41] and anti-inflammatory effects [42]. |
Factor X | Regulates its interaction with the TF-FVIIa complex [43]. Promotes endothelial barrier function [44]. |
Plasmodium falciparum erythrocyte membrane protein 1 | Promotes adhesion of parasite-infected erythrocytes to the endothelium, avoiding their clearance by the spleen [45]. Causes severe inflammation and tissue damage in malaria [45]. |
Proteinase-3/Macrophage-1 | Binds to activated neutrophils [46]. Is associated with leukocyte extravasation [47]. |
Sphingosine-1-Phosphate | Mediates APC’s suppressing role in osteoclast differentiation [48]. Protects the endothelial barrier [49]. |
Secretory Phospholipase A2 Group V | Promotes inflammation and the invasiveness of RASF [50]. Disrupts the endothelial barrier [51]. |
T cell receptor | Triggers γδ T cells response to stress induced by infection or malignancy [36]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, M.; March, L. Endothelial Protein C Receptor: A Multifunctional Mediator in the Pathophysiology of Rheumatoid Arthritis. Cells 2025, 14, 485. https://doi.org/10.3390/cells14070485
Xue M, March L. Endothelial Protein C Receptor: A Multifunctional Mediator in the Pathophysiology of Rheumatoid Arthritis. Cells. 2025; 14(7):485. https://doi.org/10.3390/cells14070485
Chicago/Turabian StyleXue, Meilang, and Lyn March. 2025. "Endothelial Protein C Receptor: A Multifunctional Mediator in the Pathophysiology of Rheumatoid Arthritis" Cells 14, no. 7: 485. https://doi.org/10.3390/cells14070485
APA StyleXue, M., & March, L. (2025). Endothelial Protein C Receptor: A Multifunctional Mediator in the Pathophysiology of Rheumatoid Arthritis. Cells, 14(7), 485. https://doi.org/10.3390/cells14070485