Significance of Measurable Residual Disease in Patients Undergoing Allogeneic Hematopoietic Cell Transplantation for Acute Myeloid Leukemia
Abstract
:1. Introduction
2. Methodologies for MRD Testing
2.1. Multiparameter Flow Cytometry (MFC)
2.2. Quantitative Polymerase Chain Reaction (PCR)
2.3. NGS
3. Limitations of MRD Testing
3.1. Biospecimen/Sampling Considerations
3.2. Methodological Considerations
3.3. Treatment Considerations
3.4. Statistical Considerations
3.5. Molecular MRD Biomarker Selection/Interpretation Considerations
4. MRD as Prognostic Biomarker Before and After Allogeneic HCT
4.1. Prognostic Significance of Pre-HCT MRD
4.2. Prognostic Significance of Post-HCT MRD
4.3. Prognostic Significance of Serial MRD Testing
4.4. Conclusions on MRD as Prognostic Biomarker for AML Before/After Allogeneic HCT
5. Using MRD to Guide Therapy for Patients Considered for Allogeneic HCT
5.1. Allografting or Alternative Therapy as Preferred Post-Remission Treatment Strategy
5.2. Additional/Intensified Therapy to Eradicate MRD Before Allogeneic HCT
5.3. Selection of Conditioning Intensity
5.4. Choice of Stem Cell Source
5.5. Modulation of Immunosuppressive Therapy
5.6. Preemptive Use of DLI
5.7. Post-HCT Maintenance Therapy
5.8. Treatment of MRD Relapse After Allogeneic HCT
5.9. Conclusions on MRD to Guide Therapy Related to Allogeneic HCT
6. MRD for Monitoring After Allogeneic HCT
7. MRD as Efficacy/Response Biomarker in Patients Considered for Allogeneic HCT
8. Conclusions and Future Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Loke, J.; Vyas, H.; Craddock, C. Optimizing transplant approaches and post-transplant strategies for patients with acute myeloid leukemia. Front. Oncol. 2021, 11, 666091. [Google Scholar] [CrossRef] [PubMed]
- Loke, J.; Buka, R.; Craddock, C. Allogeneic stem cell transplantation for acute myeloid leukemia: Who, when, and how? Front. Immunol. 2021, 12, 659595. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- Magee, G.; Ragon, B.K. Allogeneic hematopoietic cell transplantation in acute myeloid leukemia. Best Pract. Res. Clin. Haematol. 2023, 36, 101466. [Google Scholar] [CrossRef] [PubMed]
- DeWolf, S.; Tallman, M.S.; Rowe, J.M.; Salman, M.Y. What influences the decision to proceed to transplant for patients with AML in first remission? J. Clin. Oncol. 2023, 41, 4693–4703. [Google Scholar] [CrossRef] [PubMed]
- Montoro, J.; Balaguer-Roselló, A.; Sanz, J. Recent advances in allogeneic transplantation for acute myeloid leukemia. Curr. Opin. Oncol. 2023, 35, 564–573. [Google Scholar] [CrossRef]
- Hourigan, C.S.; Gale, R.P.; Gormley, N.J.; Ossenkoppele, G.J.; Walter, R.B. Measurable residual disease testing in acute myeloid leukaemia. Leukemia 2017, 31, 1482–1490. [Google Scholar] [CrossRef] [PubMed]
- Heuser, M.; Freeman, S.D.; Ossenkoppele, G.J.; Buccisano, F.; Hourigan, C.S.; Ngai, L.L.; Tettero, J.M.; Bachas, C.; Baer, C.; Béné, M.C.; et al. 2021 Update on MRD in acute myeloid leukemia: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2021, 138, 2753–2767. [Google Scholar] [CrossRef]
- Blachly, J.S.; Walter, R.B.; Hourigan, C.S. The present and future of measurable residual disease testing in acute myeloid leukemia. Haematologica 2022, 107, 2810–2822. [Google Scholar] [CrossRef]
- Godwin, C.D.; Zhou, Y.; Othus, M.; Asmuth, M.M.; Shaw, C.M.; Gardner, K.M.; Wood, B.L.; Walter, R.B.; Estey, E.H. Acute myeloid leukemia measurable residual disease detection by flow cytometry in peripheral blood vs bone marrow. Blood 2021, 137, 569–572. [Google Scholar] [CrossRef]
- Xue, Y.; Xia, X.; Liu, X.; Zheng, Y.; Gu, H.; Wang, X. Applications of circulating tumor DNA in myelodysplastic syndromes and acute myeloid leukemia: Promises and challenges. Front. Biosci. 2024, 29, 86. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.T.; Yashar, W.M.; Swords, R. Breaking the bone marrow barrier: Peripheral blood as a gateway to measurable residual disease detection in acute myelogenous leukemia. Am. J. Hematol. 2025; in press. [Google Scholar] [CrossRef] [PubMed]
- Ediriwickrema, A.; Aleshin, A.; Reiter, J.G.; Corces, M.R.; Köhnke, T.; Stafford, M.; Liedtke, M.; Medeiros, B.C.; Majeti, R. Single-cell mutational profiling enhances the clinical evaluation of AML MRD. Blood Adv. 2020, 4, 943–952. [Google Scholar] [CrossRef]
- Robinson, T.M.; Bowman, R.L.; Persaud, S.; Liu, Y.; Neigenfind, R.; Gao, Q.; Zhang, J.; Sun, X.; Miles, L.A.; Cai, S.F.; et al. Single-cell genotypic and phenotypic analysis of measurable residual disease in acute myeloid leukemia. Sci. Adv. 2023, 9, eadg0488. [Google Scholar] [CrossRef] [PubMed]
- Tettero, J.M.; Freeman, S.; Buecklein, V.; Venditti, A.; Maurillo, L.; Kern, W.; Walter, R.B.; Wood, B.L.; Roumier, C.; Philippé, J.; et al. Technical aspects of flow cytometry-based measurable residual disease quantification in acute myeloid leukemia: Experience of the European LeukemiaNet MRD Working Party. Hemasphere 2022, 6, e676. [Google Scholar] [CrossRef] [PubMed]
- Walter, R.B. Perspective on measurable residual disease testing in acute myeloid leukemia. Leukemia 2024, 38, 10–13. [Google Scholar] [CrossRef]
- Tettero, J.M.; Heidinga, M.E.; Mocking, T.R.; Fransen, G.; Kelder, A.; Scholten, W.J.; Snel, A.N.; Ngai, L.L.; Bachas, C.; van de Loosdrecht, A.A.; et al. Impact of hemodilution on flow cytometry based measurable residual disease assessment in acute myeloid leukemia. Leukemia 2024, 38, 630–639. [Google Scholar] [CrossRef]
- Canali, A.; Vergnolle, I.; Bertoli, S.; Largeaud, L.; Nicolau, M.L.; Rieu, J.B.; Tavitian, S.; Huguet, F.; Picard, M.; Bories, P.; et al. Prognostic impact of unsupervised early assessment of bulk and leukemic stem cell measurable residual disease in acute myeloid leukemia. Clin. Cancer Res. 2023, 29, 134–142. [Google Scholar] [CrossRef]
- Mocking, T.R.; Kelder, A.; Reuvekamp, T.; Ngai, L.L.; Rutten, P.; Gradowska, P.; van de Loosdrecht, A.A.; Cloos, J.; Bachas, C. Computational assessment of measurable residual disease in acute myeloid leukemia using mixture models. Commun. Med. 2024, 4, 271. [Google Scholar] [CrossRef] [PubMed]
- Zeijlemaker, W.; Grob, T.; Meijer, R.; Hanekamp, D.; Kelder, A.; Carbaat-Ham, J.C.; Oussoren-Brockhoff, Y.J.M.; Snel, A.N.; Veldhuizen, D.; Scholten, W.J.; et al. CD34(+)CD38(-) leukemic stem cell frequency to predict outcome in acute myeloid leukemia. Leukemia 2019, 33, 1102–1112. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Q.; Xu, L.P.; Wang, Y.; Zhang, X.H.; Chen, H.; Chen, Y.H.; Wang, F.R.; Han, W.; Sun, Y.Q.; Yan, C.H.; et al. An LSC-based MRD assay to complement the traditional MFC method for prediction of AML relapse: A prospective study. Blood 2022, 140, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Ngai, L.L.; Hanekamp, D.; Janssen, F.; Carbaat-Ham, J.; Hofland, M.A.M.A.; Fayed, M.M.H.E.; Kelder, A.; Oudshoorn-van Marsbergen, L.; Scholten, W.J.; Snel, A.N.; et al. Prospective validation of the prognostic relevance of CD34+CD38- AML stem cell frequency in the HOVON-SAKK132 trial. Blood 2023, 141, 2657–2661. [Google Scholar] [CrossRef]
- Matthes, T. Phenotypic analysis of hematopoietic stem and progenitor cell populations in acute myeloid leukemia based on spectral flow cytometry, a 20-color panel, and unsupervised learning algorithms. Int. J. Mol. Sci. 2024, 25, 2847. [Google Scholar] [CrossRef] [PubMed]
- Hokland, P.; Ommen, H.B. Towards individualized follow-up in adult acute myeloid leukemia in remission. Blood 2011, 117, 2577–2584. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.A.L.; O’Brien, M.A.; Hills, R.K.; Daly, S.B.; Wheatley, K.; Burnett, A.K. Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: Results of the United Kingdom MRC AML-15 trial. Blood 2012, 120, 2826–2835. [Google Scholar] [CrossRef]
- Jourdan, E.; Boissel, N.; Chevret, S.; Delabesse, E.; Renneville, A.; Cornillet, P.; Blanchet, O.; Cayuela, J.M.; Recher, C.; Raffoux, E.; et al. Prospective evaluation of gene mutations and minimal residual disease in patients with core binding factor acute myeloid leukemia. Blood 2013, 121, 2213–2223. [Google Scholar] [CrossRef] [PubMed]
- Shayegi, N.; Kramer, M.; Bornhäuser, M.; Schaich, M.; Schetelig, J.; Platzbecker, U.; Röllig, C.; Heiderich, C.; Landt, O.; Ehninger, G.; et al. The level of residual disease based on mutant NPM1 is an independent prognostic factor for relapse and survival in AML. Blood 2013, 122, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Gaidzik, V.I.; Weber, D.; Paschka, P.; Kaumanns, A.; Krieger, S.; Corbacioglu, A.; Krönke, J.; Kapp-Schwoerer, S.; Krämer, D.; Horst, H.A.; et al. DNMT3A mutant transcript levels persist in remission and do not predict outcome in patients with acute myeloid leukemia. Leukemia 2018, 32, 30–37. [Google Scholar] [CrossRef]
- Lesieur, A.; Thomas, X.; Nibourel, O.; Boissel, N.; Fenwarth, L.; De Botton, S.; Fournier, E.; Celli-Lebras, K.; Raffoux, E.; Recher, C.; et al. Minimal residual disease monitoring in acute myeloid leukemia with non-A/B/D-NPM1 mutations by digital polymerase chain reaction: Feasibility and clinical use. Haematologica 2021, 106, 1767–1769. [Google Scholar] [CrossRef]
- Dekker, S.E.; Rea, D.; Cayuela, J.M.; Arnhardt, I.; Leonard, J.; Heuser, M. Using measurable residual disease to optimize management of AML, ALL, and chronic myeloid leukemia. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e390010. [Google Scholar] [CrossRef]
- Yoest, J.M.; Shirai, C.L.; Duncavage, E.J. Sequencing-based measurable residual disease testing in acute myeloid leukemia. Front. Cell Dev. Biol. 2020, 8, 249. [Google Scholar] [CrossRef] [PubMed]
- Corces-Zimmerman, M.R.; Hong, W.J.; Weissman, I.L.; Medeiros, B.C.; Majeti, R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc. Natl. Acad. Sci. USA 2014, 111, 2548–2553. [Google Scholar] [CrossRef] [PubMed]
- Jongen-Lavrencic, M.; Grob, T.; Hanekamp, D.; Kavelaars, F.G.; Al Hinai, A.; Zeilemaker, A.; Erpelinck-Verschueren, C.A.J.; Gradowska, P.L.; Meijer, R.; Cloos, J.; et al. Molecular minimal residual disease in acute myeloid leukemia. N. Engl. J. Med. 2018, 378, 1189–1199. [Google Scholar] [CrossRef] [PubMed]
- Morita, K.; Kantarjian, H.M.; Wang, F.; Yan, Y.; Bueso-Ramos, C.; Sasaki, K.; Issa, G.C.; Wang, S.; Jorgensen, J.; Song, X.; et al. Clearance of somatic mutations at remission and the risk of relapse in acute myeloid leukemia. J. Clin. Oncol. 2018, 36, 1788–1797. [Google Scholar] [CrossRef] [PubMed]
- Fox, E.J.; Reid-Bayliss, K.S.; Emond, M.J.; Loeb, L.A. Accuracy of next generation sequencing platforms. Next Gener. Seq. Appl. 2014, 1, 1000106. [Google Scholar] [CrossRef] [PubMed]
- Salk, J.J.; Schmitt, M.W.; Loeb, L.A. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat. Rev. Genet. 2018, 19, 269–285. [Google Scholar] [CrossRef]
- Othus, M.; Gale, R.P.; Hourigan, C.S.; Walter, R.B. Statistics and measurable residual disease (MRD) testing: Uses and abuses in hematopoietic cell transplantation. Bone Marrow Transplant. 2020, 55, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Walter, R.B.; Ofran, Y.; Wierzbowska, A.; Ravandi, F.; Hourigan, C.S.; Ngai, L.L.; Venditti, A.; Buccisano, F.; Ossenkoppele, G.J.; Roboz, G.J. Measurable residual disease as a biomarker in acute myeloid leukemia: Theoretical and practical considerations. Leukemia 2021, 35, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
- Versluis, J.; Cornelissen, J.J. Risks and benefits in a personalized application of allogeneic transplantation in patients with AML in first CR. Semin. Hematol. 2019, 56, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Schmalbrock, L.K.; Dolnik, A.; Cocciardi, S.; Sträng, E.; Theis, F.; Jahn, N.; Panina, E.; Blätte, T.J.; Herzig, J.; Skambraks, S.; et al. Clonal evolution of acute myeloid leukemia with FLT3-ITD mutation under treatment with midostaurin. Blood 2021, 137, 3093–3104. [Google Scholar] [CrossRef]
- Blanche, P.; Dartigues, J.F.; Jacqmin-Gadda, H. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat. Med. 2013, 32, 5381–5397. [Google Scholar] [CrossRef] [PubMed]
- Pepe, M.S.; Janes, H.; Longton, G.; Leisenring, W.; Newcomb, P. Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am. J. Epidemiol. 2004, 159, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Arbolí, E.; Othus, M.; Freeman, S.D.; Buccisano, F.; Ngai, L.L.; Thomas, I.; Palmieri, R.; Cloos, J.; Johnson, S.; Meddi, E.; et al. Optimal prognostic threshold for measurable residual disease positivity by multiparameter flow cytometry in acute myeloid leukemia (AML). Leukemia 2024, 38, 2266–2269. [Google Scholar] [CrossRef] [PubMed]
- Dillon, R.; Hills, R.; Freeman, S.; Potter, N.; Jovanovic, J.; Ivey, A.; Kanda, A.S.; Runglall, M.; Foot, N.; Valganon, M.; et al. Molecular MRD status and outcome after transplantation in NPM1-mutated AML. Blood 2020, 135, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.M.; Huang, S.M.; Huang, Y.H.; Zhang, J.; Li, H.Y.; Ge, S.S.; Wan, C.L.; Wang, M.; Liu, H.H.; Cao, H.Y.; et al. Quantification of the FLT3 internal tandem duplication is a reliable marker for monitoring measurable residual disease in acute myeloid leukemia with FLT3-ITD mutations. Bone Marrow Transpl. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Loo, S.; Potter, N.; Ivey, A.; O’Nions, J.; Moon, R.; Jovanovic, J.; Fong, C.Y.; Anstee, N.S.; Tiong, I.S.; Othman, J.; et al. Pretransplant MRD detection of fusion transcripts is strongly prognostic in KMT2A-rearranged acute myeloid leukemia. Blood 2024, 144, 2554–2557. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, Y.; Zang, M.; Zhou, J.; Xiao, M.; Fu, H.; Mo, X.; Wang, F.; Han, W.; Zhang, Y.; et al. Molecular measurable residual disease before transplantation independently predicts survival and relapse risk in adult lysine methyltransferase 2a-rearranged acute myeloid leukemia. Cancer 2025, 131, e35717. [Google Scholar] [CrossRef] [PubMed]
- Gui, G.; Ravindra, N.; Hegde, P.S.; Andrew, G.; Mukherjee, D.; Wong, Z.; Auletta, J.J.; El Chaer, F.; Chen, E.C.; Chen, Y.B.; et al. Measurable residual mutated IDH1 before allogeneic transplant for acute myeloid leukemia. Bone Marrow Transpl. 2025, 60, 154–160. [Google Scholar] [CrossRef]
- Dillon, L.W.; Gui, G.; Page, K.M.; Ravindra, N.; Wong, Z.C.; Andrew, G.; Mukherjee, D.; Zeger, S.L.; El Chaer, F.; Spellman, S.; et al. DNA sequencing to detect residual disease in adults with acute myeloid leukemia prior to hematopoietic cell transplant. JAMA 2023, 329, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Gui, G.; Ravindra, N.; Hegde, P.S.; Andrew, G.; Mukherjee, D.; Wong, Z.; Auletta, J.J.; El Chaer, F.; Chen, E.C.; Chen, Y.B.; et al. Measurable residual mutated IDH2 before allogeneic transplant for acute myeloid leukemia. Bone Marrow Transpl. 2025, 60, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Slade, M.J.; Ghasemi, R.; O’Laughlin, M.; Burton, T.; Fulton, R.S.; Abel, H.J.; Duncavage, E.J.; Ley, T.J.; Jacoby, M.A.; Spencer, D.H. Persistent molecular disease in adult patients with AML evaluated with whole-exome and targeted error-corrected DNA sequencing. JCO Precis. Oncol. 2023, 7, e2200559. [Google Scholar] [CrossRef] [PubMed]
- Short, N.J.; Zhou, S.; Fu, C.; Berry, D.A.; Walter, R.B.; Freeman, S.D.; Hourigan, C.S.; Huang, X.; Nogueras Gonzalez, G.; Hwang, H.; et al. Association of measurable residual disease with survival outcomes in patients with acute myeloid leukemia: A systematic review and meta-analysis. JAMA Oncol. 2020, 6, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Short, N.J.; Fu, C.; Berry, D.A.; Walter, R.B.; Freeman, S.D.; Hourigan, C.S.; Huang, X.; Gonzalez, G.N.; Hwang, H.; Qi, X.; et al. Association of hematologic response and assay sensitivity on the prognostic impact of measurable residual disease in acute myeloid leukemia: A systematic review and meta-analysis. Leukemia 2022, 36, 2817–2826. [Google Scholar] [CrossRef] [PubMed]
- Buckley, S.A.; Appelbaum, F.R.; Walter, R.B. Prognostic and therapeutic implications of minimal residual disease at the time of transplantation in acute leukemia. Bone Marrow Transpl. 2013, 48, 630–641. [Google Scholar] [CrossRef]
- Buckley, S.A.; Wood, B.L.; Othus, M.; Hourigan, C.S.; Ustun, C.; Linden, M.A.; DeFor, T.E.; Malagola, M.; Anthias, C.; Valkova, V.; et al. Minimal residual disease prior to allogeneic hematopoietic cell transplantation in acute myeloid leukemia: A meta-analysis. Haematologica 2017, 102, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Gaballa, S.; Saliba, R.; Oran, B.; Brammer, J.E.; Chen, J.; Rondon, G.; Alousi, A.M.; Kebriaei, P.; Marin, D.; Popat, U.R.; et al. Relapse risk and survival in patients with FLT3 mutated acute myeloid leukemia undergoing stem cell transplantation. Am. J. Hematol. 2017, 92, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Getta, B.M.; Devlin, S.M.; Levine, R.L.; Arcila, M.E.; Mohanty, A.S.; Zehir, A.; Tallman, M.S.; Giralt, S.A.; Roshal, M. Multicolor flow cytometry and multigene next-generation sequencing are complementary and highly predictive for relapse in acute myeloid leukemia after allogeneic transplantation. Biol. Blood Marrow Transplant. 2017, 23, 1064–1071. [Google Scholar] [CrossRef]
- Kim, T.; Moon, J.H.; Ahn, J.S.; Kim, Y.K.; Lee, S.S.; Ahn, S.Y.; Jung, S.H.; Yang, D.H.; Lee, J.J.; Choi, S.H.; et al. Next-generation sequencing-based posttransplant monitoring of acute myeloid leukemia identifies patients at high risk of relapse. Blood 2018, 132, 1604–1613. [Google Scholar] [CrossRef]
- Helbig, G.; Koclęga, A.; Wieczorkiewicz-Kabut, A.; Woźniczka, K.; Kopińska, A.; Boral, K.; Grygoruk-Wiśniowska, I.; Stachowicz, M.; Karolczyk, A. Pre-transplant FLT3/ITD status predicts outcome in FLT3-mutated acute myeloid leukemia following allogeneic stem cell transplantation. Ann. Hematol. 2020, 99, 1845–1853. [Google Scholar] [CrossRef]
- Loo, S.; Dillon, R.; Ivey, A.; Anstee, N.S.; Othman, J.; Tiong, I.S.; Potter, N.; Jovanovic, J.; Runglall, M.; Chong, C.C.; et al. Pretransplant FLT3-ITD MRD assessed by high-sensitivity PCR-NGS determines posttransplant clinical outcome. Blood 2022, 140, 2407–2411. [Google Scholar] [CrossRef]
- Wong, Z.C.; Dillon, L.W.; Hourigan, C.S. Measurable residual disease in patients undergoing allogeneic transplant for acute myeloid leukemia. Best Pract. Res. Clin. Haematol. 2023, 36, 101468. [Google Scholar] [CrossRef] [PubMed]
- Wery, A.R.; Salaroli, A.; Andreozzi, F.; Paesmans, M.; Dewispelaere, L.; Heimann, P.; Wittnebel, S.; Lewalle, P. Measurable residual disease assessment prior to allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia and myelodysplastic syndromes: A 20-year monocentric study. Ann. Hematol. 2024, 103, 4671–4685. [Google Scholar] [CrossRef] [PubMed]
- Paras, G.; Morsink, L.M.; Othus, M.; Milano, F.; Sandmaier, B.M.; Zarling, L.C.; Palmieri, R.; Schoch, G.; Davis, C.; Bleakley, M.; et al. Conditioning intensity and peritransplant flow cytometric MRD dynamics in adult AML. Blood 2022, 139, 1694–1706. [Google Scholar] [CrossRef]
- Ali, N.; Othus, M.; Rodríguez-Arbolí, E.; Orvain, C.; Milano, F.; Sandmaier, B.M.; Davis, C.; Basom, R.; Appelbaum, F.R.; Walter, R.B. Measurable residual disease as predictor of post-day +100 relapses following allografting in adult AML. Blood Adv. 2025, 9, 558–570. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.V.; Jorgensen, J.L.; Saliba, R.M.; Wang, S.A.; Alousi, A.M.; Andersson, B.S.; Bashir, Q.; Ciurea, S.O.; Kebriaei, P.; Marin, D.; et al. Early post-transplant minimal residual disease assessment improves risk stratification in acute myeloid leukemia. Biol. Blood Marrow Transplant. 2018, 24, 1514–1520. [Google Scholar] [CrossRef]
- Wienecke, C.P.; Heida, B.; Venturini, L.; Gabdoulline, R.; Krüger, K.; Teich, K.; Büttner, K.; Wichmann, M.; Puppe, W.; Neziri, B.; et al. Clonal relapse dynamics in acute myeloid leukemia following allogeneic hematopoietic cell transplantation. Blood 2024, 144, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Teich, K.; Stadler, M.; Gabdoulline, R.; Kandarp, J.; Wienecke, C.; Heida, B.; Klement, P.; Büttner, K.; Venturini, L.; Wichmann, M.; et al. MRD as biomarker for response to donor lymphocyte infusion after allogeneic hematopoietic cell transplantation in patients with AML. Cancers 2023, 15, 3911. [Google Scholar] [CrossRef] [PubMed]
- Nakako, S.; Okamura, H.; Yokota, I.; Umemoto, Y.; Horiuchi, M.; Sakatoku, K.; Ido, K.; Makuuchi, Y.; Kuno, M.; Takakuwa, T.; et al. Dynamic relapse prediction by peripheral blood WT1mRNA after allogeneic hematopoietic cell transplantation for myeloid neoplasms. Transplant. Cell. Ther. 2024, 30, 1088.e1–1088.e12. [Google Scholar] [CrossRef]
- Dillon, L.W.; Higgins, J.; Nasif, H.; Othus, M.; Beppu, L.; Smith, T.H.; Schmidt, E.; Valentine Iii, C.C.; Salk, J.J.; Wood, B.L.; et al. Quantification of measurable residual disease using duplex sequencing in adults with acute myeloid leukemia. Haematologica 2024, 109, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Arbolí, E.; Othus, M.; Orvain, C.; Zarling, L.C.; Sandmaier, B.M.; Milano, F.; Schoch, G.; Davis, C.; Deeg, H.J.; Appelbaum, F.R.; et al. Contribution of measurable residual disease status to prediction accuracy of relapse and survival in adults with acute myeloid leukemia undergoing allogeneic hematopoietic cell transplantation. Haematologica 2023, 108, 273–277. [Google Scholar] [CrossRef]
- Cornelissen, J.J.; Breems, D.; van Putten, W.L.J.; Gratwohl, A.A.; Passweg, J.R.; Pabst, T.; Maertens, J.; Beverloo, H.B.; van Marwijk Kooy, M.; Wijermans, P.W.; et al. Comparative analysis of the value of allogeneic hematopoietic stem-cell transplantation in acute myeloid leukemia with monosomal karyotype versus other cytogenetic risk categories. J. Clin. Oncol. 2012, 30, 2140–2146. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, J.J.; Blaise, D. Hematopoietic stem cell transplantation for patients with AML in first complete remission. Blood 2016, 127, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Ivey, A.; Hills, R.K.; Simpson, M.A.; Jovanovic, J.V.; Gilkes, A.; Grech, A.; Patel, Y.; Bhudia, N.; Farah, H.; Mason, J.; et al. Assessment of minimal residual disease in standard-risk AML. N. Engl. J. Med. 2016, 374, 422–433. [Google Scholar] [CrossRef]
- Balsat, M.; Renneville, A.; Thomas, X.; de Botton, S.; Caillot, D.; Marceau, A.; Lemasle, E.; Marolleau, J.P.; Nibourel, O.; Berthon, C.; et al. Postinduction minimal residual disease predicts outcome and benefit from allogeneic stem cell transplantation in acute myeloid leukemia with NPM1 mutation: A study by the Acute Leukemia French Association Group. J. Clin. Oncol. 2017, 35, 185–193. [Google Scholar] [CrossRef]
- Rücker, F.G.; Agrawal, M.; Corbacioglu, A.; Weber, D.; Kapp-Schwoerer, S.; Gaidzik, V.I.; Jahn, N.; Schroeder, T.; Wattad, M.; Lübbert, M.; et al. Measurable residual disease monitoring in acute myeloid leukemia with t(8;21)(q22;q22.1): Results from the AML Study Group. Blood 2019, 134, 1608–1618. [Google Scholar] [CrossRef]
- Freeman, S.D.; Hills, R.K.; Virgo, P.; Khan, N.; Couzens, S.; Dillon, R.; Gilkes, A.; Upton, L.; Nielsen, O.J.; Cavenagh, J.D.; et al. Measurable residual disease at induction redefines partial response in acute myeloid leukemia and stratifies outcomes in patients at standard risk without NPM1 mutations. J. Clin. Oncol. 2018, 36, 1486–1497. [Google Scholar] [CrossRef]
- Jiang, L.; Cheng, J.; Sun, J.; Zhang, Y.; Wu, Q.; Huang, Y.; Long, Z.; Yan, P.; Jiang, X. Dynamics of measurable residual disease for risk stratification and guiding allogeneic transplant in acute myeloid leukaemia patients with myelodysplasia-related mutations in first remission. Br. J. Haematol. 2025, 206, 250–262. [Google Scholar] [CrossRef]
- Othman, J.; Potter, N.; Ivey, A.; Jovanovic, J.; Runglall, M.; Freeman, S.D.; Gilkes, A.; Thomas, I.; Johnson, S.; Canham, J.; et al. Postinduction molecular MRD identifies patients with NPM1 AML who benefit from allogeneic transplant in first remission. Blood 2024, 143, 1931–1936. [Google Scholar] [CrossRef]
- Frisch, A.; Ganzel, C.; Ofran, Y.; Krayem, B.; Haran, A.; Vainstein, V.; Aumann, S.; Even-Zohar, N.G.; Nachmias, B. Post-relapse outcomes of older patients with NPM1-mutated AML are favorable with allo transplant in second remission. Eur. J. Haematol. 2024, in press. [CrossRef] [PubMed]
- Zhou, Y.; Othus, M.; Araki, D.; Wood, B.L.; Radich, J.P.; Halpern, A.B.; Mielcarek, M.; Estey, E.H.; Appelbaum, F.R.; Walter, R.B. Pre- and post-transplant quantification of measurable (‘minimal’) residual disease via multiparameter flow cytometry in adult acute myeloid leukemia. Leukemia 2016, 30, 1456–1464. [Google Scholar] [CrossRef] [PubMed]
- Tedjaseputra, A.; Russell, N.; Dillon, R. SOHO state of the art updates and next questions: Pre-emptive therapy at molecular measurable residual disease failure in acute myeloid leukemia. Clin. Lymphoma Myeloma Leuk. 2024, 24, 737–751. [Google Scholar] [CrossRef] [PubMed]
- Russell, N.H.; Thomas, A.; Hills, R.K.; Thomas, I.; Gilkes, A.; Almuina, N.M.; Burns, S.; Marsh, L.; Vyas, P.; Metzner, M.; et al. Treatment intensification with either fludarabine, AraC, G-CSF and idarubicin, or cladribine plus daunorubicin and AraC on the basis of residual disease status in older patients with AML: Results from the NCRI AML18 trial. J. Clin. Oncol. 2024, 43, 694–704. [Google Scholar]
- Sockel, K.; Wermke, M.; Radke, J.; Kiani, A.; Schaich, M.; Bornhäuser, M.; Ehninger, G.; Thiede, C.; Platzbecker, U. Minimal residual disease-directed preemptive treatment with azacitidine in patients with NPM1-mutant acute myeloid leukemia and molecular relapse. Haematologica 2011, 96, 1568–1570. [Google Scholar] [CrossRef]
- Tiong, I.S.; Dillon, R.; Ivey, A.; Teh, T.C.; Nguyen, P.; Cummings, N.; Taussig, D.C.; Latif, A.L.; Potter, N.E.; Runglall, M.; et al. Venetoclax induces rapid elimination of NPM1 mutant measurable residual disease in combination with low-intensity chemotherapy in acute myeloid leukaemia. Br. J. Haematol. 2021, 192, 1026–1030. [Google Scholar] [CrossRef] [PubMed]
- Sartor, C.; Brunetti, L.; Audisio, E.; Cignetti, A.; Zannoni, L.; Cristiano, G.; Nanni, J.; Ciruolo, R.; Zingarelli, F.; Ottaviani, E.; et al. A venetoclax and azacitidine bridge-to-transplant strategy for NPM1-mutated acute myeloid leukaemia in molecular failure. Br. J. Haematol. 2023, 202, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Tiong, I.S.; Hiwase, D.K.; Abro, E.; Bajel, A.; Palfreyman, E.; Beligaswatte, A.; Reynolds, J.; Anstee, N.; Nguyen, T.; Loo, S.; et al. Targeting molecular measurable residual disease and low-blast relapse in AML with venetoclax and low-dose cytarabine: A prospective phase II study (VALDAC). J. Clin. Oncol. 2024, 42, 2161–2173. [Google Scholar] [CrossRef]
- Quek, L.; Ferguson, P.; Metzner, M.; Ahmed, I.; Kennedy, A.; Garnett, C.; Jeffries, S.; Walter, C.; Piechocki, K.; Timbs, A.; et al. Mutational analysis of disease relapse in patients allografted for acute myeloid leukemia. Blood Adv. 2016, 1, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Aoudjhane, M.; Labopin, M.; Gorin, N.C.; Shimoni, A.; Ruutu, T.; Kolb, H.J.; Frassoni, F.; Boiron, J.M.; Yin, J.L.; Finke, J.; et al. Comparative outcome of reduced intensity and myeloablative conditioning regimen in HLA identical sibling allogeneic haematopoietic stem cell transplantation for patients older than 50 years of age with acute myeloblastic leukaemia: A retrospective survey from the Acute Leukemia Working Party (ALWP) of the European group for Blood and Marrow Transplantation (EBMT). Leukemia 2005, 19, 2304–2312. [Google Scholar] [PubMed]
- Shimoni, A.; Hardan, I.; Shem-Tov, N.; Yeshurun, M.; Yerushalmi, R.; Avigdor, A.; Ben-Bassat, I.; Nagler, A. Allogeneic hematopoietic stem-cell transplantation in AML and MDS using myeloablative versus reduced-intensity conditioning: The role of dose intensity. Leukemia 2006, 20, 322–328. [Google Scholar] [CrossRef]
- Alyea, E.P.; Kim, H.T.; Ho, V.; Cutler, C.; DeAngelo, D.J.; Stone, R.; Ritz, J.; Antin, J.H.; Soiffer, R.J. Impact of conditioning regimen intensity on outcome of allogeneic hematopoietic cell transplantation for advanced acute myelogenous leukemia and myelodysplastic syndrome. Biol. Blood Marrow Transplant. 2006, 12, 1047–1055. [Google Scholar] [CrossRef]
- Ringdén, O.; Labopin, M.; Ehninger, G.; Niederwieser, D.; Olsson, R.; Basara, N.; Finke, J.; Schwerdtfeger, R.; Eder, M.; Bunjes, D.; et al. Reduced intensity conditioning compared with myeloablative conditioning using unrelated donor transplants in patients with acute myeloid leukemia. J. Clin. Oncol. 2009, 27, 4570–4577. [Google Scholar] [CrossRef] [PubMed]
- Luger, S.M.; Ringdén, O.; Zhang, M.J.; Pérez, W.S.; Bishop, M.R.; Bornhauser, M.; Bredeson, C.N.; Cairo, M.S.; Copelan, E.A.; Gale, R.P.; et al. Similar outcomes using myeloablative vs reduced-intensity allogeneic transplant preparative regimens for AML or MDS. Bone Marrow Transpl. 2012, 47, 203–211. [Google Scholar] [CrossRef]
- Scott, B.L.; Pasquini, M.C.; Logan, B.R.; Wu, J.; Devine, S.M.; Porter, D.L.; Maziarz, R.T.; Warlick, E.D.; Fernandez, H.F.; Alyea, E.P.; et al. Myeloablative versus reduced-intensity hematopoietic cell transplantation for acute myeloid leukemia and myelodysplastic syndromes. J. Clin. Oncol. 2017, 35, 1154–1161. [Google Scholar] [CrossRef] [PubMed]
- Fasslrinner, F.; Schetelig, J.; Burchert, A.; Kramer, M.; Trenschel, R.; Hegenbart, U.; Stadler, M.; Schäfer-Eckart, K.; Bätzel, M.; Eich, H.; et al. Long-term efficacy of reduced-intensity versus myeloablative conditioning before allogeneic haemopoietic cell transplantation in patients with acute myeloid leukaemia in first complete remission: Retrospective follow-up of an open-label, randomised phase 3 trial. Lancet Haematol. 2018, 5, e161–e169. [Google Scholar]
- Scott, B.L.; Pasquini, M.C.; Fei, M.; Fraser, R.; Wu, J.; Devine, S.M.; Porter, D.L.; Maziarz, R.T.; Warlick, E.; Fernandez, H.F.; et al. Myeloablative versus reduced-intensity conditioning for hematopoietic cell transplantation in acute myelogenous leukemia and myelodysplastic syndromes-long-term follow-up of the BMT CTN 0901 clinical trial. Transplant. Cell. Ther. 2021, 27, 483.e1–483.e6. [Google Scholar] [CrossRef]
- Hourigan, C.S.; Dillon, L.W.; Gui, G.; Logan, B.R.; Fei, M.; Ghannam, J.; Li, Y.; Licon, A.; Alyea, E.P.; Bashey, A.; et al. Impact of conditioning intensity of allogeneic transplantation for acute myeloid leukemia with genomic evidence of residual disease. J. Clin. Oncol. 2020, 38, 1273–1283. [Google Scholar] [CrossRef] [PubMed]
- Gilleece, M.H.; Labopin, M.; Yakoub-Agha, I.; Volin, L.; Socié, G.; Ljungman, P.; Huynh, A.; Deconinck, E.; Wu, D.; Bourhis, J.H.; et al. Measurable residual disease, conditioning regimen intensity, and age predict outcome of allogeneic hematopoietic cell transplantation for acute myeloid leukemia in first remission: A registry analysis of 2292 patients by the Acute Leukemia Working Party European Society of Blood and Marrow Transplantation. Am. J. Hematol. 2018, 93, 1142–1152. [Google Scholar] [PubMed]
- Morsink, L.M.; Sandmaier, B.M.; Othus, M.; Palmieri, R.; Granot, N.; Bezerra, E.D.; Wood, B.L.; Mielcarek, M.; Schoch, G.; Davis, C.; et al. Conditioning intensity, pre-transplant flow cytometric measurable residual disease, and outcome in adults with acute myeloid leukemia undergoing allogeneic hematopoietic cell transplantation. Cancers 2020, 12, 2339. [Google Scholar] [CrossRef]
- Craddock, C.; Jackson, A.; Loke, J.; Siddique, S.; Hodgkinson, A.; Mason, J.; Andrew, G.; Nagra, S.; Malladi, R.; Peniket, A.; et al. Augmented reduced-intensity regimen does not improve postallogeneic transplant outcomes in acute myeloid leukemia. J. Clin. Oncol. 2021, 39, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Levis, M.J.; Hamadani, M.; Logan, B.; Jones, R.J.; Singh, A.K.; Litzow, M.; Wingard, J.R.; Papadopoulos, E.B.; Perl, A.E.; Soiffer, R.J.; et al. Gilteritinib as post-transplant maintenance for AML with internal tandem duplication mutation of FLT3. J. Clin. Oncol. 2024, 42, 1766–1775. [Google Scholar] [CrossRef] [PubMed]
- Weisdorf, D. Which donor or graft source should you choose for the strongest GVL? Is there really any difference. Best. Pract. Res. Clin. Haematol. 2013, 26, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Versluis, J.; Labopin, M.; Ruggeri, A.; Socie, G.; Wu, D.; Volin, L.; Blaise, D.; Milpied, N.; Craddock, C.; Yakoub-Agha, I.; et al. Alternative donors for allogeneic hematopoietic stem cell transplantation in poor-risk AML in CR1. Blood Adv. 2017, 1, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Nagler, A.; Mohty, M. In 2022, which is preferred: Haploidentical or cord transplant? Hematol. Am. Soc. Hematol. Educ. Program 2022, 2022, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Zhu, X.; Tang, B.; Zhang, L.; Geng, L.; Liu, H.; Sun, Z. The impact of pre-transplant minimal residual disease on outcome of intensified myeloablative cord blood transplant for acute myeloid leukemia in first or second complete remission. Leuk. Lymphoma 2016, 57, 1398–1405. [Google Scholar] [CrossRef]
- Milano, F.; Gooley, T.; Wood, B.; Woolfrey, A.; Flowers, M.E.; Doney, K.; Witherspoon, R.; Mielcarek, M.; Deeg, J.H.; Sorror, M.; et al. Cord-blood transplantation in patients with minimal residual disease. N. Engl. J. Med. 2016, 375, 944–953. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ma, R.; Liu, Y.R.; Xu, L.P.; Zhang, X.H.; Chen, H.; Chen, Y.H.; Wang, F.R.; Han, W.; Sun, Y.Q.; et al. The significance of peri-transplantation minimal residual disease assessed by multiparameter flow cytometry on outcomes for adult AML patients receiving haploidentical allografts. Bone Marrow Transpl. 2019, 54, 567–577. [Google Scholar] [CrossRef]
- Yu, S.; Huang, F.; Wang, Y.; Xu, Y.; Yang, T.; Fan, Z.; Lin, R.; Xu, N.; Xuan, L.; Ye, J.; et al. Haploidentical transplantation might have superior graft-versus-leukemia effect than HLA-matched sibling transplantation for high-risk acute myeloid leukemia in first complete remission: A prospective multicentre cohort study. Leukemia 2020, 34, 1433–1443. [Google Scholar] [CrossRef] [PubMed]
- Horgan, C.; Mullanfiroze, K.; Rauthan, A.; Patrick, K.; Butt, N.A.; Mirci-Danicar, O.; O’Connor, O.; Furness, C.; Deshpande, A.; Lawson, S.; et al. T-cell replete cord transplants give superior outcomes in high-risk and relapsed/refractory pediatric myeloid malignancy. Blood Adv. 2023, 7, 2155–2165. [Google Scholar] [CrossRef] [PubMed]
- Orvain, C.; Milano, F.; Rodríguez-Arbolí, E.; Othus, M.; Petersdorf, E.W.; Sandmaier, B.M.; Appelbaum, F.R.; Walter, R.B. Relationship between donor source, pre-transplant measurable residual disease, and outcome after allografting for adults with acute myeloid leukemia. Leukemia 2025, 39, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, F.; Picardi, A. Is there still a role for autologous stem cell transplantation for the treatment of acute myeloid leukemia? Cancers 2019, 12, 59. [Google Scholar] [CrossRef] [PubMed]
- Gorin, N.C. History and development of autologous stem cell transplantation for acute myeloid leukemia. Clin. Hematol. Int. 2021, 3, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Venditti, A.; Piciocchi, A.; Candoni, A.; Melillo, L.; Calafiore, V.; Cairoli, R.; de Fabritiis, P.; Storti, G.; Salutari, P.; Lanza, F.; et al. GIMEMA AML1310 trial of risk-adapted, MRD-directed therapy for young adults with newly diagnosed acute myeloid leukemia. Blood 2019, 134, 935–945. [Google Scholar] [CrossRef]
- Chen, J.; Labopin, M.; Pabst, T.; Zhang, X.; Jiang, E.; Tucci, A.; Cornelissen, J.; Meijer, E.; Khevelidze, I.; Polge, E.; et al. Autologous stem cell transplantation in adult patients with intermediate-risk acute myeloid leukemia in first complete remission and no detectable minimal residual disease. A comparative retrospective study with haploidentical transplants of the global committee and the ALWP of the EBMT. Bone Marrow Transpl. 2023, 58, 1322–1330. [Google Scholar]
- Elmaagacli, A.H.; Beelen, D.W.; Trenn, G.; Schmidt, O.; Nahler, M.; Schaefer, U.W. Induction of a graft-versus-leukemia reaction by cyclosporin A withdrawal as immunotherapy for leukemia relapsing after allogeneic bone marrow transplantation. Bone Marrow Transpl. 1999, 23, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Oran, B.; Giralt, S.; Couriel, D.; Hosing, C.; Shpall, E.J.; de Meis, E.; Khouri, I.F.; Qazilbash, M.; Anderlini, P.; Kebriaei, P.; et al. Treatment of AML and MDS relapsing after reduced-intensity conditioning and allogeneic hematopoietic stem cell transplantation. Leukemia 2007, 21, 2540–2544. [Google Scholar] [CrossRef] [PubMed]
- Craddock, C. Transplant in AML with measurable residual disease: Proceed or defer? Hematol. Am. Soc. Hematol. Educ. Program 2022, 2022, 528–533. [Google Scholar] [CrossRef]
- Rosenow, F.; Berkemeier, A.; Krug, U.; Müller-Tidow, C.; Gerss, J.; Silling, G.; Groth, C.; Wieacker, P.; Bogdanova, N.; Mesters, R.; et al. CD34(+) lineage specific donor cell chimerism for the diagnosis and treatment of impending relapse of AML or myelodysplastic syndrome after allo-SCT. Bone Marrow Transpl. 2013, 48, 1070–1076. [Google Scholar] [CrossRef] [PubMed]
- Horn, B.; Petrovic, A.; Wahlstrom, J.; Dvorak, C.C.; Kong, D.; Hwang, J.; Expose-Spencer, J.; Gates, M.; Cowan, M.J. Chimerism-based pre-emptive immunotherapy with fast withdrawal of immunosuppression and donor lymphocyte infusions after allogeneic stem cell transplantation for pediatric hematologic malignancies. Biol. Blood Marrow Transplant. 2015, 21, 729–737. [Google Scholar] [CrossRef]
- Tan, Y.; Du, K.; Luo, Y.; Shi, J.; Cao, L.; Zheng, Y.; Zheng, G.; Zhao, Y.; Ye, X.; Cai, Z.; et al. Superiority of preemptive donor lymphocyte infusion based on minimal residual disease in acute leukemia patients after allogeneic hematopoietic stem cell transplantation. Transfusion 2014, 54, 1493–1500. [Google Scholar] [CrossRef] [PubMed]
- Dominietto, A.; Pozzi, S.; Miglino, M.; Albarracin, F.; Piaggio, G.; Bertolotti, F.; Grasso, R.; Zupo, S.; Raiola, A.M.; Gobbi, M.; et al. Donor lymphocyte infusions for the treatment of minimal residual disease in acute leukemia. Blood 2007, 109, 5063–5064. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.H.; Liu, D.H.; Liu, K.Y.; Xu, L.P.; Liu, Y.R.; Chen, H.; Han, W.; Wang, Y.; Qin, Y.Z.; Huang, X.J. Risk stratification-directed donor lymphocyte infusion could reduce relapse of standard-risk acute leukemia patients after allogeneic hematopoietic stem cell transplantation. Blood 2012, 119, 3256–3262. [Google Scholar] [CrossRef]
- Ghobadi, A.; Choi, J.; Fiala, M.A.; Fletcher, T.; Liu, J.; Eissenberg, L.G.; Abboud, C.; Cashen, A.; Vij, R.; Schroeder, M.A.; et al. Phase I study of azacitidine following donor lymphocyte infusion for relapsed acute myeloid leukemia post allogeneic stem cell transplantation. Leuk. Res. 2016, 49, 1–6. [Google Scholar] [CrossRef] [PubMed]
- DeFilipp, Z.; Chen, Y.B. How I treat with maintenance therapy after allogeneic HCT. Blood 2023, 141, 39–48. [Google Scholar] [CrossRef] [PubMed]
- de Lima, M.; Giralt, S.; Thall, P.F.; de Padua Silva, L.; Jones, R.B.; Komanduri, K.; Braun, T.M.; Nguyen, H.Q.; Champlin, R.; Garcia-Manero, G. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome: A dose and schedule finding study. Cancer 2010, 116, 5420–5431. [Google Scholar] [CrossRef] [PubMed]
- Oshikawa, G.; Kakihana, K.; Saito, M.; Aoki, J.; Najima, Y.; Kobayashi, T.; Doki, N.; Sakamaki, H.; Ohashi, K. Post-transplant maintenance therapy with azacitidine and gemtuzumab ozogamicin for high-risk acute myeloid leukaemia. Br. J. Haematol. 2015, 169, 756–759. [Google Scholar] [CrossRef] [PubMed]
- Pusic, I.; Choi, J.; Fiala, M.A.; Gao, F.; Holt, M.; Cashen, A.F.; Vij, R.; Abboud, C.N.; Stockerl-Goldstein, K.E.; Jacoby, M.A.; et al. Maintenance therapy with decitabine after allogeneic stem cell transplantation for acute myelogenous leukemia and myelodysplastic syndrome. Biol. Blood Marrow Transplant. 2015, 21, 1761–1769. [Google Scholar] [CrossRef]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Döhner, K.; Marcucci, G.; et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Perl, A.E.; Martinelli, G.; Cortes, J.E.; Neubauer, A.; Berman, E.; Paolini, S.; Montesinos, P.; Baer, M.R.; Larson, R.A.; Ustun, C.; et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N. Engl. J. Med. 2019, 381, 1728–1740. [Google Scholar] [CrossRef]
- Erba, H.P.; Montesinos, P.; Kim, H.J.; Patkowska, E.; Vrhovac, R.; Žák, P.; Wang, P.N.; Mitov, T.; Hanyok, J.; Kamel, Y.M.; et al. Quizartinib plus chemotherapy in newly diagnosed patients with FLT3-internal-tandem-duplication-positive acute myeloid leukaemia (QuANTUM-First): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023, 401, 1571–1583. [Google Scholar] [CrossRef]
- Burchert, A.; Bug, G.; Fritz, L.V.; Finke, J.; Stelljes, M.; Röllig, C.; Wollmer, E.; Wäsch, R.; Bornhäuser, M.; Berg, T.; et al. Sorafenib maintenance after allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia with FLT3-internal tandem duplication mutation (SORMAIN). J. Clin. Oncol. 2020, 38, 2993–3002. [Google Scholar] [CrossRef] [PubMed]
- Maziarz, R.T.; Levis, M.; Patnaik, M.M.; Scott, B.L.; Mohan, S.R.; Deol, A.; Rowley, S.D.; Kim, D.D.H.; Hernandez, D.; Rajkhowa, T.; et al. Midostaurin after allogeneic stem cell transplant in patients with FLT3-internal tandem duplication-positive acute myeloid leukemia. Bone Marrow Transpl. 2021, 56, 1180–1189. [Google Scholar] [CrossRef]
- Xuan, L.; Wang, Y.; Yang, K.; Shao, R.; Huang, F.; Fan, Z.; Chi, P.; Xu, Y.; Xu, N.; Deng, L.; et al. Sorafenib maintenance after allogeneic haemopoietic stem-cell transplantation in patients with FLT3-ITD acute myeloid leukaemia: Long-term follow-up of an open-label, multicentre, randomised, phase 3 trial. Lancet Haematol. 2023, 10, e600–e611. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Schuh, A.C.; Stein, E.M.; Montesinos, P.; Wei, A.H.; de Botton, S.; Zeidan, A.M.; Fathi, A.T.; Kantarjian, H.M.; Bennett, J.M.; et al. Enasidenib plus azacitidine versus azacitidine alone in patients with newly diagnosed, mutant-IDH2 acute myeloid leukaemia (AG221-AML-005): A single-arm, phase 1b and randomised, phase 2 trial. Lancet Oncol. 2021, 22, 1597–1608. [Google Scholar] [CrossRef] [PubMed]
- Montesinos, P.; Recher, C.; Vives, S.; Zarzycka, E.; Wang, J.; Bertani, G.; Heuser, M.; Calado, R.T.; Schuh, A.C.; Yeh, S.P.; et al. Ivosidenib and azacitidine in IDH1-mutated acute myeloid leukemia. N. Engl. J. Med. 2022, 386, 1519–1531. [Google Scholar] [CrossRef] [PubMed]
- de Botton, S.; Fenaux, P.; Yee, K.; Récher, C.; Wei, A.H.; Montesinos, P.; Taussig, D.C.; Pigneux, A.; Braun, T.; Curti, A.; et al. Olutasidenib (FT-2102) induces durable complete remissions in patients with relapsed or refractory IDH1-mutated AML. Blood Adv. 2023, 7, 3117–3127. [Google Scholar] [CrossRef] [PubMed]
- Issa, G.C.; Aldoss, I.; DiPersio, J.; Cuglievan, B.; Stone, R.; Arellano, M.; Thirman, M.J.; Patel, M.R.; Dickens, D.S.; Shenoy, S.; et al. The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia. Nature 2023, 615, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Fathi, A.T.; Kim, H.T.; Soiffer, R.J.; Levis, M.J.; Li, S.; Kim, A.S.; Mims, A.S.; DeFilipp, Z.; El-Jawahri, A.; McAfee, S.L.; et al. Enasidenib as maintenance following allogeneic hematopoietic cell transplantation for IDH2-mutated myeloid malignancies. Blood Adv. 2022, 6, 5857–5865. [Google Scholar] [CrossRef] [PubMed]
- Fathi, A.T.; Kim, H.T.; Soiffer, R.J.; Levis, M.J.; Li, S.; Kim, A.S.; DeFilipp, Z.; El-Jawahri, A.; McAfee, S.L.; Brunner, A.M.; et al. Multicenter phase I trial of ivosidenib as maintenance treatment following allogeneic hematopoietic cell transplantation for IDH1-mutated acute myeloid leukemia. Clin. Cancer Res. 2023, 29, 2034–2042. [Google Scholar] [CrossRef] [PubMed]
- Salhotra, A.; Bejanyan, N.; Yang, D.; Mokhtari, S.; Al Malki, M.M.; Sandhu, K.S.; Faramand, R.G.; Aldoss, I.; Artz, A.S.; Aribi, A.; et al. Multicenter pilot clinical trial of enasidenib as maintenance therapy after allogeneic hematopoietic cell transplantation (alloHCT) in patients with acute myeloid leukemia (AML) varrying IDH2 mutations [abstract]. Transplant. Cell. Ther. 2024, 30, S8. [Google Scholar] [CrossRef]
- Ommen, H.B.; Schnittger, S.; Jovanovic, J.V.; Ommen, I.B.; Hasle, H.; Østergaard, M.; Grimwade, D.; Hokland, P. Strikingly different molecular relapse kinetics in NPM1c, PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11 acute myeloid leukemias. Blood 2010, 115, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Short, N.J.; Macaron, W.; Kadia, T.; Dinardo, C.; Issa, G.C.; Daver, N.; Wang, S.; Jorgensen, J.; Nguyen, D.; Bidikian, A.; et al. Clinical outcomes and impact of therapeutic intervention in patients with acute myeloid leukemia who experience measurable residual disease (MRD) recurrence following MRD-negative remission. Am. J. Hematol. 2022, 97, E408–E411. [Google Scholar] [CrossRef] [PubMed]
- Grimwade, D.; Jovanovic, J.V.; Hills, R.K.; Nugent, E.A.; Patel, Y.; Flora, R.; Diverio, D.; Jones, K.; Aslett, H.; Batson, E.; et al. Prospective minimal residual disease monitoring to predict relapse of acute promyelocytic leukemia and to direct pre-emptive arsenic trioxide therapy. J. Clin. Oncol. 2009, 27, 3650–3658. [Google Scholar] [CrossRef] [PubMed]
- Bataller, A.; Oñate, G.; Diaz-Beyá, M.; Guijarro, F.; Garrido, A.; Vives, S.; Tormo, M.; Arnan, M.; Salamero, O.; Sampol, A.; et al. Acute myeloid leukemia with NPM1 mutation and favorable European LeukemiaNet category: Outcome after preemptive intervention based on measurable residual disease. Br. J. Haematol. 2020, 191, 52–61. [Google Scholar] [CrossRef]
- Othman, J.; Potter, N.; Mokretar, K.; Taussig, D.; Khan, A.; Krishnamurthy, P.; Latif, A.L.; Cahalin, P.; Aries, J.; Amer, M.; et al. FLT3 inhibitors as MRD-guided salvage treatment for molecular failure in FLT3 mutated AML. Leukemia 2023, 37, 2066–2072. [Google Scholar] [CrossRef]
- Platzbecker, U.; Middeke, J.M.; Sockel, K.; Herbst, R.; Wolf, D.; Baldus, C.D.; Oelschlägel, U.; Mütherig, A.; Fransecky, L.; Noppeney, R.; et al. Measurable residual disease-guided treatment with azacitidine to prevent haematological relapse in patients with myelodysplastic syndrome and acute myeloid leukaemia (RELAZA2): An open-label, multicentre, phase 2 trial. Lancet Oncol. 2018, 19, 1668–1679. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.H.; Zhang, X.H.; Qin, Y.Z.; Liu, D.H.; Jiang, H.; Chen, H.; Jiang, Q.; Xu, L.P.; Lu, J.; Han, W.; et al. MRD-directed risk stratification treatment may improve outcomes of t(8;21) AML in the first complete remission: Results from the AML05 multicenter trial. Blood 2013, 121, 4056–4062. [Google Scholar] [CrossRef]
- Xu, D.; Yang, Y.; Yin, Z.; Tu, S.; Nie, D.; Li, Y.; Huang, Z.; Sun, Q.; Huang, C.; Nie, X.; et al. Risk-directed therapy based on genetics and MRD improves the outcomes of AML1-ETO-positive AML patients, a multi-center prospective cohort study. Blood Cancer J. 2023, 13, 168. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Hematologic Malignancies: Regulatory Considerations for Use of Minimal Residual Disease in Development of Drug and Biological Products for Treatment—Guidance for Industry; Food and Drug Administration: Rockville, MD, USA, 2020; Volume 2020. [Google Scholar]
- Food and Drug Administration. Acute Myeloid Leukemia: Developing Drugs and Biological Products for Treatment—Guidance for Industry; Food and Drug Administration: Rockville, MD, USA, 2022; Volume 2022. [Google Scholar]
- Roboz, G.J.; Ravandi, F.; Wei, A.H.; Dombret, H.; Thol, F.; Voso, M.T.; Schuh, A.C.; Porkka, K.; La Torre, I.; Skikne, B.; et al. Oral azacitidine prolongs survival of patients with AML in remission independently of measurable residual disease status. Blood 2022, 139, 2145–2155. [Google Scholar] [CrossRef] [PubMed]
Test | Method | Sensitivity | Advantages | Disadvantages |
---|---|---|---|---|
Morphology | Microscopic examination of leukemic cells in bone marrow | ~10−2 |
|
|
Multiparameter Flow Cytometry (MFC) | Detection of immunophenotypically abnormal cell populations based on surface/intracellular markers using fluorescent antibodies | 10−3–10−5 |
|
|
Quantitative PCR (qPCR) | Quantification of single molecular fusion transcripts and mutations | 10−5–10−6 |
|
|
Next-Generation Sequencing (NGS) | Quantification of multiple molecular abnormalities | 10−5–10−6 |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gang, M.; Othus, M.; Walter, R.B. Significance of Measurable Residual Disease in Patients Undergoing Allogeneic Hematopoietic Cell Transplantation for Acute Myeloid Leukemia. Cells 2025, 14, 290. https://doi.org/10.3390/cells14040290
Gang M, Othus M, Walter RB. Significance of Measurable Residual Disease in Patients Undergoing Allogeneic Hematopoietic Cell Transplantation for Acute Myeloid Leukemia. Cells. 2025; 14(4):290. https://doi.org/10.3390/cells14040290
Chicago/Turabian StyleGang, Margery, Megan Othus, and Roland B. Walter. 2025. "Significance of Measurable Residual Disease in Patients Undergoing Allogeneic Hematopoietic Cell Transplantation for Acute Myeloid Leukemia" Cells 14, no. 4: 290. https://doi.org/10.3390/cells14040290
APA StyleGang, M., Othus, M., & Walter, R. B. (2025). Significance of Measurable Residual Disease in Patients Undergoing Allogeneic Hematopoietic Cell Transplantation for Acute Myeloid Leukemia. Cells, 14(4), 290. https://doi.org/10.3390/cells14040290