The Influence of Carbon Nanotubes and Graphene on Immune Cells
Abstract
1. Introduction
2. Review Methodology
- -
- Records identified through database searching: 400
- -
- Additional records identified through other sources: 10
- -
- Total records identified: 410
- -
- Records after duplicates removed: 350
- -
- Records screened: 350
- -
- Records excluded after screening: 250
- -
- Full-text articles assessed for eligibility: 100
- -
- Full-text articles excluded: 20 (Reasons: irrelevant focus, poor methodological quality)
- -
- Studies included in qualitative synthesis: 80
- -
- Studies included in quantitative synthesis (meta-analysis): 60
3. Immune Cell Responses to Nanotube Exposure
3.1. Lymphocytes
3.2. Monocytes
3.3. Macrophages
3.4. Dendritic Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| f-CNTs | Functionalized carbon nanotubes | 
| PBMCs | Peripheral blood mononuclear cells | 
| NK | Natural killer cells | 
| GO | Graphene oxide | 
| DC | Dendritic cells | 
| SWCNTs | Single walled | 
| DWCNTs | Double walled | 
| MWCNTs | Multiwalled | 
References
- Ganpisetti, R.; Giridharan, S.; Vaskuri, G.S.S.J.; Narang, N.; Basim, P.; Dokmeci, M.R.; Ermis, M.; Rojekar, S.; Gholap, A.D.; Kommineni, N. Biological Nanocarriers in Cancer Therapy: Cutting Edge Innovations in Precision Drug Delivery. Biomolecules 2025, 15, 802. [Google Scholar] [CrossRef]
- Chen, X.; Tang, Z. Novel application of nanomedicine for the treatment of acute lung injury and acute respiratory distress syndrome. Nanomedicine 2024, 19, 110–123. [Google Scholar]
- Toader, C.; Dumitru, A.V.; Eva, L.; Serban, M.; Covache-Busuioc, R.-A.; Ciurea, A.V. Nanoparticle strategies for treating central nervous system disorders. Nanomedicine 2024, 19, 116–129. [Google Scholar]
- Lohani, A.P.; Elosta, M.; Maksoud, M.; Murshid, N. Functionalized carbon nanotubes: Emerging applications in ultrasound imaging. Nanomedicine 2025, 20, 135–148. [Google Scholar]
- Tripathi, D.; Hardaniya, M.; Pande, S.; Maity, D. Advances in optical contrast agents for medical imaging. Nanomedicine 2025, 20, 149–162. [Google Scholar]
- Lai, J.; Luo, Z.; Chen, L.; Wu, Z. Advances in nanotechnology-based targeted-contrast agents for CT and MR imaging. Nanomedicine 2024, 19, 130–142. [Google Scholar]
- Chavda, V.P.; Balar, P.C.; Patel, S.B. Nanotheranostics-based management of head and neck cancer. Nanomedicine 2023, 18, 143–156. [Google Scholar] [CrossRef]
- Bi, J.; Mo, C.; Li, S.; Huang, M.; Lin, Y.; Yuan, P.; Liu, Z.; Jia, B.; Xu, S. Immunotoxicity of metal and metal oxide nanoparticles: From toxic mechanisms to metabolism and outcomes. Biomater. Sci. 2023, 11, 4151–4165. [Google Scholar] [CrossRef] [PubMed]
- Elumalai, K.; Srinivasan, S.; Shanmugam, A. Review of the efficacy of nanoparticle-based drug delivery systems in cancer therapy. Nanomedicine 2024, 19, 163–176. [Google Scholar]
- Gawne, P.J.; Ferreira, M.; Papaluca, M.; Grimm, J.; Decuzzi, P. New opportunities and old challenges in the clinical translation of nanotheranostics. Nat. Rev. Drug Discov. 2023, 22, 581–599. [Google Scholar] [CrossRef]
- Shen, H.; Zhang, L.; Liu, M.; Zhang, Z. Biomedical applications of graphene. Theranostics 2012, 2, 283–294. [Google Scholar] [CrossRef]
- Islam, M.A.; Hossain, A.; Hossain, N.; Ahmed, M.M.S.; Islam, S.; Henaish, A.M.A.; Soldatov, A.V.; Chowdhury, M.A. Recent achievement of graphene in biomedicine: Advancements by integrated microfluidics system and conventional techniques. Sens. Int. 2024, 5, 100293. [Google Scholar] [CrossRef]
- Li, J.; Zeng, H.; Zeng, Z.; Zeng, Y.; Xie, T. Promising Graphene-Based Nanomaterials and Their Biomedical Applications and Potential Risks: A Comprehensive Review. ACS Biomater. Sci. Eng. 2021, 7, 5363–5396. [Google Scholar] [CrossRef]
- Murjani, B.O.; Kadu, P.S.; Bansod, M.; Vaidya, S.S.; Yadav, M.D. Carbon nanotubes in biomedical applications: Current status, promises, and challenges. Carbon Lett. 2022, 32, 1207–1226. [Google Scholar] [CrossRef]
- Sayed, M.H.; Shaikh, A.H. Recent Advances of Functionalized Carbon Nanotubes for Biomedical and Device Applications (A Review). Russ. J. Gen. Chem. 2024, 94, 246–264. [Google Scholar] [CrossRef]
- Dumortier, H.; Lacotte, S.; Pastorin, G.; Marega, R.; Wu, W.; Bonifazi, D.; Briand, J.P.; Prato, M.; Muller, S.; Bianco, A. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett. 2006, 6, 1522–1528. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, X.; Nakayama-Ratchford, N.; Dai, H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 2007, 1, 50–56. [Google Scholar] [CrossRef]
- Gendron, D.; Bubak, G. Carbon Nanotubes and Graphene Materials as Xenobiotics in Living Systems: Is There a Consensus on Their Safety? J. Xenobiotics 2023, 13, 740–760. [Google Scholar] [CrossRef] [PubMed]
- Zeinali, M.; Jammalan, M.; Ardestani, S.K.; Mosaveri, N. Immunological and cytotoxicological characterization of tuberculin purified protein derivative (PPD) conjugated to single-walled carbon nanotubes. Immunol. Lett. 2009, 126, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Sabuncu, A.C.; Kalluri, B.S.; Qian, S.; Stacey, M.W.; Beskok, A. Dispersion state and toxicity of multi-walled carbon nanotubes in cell culture medium with different T80 concentrations. Colloids Surf. B Biointerfaces 2010, 78, 36–43. [Google Scholar] [CrossRef]
- Benincasa, M.; Pacor, S.; Wu, W.; Prato, M.; Bianco, A.; Gennaro, R. Antifungal activity of amphotericin B conjugated to carbon nanotubes. ACS Nano 2011, 5, 199–208. [Google Scholar] [CrossRef]
- Ramesh, G.B.; Singh, P.; Biswas, K. Potentialities of Bio-functionalized Carbon Nanotubes for Different Anti-cancerous Activities. J. Inorg. Organomet. Polym. Mater. 2024, 34, 2325–2350. [Google Scholar] [CrossRef]
- Bottini, M.; Bruckner, S.; Nika, K.; Bottini, N.; Bellucci, S.; Magrini, A.; Bergamaschi, A.; Mustelin, T. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol. Lett. 2006, 160, 121–126. [Google Scholar] [CrossRef]
- Bottini, M.; Cerignoli, F.; Dawson, M.I.; Magrini, A.; Rosato, N.; Mustelin, T. Full-length single-walled carbon nanotubes decorated with streptavidin-conjugated quantum dots as multivalent intracellular fluorescent nanoprobes. Biomacromolecules 2006, 7, 2259–2263. [Google Scholar] [CrossRef]
- Liu, Z.; Winters, M.; Holodniy, M.; Dai, H. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed. Engl. 2007, 46, 2023–2027. [Google Scholar] [CrossRef]
- Cato, M.H.; D’Annibale, F.; Mills, D.M.; Cerignoli, F.; Dawson, M.I.; Bergamaschi, E.; Bottini, N.; Magrini, A.; Bergamaschi, A.; Rosato, N.; et al. Cell-type specific and cytoplasmic targeting of PEGylated carbon nanotube-based nanoassemblies. J. Nanosci. Nanotechnol. 2008, 8, 2259–2269. [Google Scholar] [CrossRef]
- Fadel, T.R.; Look, M.; Staffier, P.A.; Haller, G.L.; Pfefferle, L.D.; Fahmy, T.M. Clustering of stimuli on single-walled carbon nanotube bundles enhances cellular activation. Langmuir 2010, 26, 5645–5654. [Google Scholar] [CrossRef]
- Delogu, L.G.; Stanford, S.M.; Santelli, E.; Magrini, A.; Bergamaschi, A.; Motamedchaboki, K.; Rosato, N.; Mustelin, T.; Bottini, N.; Bottini, M. Carbon nanotube-based nanocarriers: The importance of keeping it clean. J. Nanosci. Nanotechnol. 2010, 10, 5293–5301. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, L.; Lauer, F.; Burchiel, S.; McDonald, J.D. Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat. Nanotechnol. 2009, 4, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Nygaard, U.C.; Hansen, J.S.; Samuelsen, M.; Alberg, T.; Marioara, C.D.; Løvik, M. Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice. Toxicol. Sci. 2009, 109, 113–123. [Google Scholar] [CrossRef]
- Wang, X.; Katwa, P.; Podila, R.; Chen, P.; Ke, P.C.; Rao, A.M.; Walters, D.M.; Wingard, C.J.; Brown, J.M. Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice. Part. Fibre Toxicol. 2011, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Sager, T.M.; Wolfarth, M.W.; Andrew, M.; Hubbs, A.; Friend, S.; Chen, T.H.; Porter, D.W.; Wu, N.; Yang, F.; Hamilton, R.F.; et al. Effect of multi-walled carbon nanotube surface modification on bioactivity in the C57BL/6 mouse model. Nanotoxicology 2014, 8, 317–327. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Fujitani, T.; Ohyama, K.; Nakae, D.; Hirose, A.; Nishimura, T.; Ogata, A. Effects of sustained stimulation with multi-wall carbon nanotubes on immune and inflammatory responses in mice. J. Toxicol. Sci. 2012, 37, 177–189. [Google Scholar] [CrossRef]
- Yang, Z.; Pan, Y.; Chen, T.; Li, L.; Zou, W.; Liu, D.; Xue, D.; Wang, X.; Lin, G. Cytotoxicity and Immune Dysfunction of Dendritic Cells Caused by Graphene Oxide. Front. Pharmacol. 2020, 11, 1206. [Google Scholar] [CrossRef]
- Gurunathan, S.; Kang, M.H.; Jeyaraj, M.; Kim, J.H. Differential Immunomodulatory Effect of Graphene Oxide and Vanillin-Functionalized Graphene Oxide Nanoparticles in Human Acute Monocytic Leukemia Cell Line (THP-1). Int. J. Mol. Sci. 2019, 20, 247. [Google Scholar] [CrossRef]
- Meng, C.; Zhi, X.; Li, C.; Li, C.; Chen, Z.; Qiu, X.; Ding, C.; Ma, L.; Lu, H.; Chen, D.; et al. Graphene Oxides Decorated with Carnosine as an Adjuvant To Modulate Innate Immune and Improve Adaptive Immunity In Vivo. ACS Nano 2016, 10, 2203–2213. [Google Scholar] [CrossRef]
- Li, Y.T.; Mei, K.C.; Liam-Or, R.; Wang, J.T.; Faruqu, F.N.; Zhu, S.; Wang, Y.L.; Lu, Y.; Al-Jamal, K.T. Graphene Oxide Nanosheets Toxicity in Mice Is Dependent on Protein Corona Composition and Host Immunity. ACS Nano 2024, 18, 22572–22585. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Luo, N.; Yue, H.; Gao, Y.; Ma, G.; Wei, W. In vivo immunological response of exposure to PEGylated graphene oxide via intraperitoneal injection. J. Mater. Chem. B 2020, 8, 6845–6856. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S.; Zhao, X.; Kuznetsova, L.V.; Wong, S.S.; Ojima, I. Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J. Am. Chem. Soc. 2008, 130, 16778–16785. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Gong, H.; Shi, X.; Wan, J.; Zhang, Y.; Liu, Z. In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials 2013, 34, 2787–2795. [Google Scholar] [CrossRef]
- Fan, J.; Chen, Y.; Yang, D.; Shen, J.; Guo, X. Multi-walled carbon nanotubes induce IL-1β secretion by activating hemichannels-mediated ATP release in THP-1 macrophages. Nanotoxicology 2020, 14, 929–946. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Mendoza, J.J.; Sánchez-Ramírez, B.; Cigarroa-Mayorga, O.E.; Orrantia-Borunda, E.; Talamás-Rohana, P. Noncytotoxic Carbon Nanotubes Bioconjugated with Fucosyltransferase 4-Derived Peptides Modulate Macrophage Polarization In Vitro. BioNanoScience 2024, 14, 299–317. [Google Scholar] [CrossRef]
- Yan, T.; Zhang, H.; Huang, D.; Feng, S.; Fujita, M.; Gao, X.D. Chitosan-Functionalized Graphene Oxide as a Potential Immunoadjuvant. Nanomaterials 2017, 7, 59. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Feng, Y.; Lin, L.; Wu, D.; Liu, Q.; Li, H.; Zhang, X.; Li, S.; Tang, F.; Liu, Z.; et al. Mannose Receptor-Mediated Carbon Nanotubes as an Antigen Delivery System to Enhance Immune Response Both In Vitro and In Vivo. Int. J. Mol. Sci. 2022, 23, 4239. [Google Scholar] [CrossRef]
- Mitchell, L.A.; Gao, J.; Wal, R.V.; Gigliotti, A.; Burchiel, S.W.; McDonald, J.D. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol. Sci. 2007, 100, 203–214. [Google Scholar] [CrossRef]
- Fadel, T.R.; Sharp, F.A.; Vudattu, N.; Ragheb, R.; Garyu, J.; Kim, D.; Hong, E.; Li, N.; Haller, G.L.; Pfefferle, L.D.; et al. A carbon nanotube-polymer composite for T-cell therapy. Nat. Nanotechnol. 2014, 9, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Seidel, C.; Zhernovkov, V.; Cassidy, H.; Kholodenko, B.; Matallanas, D.; Cosnier, F.; Gaté, L. Inhaled multi-walled carbon nanotubes differently modulate global gene and protein expression in rat lungs. Nanotoxicology 2021, 15, 238–256. [Google Scholar] [CrossRef]
- Soliman, E.; Elhassanny, A.E.M.; Malur, A.; McPeek, M.; Bell, A.; Leffler, N.; Van Dross, R.; Jones, J.L.; Malur, A.G.; Thomassen, M.J. Impaired mitochondrial function of alveolar macrophages in carbon nanotube-induced chronic pulmonary granulomatous disease. Toxicology 2020, 445, 152598. [Google Scholar] [CrossRef]
- Galon, J.; Angell, H.K.; Bedognetti, D.; Marincola, F.M. The continuum of cancer immunosurveillance: Prognostic, predictive, and mechanistic signatures. Immunity 2013, 39, 11–26. [Google Scholar] [CrossRef]
- Benci, J.L.; Xu, B.; Qiu, Y.; Wu, T.J.; Dada, H.; Twyman-Saint Victor, C.; Cucolo, L.; Lee, D.S.M.; Pauken, K.E.; Huang, A.C.; et al. Tumor Interferon Signaling Regulates a Multigenic Resistance Program to Immune Checkpoint Blockade. Cell 2016, 167, 1540–1554.e12. [Google Scholar] [CrossRef]
- Spivey, T.L.; Uccellini, L.; Ascierto, M.L.; Zoppoli, G.; De Giorgi, V.; Delogu, L.G.; Engle, A.M.; Thomas, J.M.; Wang, E.; Marincola, F.M.; et al. Gene expression profiling in acute allograft rejection: Challenging the immunologic constant of rejection hypothesis. J. Transl. Med. 2011, 9, 174. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yuan, Y.; Liu, D.; Peng, H.; Shen, L.; Chen, Y. Targeting novel immune checkpoints in the B7-H family: Advancing cancer immunotherapy from bench to bedside. Trends Cancer 2025, 11, 540–559. [Google Scholar] [CrossRef] [PubMed]
- Siu, K.S.; Zheng, X.; Liu, Y.; Zhang, Y.; Zhang, X.; Chen, D.; Yuan, K.; Gillies, E.R.; Koropatnick, J.; Wei-Ping Min, W.P. Single-Walled Carbon Nanotubes Noncovalently Functionalized with Lipid Modified Polyethylenimine for siRNA Delivery in Vitro and in Vivo. Bioconjugate Chem. 2014, 25, 1744–1751. [Google Scholar] [CrossRef]
- Dutta, D.; Sundaram, S.K.; Teeguarden, J.G.; Riley, B.J.; Fifield, L.S.; Jacobs, J.M.; Addleman, S.R.; Kaysen, G.A.; Moudgil, B.M.; Weber, T.J. Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol. Sci. 2007, 100, 303–315. [Google Scholar] [CrossRef]
- Porter, A.E.; Gass, M.; Muller, K.; Skepper, J.N.; Midgley, P.A.; Welland, M. Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2007, 2, 713–717. [Google Scholar] [CrossRef]
- Schipper, M.L.; Nakayama-Ratchford, N.; Davis, C.R.; Kam, N.W.S.; Chu, P.; Liu, Z.; Sun, X.; Dai, H.; Gambhir, S.S. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat. Nanotechnol. 2008, 3, 216–221. [Google Scholar] [CrossRef]
- Van Handel, M.; Alizadeh, D.; Zhang, L.; Kateb, B.; Bronikowski, M.; Manohara, H.; Badie, B. Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model. J. Neuroimmunol. 2009, 208, 3–9. [Google Scholar] [CrossRef]
- Porter, A.E.; Gass, M.; Bendall, J.S.; Muller, K.; Goode, A.; Skepper, J.N.; Midgley, P.A.; Welland, M. Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells. ACS Nano 2009, 3, 1485–1492. [Google Scholar] [CrossRef]
- Johnson, V.J.; Mercer, R.; Fowler, P.; Stone, S.; Ali-Boucetta, H.; Shvedova, A.; Kagan, V.E. Immunotoxicity assessment of multiwalled carbon nanotubes following inhalation exposure in mice and rats. Toxicol. Appl. Pharmacol. 2025, 473, 115264. [Google Scholar]
- Yuan, X.; Zhang, X.; Sun, L.; Wei, Y.; Wei, X. Cellular toxicity and immunological effects of carbon-based nanomaterials on primary human macrophages. Part. Fibre Toxicol. 2019, 16, 18. [Google Scholar] [CrossRef]
- Fadeel, B.; Kagan, V.E.; Kisin, E.R.; Shvedova, A.A.; Tkach, A.; Young, S.-H.; Star, A. Carbon nanotubes induce immune suppression via direct effects on dendritic cells. Environ. Health Perspect. 2012, 126, 045001. [Google Scholar]
- Omori, S.; Yamada, T.; Fujiwara, Y.; Sodeoka, M.; Shibata, N. Tim4 recognizes multi-walled carbon nanotubes and mediates phagocytosis leading to granuloma formation. Cell Rep. Phys. Sci. 2021, 2, 100297. [Google Scholar]
- Li, M.; Chen, H.; Wang, F.; Hu, K.; Rong, Y. SWCNTs as adjuvants: Enhancing immune response to protein antigens in mice. Vaccine 2024, 42, 5190–5199. [Google Scholar]
- Inoue, K.I.; Yanagisawa, R.; Koike, E.; Nishikawa, M.; Takano, M. Repeated pulmonary exposure to single-walled carbon nanotubes exacerbates allergic inflammation of the airway: Possible role of oxidative stress. Free Radic. Biol. Med. 2010, 48, 924–934. [Google Scholar] [CrossRef]
- Svadlakova, T.; Holmannova, D.; Kolackova, M.; Malkova, A.; Krejsek, J.; Fiala, Z. Immunotoxicity of carbon-based nanomaterials: Focus on macrophage function, size, shape and surface modifications. Int. J. Mol. Sci. 2022, 23, 8889. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, J.; Zhang, H. Multi-walled carbon nanotubes accelerate leukemia progression in virus-induced models; role of cytokines and PEG functionalization. Toxics 2024, 12, 646. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, H.H.; Holt, C.M.; Roy, H.; Bazile, D. Nanoparticle uptake: The phagocyte problem. Nano Today 2015, 10, 400–402. [Google Scholar] [CrossRef] [PubMed]
- Al-Jamal, K.T.; Nerl, H.; Müller, K.H.; Ali-Boucetta, H.; Li, S.; Haynes, P.D.; Jinschek, J.R.; Prato, M.; Bianco, A.; Kostarelos, K.; et al. Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3-D electron tomography imaging. Nanoscale 2011, 3, 2627–2635. [Google Scholar] [CrossRef]
- Gao, N.; Zhang, Q.; Mu, Q.; Bai, Y.; Li, L.; Zhou, H.; Butch, E.R.; Powell, T.B.; Snyder, S.E.; Jiang, G.; et al. Steering carbon nanotubes to scavenger receptor recognition by nanotube surface chemistry modification partially alleviates NF-κB activation and reduces its immunotoxicity. ACS Nano 2011, 5, 4581–4591. [Google Scholar] [CrossRef]
- Lee, S.; Khang, D.; Kim, S.-H. High dispersity of carbon nanotubes diminishes immunotoxicity in spleen. Int. J. Nanomed. 2015, 10, 2697–2710. [Google Scholar] [CrossRef]
- Giurato, J.S.M.; Rinaudo, M.G.; Morales, M.R. Functionalization Effect of Multi-Walled Carbon Nanotubes Used as Supports for Cu-Based Catalysts. Eng. Proc. 2024, 67, 86. [Google Scholar] [CrossRef]
- Costa, P.M.; Bourgognon, M.; Wang, J.T.-W.; Al-Jamal, K.T. Functionalised carbon nanotubes: From intracellular uptake and cell-related toxicity to systemic brain delivery. J. Control. Release 2016, 241, 200–219. [Google Scholar] [CrossRef]
- Thakur, C.K.; Rana, S.; Yadav, H.L.; Sharma, A.L.; Choudhary, V.; Thakur, A. Microwave-Assisted Functionalization of Multi-Walled Carbon Nanotubes: Preparation, Characterization, and Drug Delivery Applications. J. Nanomater. 2023, 2023, 7613530. [Google Scholar]
- Zhang, T.; Tang, M.; Kong, L.; Li, H.; Zhang, T.; Zhang, S.; Xue, Y.; Pu, Y. Comparison of cytotoxic and inflammatory responses of pristine and functionalized multi-walled carbon nanotubes in RAW 264.7 mouse macrophages. J. Hazard. Mater. 2012, 219–220, 203–212. [Google Scholar] [CrossRef]
- Svadlakova, T.; Kolackova, M.; Vankova, R.; Karakale, R.; Malkova, A.; Kulich, P.; Hubatka, F.; Turanek-Knotigova, P.; Kratochvilova, I.; Raska, M.; et al. Carbon-Based Nanomaterials Increase Reactivity of Primary Monocytes towards Various Bacteria and Modulate Their Differentiation into Macrophages. Nanomaterials 2021, 11, 2510. [Google Scholar] [CrossRef]
- Tang, Y.; Tang, M.; Liu, R.; Zhang, T. Effects of carboxylated multiwalled carbon nanotubes on RAW264.7 macrophages: Uptake, cytotoxicity and inflammation. J. Nanomater. 2020, 2020, 638760. [Google Scholar]
- Patel, V.; Aggarwal, N.; Sethi, G. Cytotoxicity Analysis for the Hydroxyl Functionalized MWCNT-reinforced PMMA Nanocomposite by KB Cells: Oxidative Stress and Apoptosis Induction. Polymers 2023, 15, 1192. [Google Scholar] [CrossRef]
- Allegri, M.; Perivoliotis, D.K.; Bianchi, M.G.; Chiu, M.; Pagliaro, A.; Koklioti, M.A.; Trompeta, A.A.; Bergamaschi, E.; Bussolati, O.; Charitidis, C.A. Toxicity determinants of multi-walled carbon nanotubes. Toxicol. Rep. 2016, 3, 230–243. [Google Scholar] [CrossRef]
- Wang, H.; Picchio, M.L.; Calderón, M. One stone, many birds: Recent advances in functional carbon nanomaterial-based theranostic systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, 14, e1791. [Google Scholar] [CrossRef] [PubMed]
- Masoudi Asil, S.; Guerrero, E.D.; Bugarini, G.; Cayme, J.; De Avila, N.; Garcia, J.; Hernandez, A.; Mecado, J.; Madero, Y.; Moncayo, F.; et al. Theranostic applications of multifunctional carbon nanomaterials: A review. Carbon Nanomater. (Spec. Issue) 2023, 4, e281. [Google Scholar] [CrossRef]
- Di Cristo, L.; Bianchi, M.G.; Chiu, M.; Taurino, G.; Donato, F.; Garzaro, G.; Bussolati, O.; Bergamaschi, E. Comparative in vitro cytotoxicity of realistic doses of NM-400, NM-401, NM-402 on murine macrophages and respiratory epithelial cells. Nanomaterials 2019, 9, 982. [Google Scholar] [CrossRef]
- Zhang, T.; Li, X.; Li, R.; Liu, Y.; Zhang, T. Surface chemistry-dependent interactions of multi-walled carbon nanotubes (MWCNTs) with proteins (BSA, IgG) and RAW264.7 macrophages: Uptake, cytotoxicity and inflammatory responses. Toxics 2019, 7, 33. [Google Scholar]
- Clark, K.A.; O’Driscoll, C.; Cooke, C.A.; Smith, B.A.; Wepasnick, K.; Fairbrother, D.H.; Lees, P.S.; Bressler, J.P. Evaluation of the interactions between multiwalled carbon nanotubes and Caco-2 cells. J. Toxicol. Environ. Health Part A 2012, 75, 25–35. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Fu, Y.; Wei, T.; Le Guyader, L.; Gao, G.; Liu, R.-S.; Chang, Y.-Z.; Chen, C. The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 2012, 33, 402–411. [Google Scholar] [CrossRef]
- Garriga, R.; Herrero-Continente, T.; Palos, M.; Cebolla, V.L.; Osada, J.; Muñoz, E.; Rodríguez-Yoldi, M.J. Toxicity of carbon nanomaterials and their potential application as drug delivery systems: In vitro studies in Caco-2 and MCF-7 cell lines. Nanomaterials 2020, 10, 1617. [Google Scholar] [CrossRef]
- Ou, L.; Lin, S.; Song, B.; Liu, J.; Lai, R.; Shao, L. The mechanisms of graphene-based materials-induced programmed cell death: Review of apoptosis, autophagy, and programmed necrosis. Int. J. Nanomed. 2017, 12, 6633–6646. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, K.; Li, W.; Yang, N.; Liu, Y.; Chen, C.; Wei, T. The interactions between pristine graphene and macrophages and the production of cytokines/chemokines via TLR- and NF-κB-related signaling pathways. Biomaterials 2012, 33, 6933–6942. [Google Scholar] [CrossRef]
- Jos, A.; Pichardo, S.; Puerto, M.; Sánchez, E.; Grilo, A.; Cameán, A.M. Cytotoxicity of carboxylic acid functionalized single wall carbon nanotubes: Effects on differentiated and non-differentiated Caco-2 cells. Toxicol. Vitr. 2009, 23, 1491–1496. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.; Chen, J.; Li, P.; Wu, Y.; Zhang, G.; Sang, B.; Li, R.; Shi, Y.; Cui, X.; Zhou, T. Respiratory Toxicology of Graphene-Based Nanomaterials. Toxics 2024, 12, 82. [Google Scholar] [CrossRef]
- Lee, S.W.; Park, H.J.; Van Kaer, L.; Hong, S.; Hong, S. Graphene Oxide Polarizes iNKT Cells for Production of Type 1 and Type 2 Cytokines. Sci. Rep. 2018, 8, 28396. [Google Scholar]
- Liao, Y.; Wang, W.; Huang, X.; Sun, Y.; Tian, S.; Cai, P. Reduced graphene oxide triggered epithelial–mesenchymal transition in A549 cells. Sci. Rep. 2018, 8, 15188. [Google Scholar] [CrossRef]
- Montes-Fonseca, S.L.; Orrantia-Borunda, E.; Aguilar-Elguezabal, A.; González-Horta, C.; Talamás-Rohana, P.; Sánchez-Ramírez, B. Cytotoxicity of protein-carbon nanotubes on J774 macrophages is a functionalization grade-dependent effect. Biomed. Res. Int. 2015, 2015, 796456. [Google Scholar] [CrossRef]
- Kyriakidou, K.; Brasinika, D.; Trompeta, A.F.A.; Bergamaschi, E.; Karoussis, I.K.; Charitidis, C.A. In vitro cytotoxicity assessment of pristine and carboxyl-functionalized MWCNTs. Food Chem. Toxicol. 2020, 141, 111374. [Google Scholar] [CrossRef]
- Qu, G.; Liu, S.; Zhang, S.; Wang, L.; Wang, X.; Sun, B.; Yin, N.; Gao, X.; Xia, T.; Chen, J.; et al. Graphene oxide induces Toll-like receptor 4 (TLR4)-dependent necrosis in macrophages. ACS Nano 2013, 7, 5732–5745. [Google Scholar] [CrossRef]
- Stueckle, T.A.; Schinwald, A.; Murphy, F.A.; Donaldson, K.; Brown, D.M.; Stone, V. Effect of surface functionalizations of multi-walled carbon nanotubes on inflammatory responses in vitro. Nanotoxicology 2017, 11, 456–469. [Google Scholar] [CrossRef]
- Ma, J.; Liu, R.; Wang, X.; Liu, Q.; Chen, Y.; Valle, R.P.; Zuo, Y.Y.; Xia, T. Crucial Role of Lateral Size for Graphene Oxide in Activating Macrophages and Stimulating Pro-inflammatory Responses in Cells and Animals. ACS Nano 2015, 9, 10498–10515. [Google Scholar] [CrossRef]
- Hamilton, R.F.; Wu, Z.; Mitra, S.; Holian, A. The Effects of Varying Degree of MWCNT Carboxylation on Macrophage Activation and Lung Tissue Response. Int. J. Mol. Sci. 2018, 19, 354. [Google Scholar] [CrossRef] [PubMed]
- Keshavan, S.; Gupta, G.; Martin, S.; Fadeel, B. Multi-walled carbon nanotubes trigger lysosome dysfunction, inflammasome activation and gasdermin D-mediated cell death in macrophages. Toxicology 2021, 15, 1125–1150. [Google Scholar]
- Boyles, M.S.; Young, L.; Brown, D.M.; MacCalman, L.; Cowie, H.; Moisala, A.; Smail, F.; Smith, P.J.; Proudfoot, L.; Windle, A.H.; et al. Multi-walled carbon nanotube induced frustrated phagocytosis and alveolar macrophage apoptotic mechanisms. Toxicol. Lett. 2015, 237, 22–29. [Google Scholar]
- Hussain, S.; Ji, Z.; Taylor, A.J.; DeGraff, L.M.; George, M.; Tucker, C.J.; Chang, C.H.; Li, R.; Bonner, J.C.; Garantziotis, S. Multiwalled carbon nanotube functionalization with high molecular weight hyaluronan significantly reduces pulmonary injury. ACS Nano 2016, 10, 7675–7688. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.P.; Bottini, M.; Fadeel, B. Graphene and the immune system: A romance of many dimensions. Front. Immunol. 2017, 8, 673. [Google Scholar] [CrossRef]
- Kam, N.W.S.; Liu, Z.; Dai, H. Carbon nanotubes as intracellular transporters for proteins and DNA: Investigation of uptake mechanism and pathway. Angew. Chem. Int. Ed. Engl. 2006, 45, 577–581. [Google Scholar] [CrossRef]
- Țălu, Ș.; Marković, Z.; Stach, S.; Todorović Marković, B.; Țălu, M. Multifractal characterization of single wall carbon nanotube thin films surface upon exposure to optical parametric oscillator laser irradiation. Appl. Surf. Sci. 2014, 289, 97–106. [Google Scholar] [CrossRef]
- Bafandeh, N.; Solaymani, S.; Sabbaghzadeh, J.; Dejam, L.; Ghaderi, A.; Țălu, Ș.; Shafiekhani, A.; Sari, A.H. Carbon nanotubes/polyaniline as hydrogen gas sensor: Optical band gap, micro-morphology and skin depth studies. AIP Adv. 2023, 13, 035309. [Google Scholar] [CrossRef]
- Patra, N.; Țălu, Ș. Enhanced magnetic properties of carbon fibers through carbon nanotube/nanosphere coating with Ni-Co-Fe-P catalyst via chemical vapor deposition. Diam. Relat. Mater. 2025, 157, 112527. [Google Scholar] [CrossRef]
- Takagi, A.; Hirose, A.; Futakuchi, M.; Tsuda, H.; Kanno, J. Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube. J. Toxicol. Sci. 2008, 33, 105–116. [Google Scholar] [CrossRef]
- Hamad, I.; Christy Hunter, A.; Rutt, K.J.; Liu, Z.; Dai, H.; Moein Moghimi, S. Complement activation by PEGylated single-walled carbon nanotubes is independent of C1q and alternative pathway turnover. Mol. Immunol. 2008, 45, 3797–3803. [Google Scholar] [CrossRef] [PubMed]
- Nagai, H.; Okazaki, Y.; Chew, S.H.; Misawa, N.; Yamashita, Y.; Akatsuka, S.; Ishihara, T.; Kanno, J.; Yasui, H.; Miyata, Y.; et al. Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc. Natl. Acad. Sci. USA 2011, 108, E1330–E1338. [Google Scholar] [CrossRef] [PubMed]
- Oomen, A.G.; Bos, P.M.; Fernandes, T.F.; Hund-Rinke, K.; Boraschi, D.; Byrne, H.J.; Aschberger, K.; Gottardo, S.; von der Kammer, F.; Kühnel, D.; et al. Concern-driven integrated approaches to nanomaterial testing and assessment—report of the NanoSafety Cluster Working Group 10. Nanotoxicology. 2014, 8, 334–348. [Google Scholar] [CrossRef]
- Madani, S.Y.; Mandel, A.; Seifalian, A.M. A concise review of carbon nanotube's toxicology. Nano Rev 2013, 4, 21521. [Google Scholar] [CrossRef]
- Sanchez, V.C.; Jachak, A.; Hurt, R.H.; Kane, A.B. Biological interactions of graphene-family nanomaterials: An interdisciplinary review. Chem. Res. Toxicol. 2012, 25, 15–34. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho Lima, E.N.; de Menezes, C.P.B.; Nosaka, T.; de Almeida, D.R.Q. Advances and Perspectives in the Use of Carbon Nanotubes as a Novel Tool for Vaccination Against Infectious Diseases and Cancer. Front. Bioeng. Biotechnol. 2021, 9, 690. [Google Scholar]
- Gottardi, R.; Douradinha, B. Carbon nanotubes as a novel tool for vaccination against infectious diseases and cancer. J. Nanobiotechnol. 2013, 11, 30. [Google Scholar] [CrossRef]
- Saito, N.; Haniu, H.; Usui, Y.; Aoki, K.; Hara, K.; Takanashi, S.; Shimizu, M.; Narita, N.; Okamoto, M.; Kobayashi, S.; et al. Safe clinical use of carbon nanotubes as innovative biomaterials. Chem. Rev 2014, 114, 6040–6079. [Google Scholar] [CrossRef]
- Hassan, H.A.F.M.; Abd El-Awady, M.; Hamdani, M.T.; Abd El-Aziz, G.S. Application of carbon nanotubes in cancer vaccines: Opportunities and challenges. Nanomaterials 2019, 9, 9. [Google Scholar]
- Mukherjee, S.P.; Bondarenko, O.; Kohonen, P.; Andón, F.T.; Brzicová, T.; Gessner, I.; Mathur, S.; Bottini, M.; Calligari, P.; Stella, L.; et al. Macrophage sensing of single-walled carbon nanotubes via Toll-like receptors. Sci. Rep. 2018, 8, 1115. [Google Scholar] [CrossRef] [PubMed]
- Palomäki, J.; Välimäki, E.; Sund, J.; Vippola, M.; Clausen, P.A.; Jensen, K.A.; Savolainen, K.; Matikainen, S.; Alenius, H. Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 2011, 5, 6861–6870. [Google Scholar] [CrossRef]
- Frumento, D.; Ţălu, Ş. Biosensors for Human Cell Analysis: Immune Cell Dynamics and Diagnostic Capabilities. Biomed. Mater. Devices 2025. [Google Scholar] [CrossRef]
- Frumento, D.; Ţălu, Ş. Advanced Coating Strategies for Immunomodulatory Biomaterials for Reconstructive Osteogenesis: Mitigating Foreign Body Reaction and Promoting Tissue Regeneration. Coatings 2025, 15, 1026. [Google Scholar] [CrossRef]
- Frumento, D.; Ţălu, Ş. Immunomodulatory Potential and Biocompatibility of Chitosan-Hydroxyapatite Biocomposites for Tissue Engineering. J. Compos. Sci. 2025, 9, 305. [Google Scholar] [CrossRef]
| Immune Cell Type | Proportion in PBMCs | Carbon Nanomaterials Studied | Cell Models | Main Observations | 
|---|---|---|---|---|
| Lymphocytes | 70–90% | f-CNTs, SWCNTs, MWCNTs, Graphene, GO, Carbon Nanohorns | Primary T/B/NK cells, Jurkat cell line | Functionalized CNTs non-toxic; enable drug/siRNA delivery; activate NK cells (CD69/CD161); variable response depending on functionalization; PVP-coated GO reduces T cell apoptosis [16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40]. | 
| Monocytes | 10–30% | SWCNTs, MWCNTs, Graphene, GO | THP-1 cell line, Primary monocytes | Ammonium-functionalized CNTs induce IL-1β, IL-6, TNF, IL-10 without cytotoxicity; activate TLR, NFKB, CXCR3/CCR5 pathways; carboxylated CNTs reduce inflammatory cytokines [41,42,43,44,45,46,47,48,49,50,51,52]. | 
| Macrophages | Derived from monocytes | SWCNTs, MWCNTs, Carbon Nanohorns, Graphene, GO | RAW 264.7, Primary macrophages | Functionalized CNTs localize to lysosomes/mitochondria; induce ROS, cytokines; pristine graphene cytotoxic—modified GO improves compatibility [53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101]. | 
| Dendritic Cells | 1–2% | SWCNTs, Graphene, GO | Primary DCs, In vivo mouse models | SWCNTs recruit DCs in lungs; suppress T cell activation; phosphatidylserine coating enhances uptake; GO reduces DC maturation; PVP-GO improves biocompatibility [32,33,36,38]. | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frumento, D.; Ţălu, Ş. The Influence of Carbon Nanotubes and Graphene on Immune Cells. Cells 2025, 14, 1700. https://doi.org/10.3390/cells14211700
Frumento D, Ţălu Ş. The Influence of Carbon Nanotubes and Graphene on Immune Cells. Cells. 2025; 14(21):1700. https://doi.org/10.3390/cells14211700
Chicago/Turabian StyleFrumento, Davide, and Ştefan Ţălu. 2025. "The Influence of Carbon Nanotubes and Graphene on Immune Cells" Cells 14, no. 21: 1700. https://doi.org/10.3390/cells14211700
APA StyleFrumento, D., & Ţălu, Ş. (2025). The Influence of Carbon Nanotubes and Graphene on Immune Cells. Cells, 14(21), 1700. https://doi.org/10.3390/cells14211700
 
        


 
       