Emerging Roles of Megakaryocytes in Immune Regulation and Potential Therapeutic Prospects
Abstract
1. Introduction
2. Hematopoietic Homeostasis and Platelet Biogenesis
3. Immune Functions
3.1. Immune Receptor Expression
3.2. Cytokine and Chemokine Secretion
3.3. Direct Immune Activities
3.4. Lung MK Specialization
4. Hematopoietic Niche Maintenance
5. The Bridge
6. Experimental Models and Translational Implications
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MK | megakaryocyte | 
| HSC | hematopoietic stem cell | 
| LT-HSC | long-term HSC | 
| ST-HSC | short-term HSC | 
| MPP | multipotent progenitor | 
| CMP | Common Myeloid Progenitor | 
| MEP | Megakaryocyte-Erythroid Progenitor | 
| MkP | Megakaryocyte Progenitor | 
| MHC | major histocompatibility complex | 
| TLRs | Toll-like receptors | 
References
- Kaushansky, K. Historical Review: Megakaryopoiesis and Thrombopoiesis. Blood 2008, 111, 981–986. [Google Scholar] [CrossRef]
- Vitrat, N.; Cohen-Solal, K.; Pique, C.; Le Couedic, J.P.; Norol, F.; Larsen, A.K.; Katz, A.; Vainchenker, W.; Debili, N. Endomitosis of Human Megakaryocytes Is Due to Abortive Mitosis. Blood 1998, 91, 3711–3723. [Google Scholar] [CrossRef]
- Mazzi, S.; Lordier, L.; Debili, N.; Raslova, H.; Vainchenker, W. Megakaryocyte and Polyploidization. Exp. Hematol. 2018, 57, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lordier, L.; Bluteau, D.; Jalil, A.; Legrand, C.; Pan, J.; Rameau, P.; Jouni, D.; Bluteau, O.; Mercher, T.; Leon, C.; et al. RUNX1-Induced Silencing of Non-Muscle Myosin Heavy Chain IIB Contributes to Megakaryocyte Polyploidization. Nat. Commun. 2012, 3, 717. [Google Scholar] [CrossRef] [PubMed]
- Lefrançais, E.; Ortiz-Muñoz, G.; Caudrillier, A.; Mallavia, B.; Liu, F.; Sayah, D.M.; Thornton, E.E.; Headley, M.B.; David, T.; Coughlin, S.R.; et al. The Lung Is a Site of Platelet Biogenesis and a Reservoir for Haematopoietic Progenitors. Nature 2017, 544, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Stegner, D.; Heinze, K.G. Intravital Imaging of Megakaryocytes. Platelets 2020, 31, 599–609. [Google Scholar] [CrossRef]
- Yeung, A.K.; Villacorta-Martin, C.; Hon, S.; Rock, J.R.; Murphy, G.J. Lung Megakaryocytes Display Distinct Transcriptional and Phenotypic Properties. Blood Adv. 2020, 4, 6204–6217. [Google Scholar] [CrossRef]
- Sun, S.; Jin, C.; Si, J.; Lei, Y.; Chen, K.; Cui, Y.; Liu, Z.; Liu, J.; Zhao, M.; Zhang, X.; et al. Single-Cell Analysis of Ploidy and the Transcriptome Reveals Functional and Spatial Divergency in Murine Megakaryopoiesis. Blood 2021, 138, 1211–1224. [Google Scholar] [CrossRef]
- Koupenova, M.; Livada, A.C.; Morrell, C.N. Platelet and Megakaryocyte Roles in Innate and Adaptive Immunity. Circ. Res. 2022, 130, 288–308. [Google Scholar] [CrossRef]
- Du, C.; Chen, J.; Wang, J. New Insights into the Generation and Function of Megakaryocytes in Health and Disease. Haematologica 2025, 110, 1500–1512. [Google Scholar] [CrossRef] [PubMed]
- Geddis, A.E.; Fox, N.E.; Kaushansky, K. The Mpl Receptor Expressed on Endothelial Cells Does Not Contribute Significantly to the Regulation of Circulating Thrombopoietin Levels. Exp. Hematol. 2006, 34, 82–86. [Google Scholar] [CrossRef]
- Ng, A.P.; Kauppi, M.; Metcalf, D.; Hyland, C.D.; Josefsson, E.C.; Lebois, M.; Zhang, J.G.; Baldwin, T.M.; Di Rago, L.; Hilton, D.J.; et al. Mpl Expression on Megakaryocytes and Platelets Is Dispensable for Thrombopoiesis but Essential to Prevent Myeloproliferation. Proc. Natl. Acad. Sci. USA 2014, 111, 5884–5889. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Kafeiti, N.; Masarik, K.; Lee, S.; Yang, X.; Zheng, H.; Zhan, H. Decoding Endothelial MPL and JAK2V617F Mutation: Insight into Cardiovascular Dysfunction in Myeloproliferative Neoplasms. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 1960–1974. [Google Scholar] [CrossRef]
- Pang, L.; Weiss, M.J.; Poncz, M. Megakaryocyte Biology and Related Disorders. J. Clin. Investig. 2005, 115, 3332–3338. [Google Scholar] [CrossRef]
- Liu, Z.J.; Italiano, J., Jr.; Ferrer-Marin, F.; Gutti, R.; Bailey, M.; Poterjoy, B.; Rimsza, L.; Sola-Visner, M. Developmental Differences in Megakaryocytopoiesis Are Associated with Up-Regulated TPO Signaling through mTOR and Elevated GATA-1 Levels in Neonatal Megakaryocytes. Blood 2011, 117, 4106–4117. [Google Scholar] [CrossRef]
- Eaton, N.; Boyd, E.K.; Biswas, R.; Lee-Sundlov, M.M.; Dlugi, T.A.; Ramsey, H.E.; Zheng, S.; Burns, R.T.; Sola-Visner, M.C.; Hoffmeister, K.M.; et al. Endocytosis of the Thrombopoietin Receptor Mpl Regulates Megakaryocyte and Erythroid Maturation in Mice. Front. Oncol. 2022, 12, 959806. [Google Scholar] [CrossRef]
- Huang, Z.; Dore, L.C.; Li, Z.; Orkin, S.H.; Feng, G.; Lin, S.; Crispino, J.D. GATA-2 Reinforces Megakaryocyte Development in the Absence of GATA-1. Mol. Cell. Biol. 2009, 29, 5168–5180. [Google Scholar] [CrossRef] [PubMed]
- Zingariello, M.; Sancillo, L.; Martelli, F.; Ciaffoni, F.; Marra, M.; Varricchio, L.; Rana, R.A.; Zhao, C.; Crispino, J.D.; Migliaccio, A.R. The Thrombopoietin/MPL Axis Is Activated in the Gata1^low Mouse Model of Myelofibrosis and Is Associated with a Defective RPS14 Signature. Blood Cancer J. 2017, 7, e572. [Google Scholar]
- Xu, B.; Ye, X.; Wen, Z.; Chen, S.; Wang, J. Epigenetic Regulation of Megakaryopoiesis and Platelet Formation. Haematologica 2024, 109, 3125–3137. [Google Scholar] [CrossRef] [PubMed]
- Noetzli, L.J.; French, S.L.; Machlus, K.R. New Insights into the Differentiation of Megakaryocytes from Hematopoietic Progenitors. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1288–1300. [Google Scholar] [CrossRef]
- Cunin, P.; Nigrovic, P.A. Megakaryocytes as Immune Cells. J. Leukoc. Biol. 2019, 105, 1111–1121. [Google Scholar] [CrossRef] [PubMed]
- Puhm, F.; Laroche, A.; Boilard, E. Diversity of Megakaryocytes. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 2088–2098. [Google Scholar] [CrossRef] [PubMed]
- Prabahran, A.; Wu, L.; Manley, A.L.; Wu, Z.; Gao, S.; Mizumaki, H.; Baena, V.; Syed, Z.; Combs, C.A.; Chen, J.; et al. Mature Megakaryocytes Acquire Immune Characteristics in a Mouse Model of Aplastic Anemia. Blood Adv. 2025, 9, 3315–3330. [Google Scholar] [CrossRef]
- Blair, P.; Flaumenhaft, R. Platelet Alpha-Granules: Basic Biology and Clinical Correlates. Blood Rev. 2009, 23, 177–189. [Google Scholar] [CrossRef]
- Ardoin, S.P.; Shanahan, J.C.; Pisetsky, D.S. The Role of Microparticles in Inflammation and Thrombosis. Scand. J. Immunol. 2007, 66, 159. [Google Scholar] [CrossRef]
- Guo, J.; Cui, B.; Zheng, J.; Yu, C.; Zheng, X.; Yi, L.; Zhang, S.; Wang, K. Platelet-derived microparticles and their cargos: The past, present and future. Asian J. Pharm. Sci. 2024, 19, 100907. [Google Scholar] [CrossRef]
- Ambrosio, A.L.; Boyle, J.J.; Di Paola, J.; Farkouh, C.R.; Flaumenhaft, R. The Winding Road to Platelet α-Granules. Cells 2025, 14, 1584059. [Google Scholar] [CrossRef]
- Blank, U.; Karlsson, S. TGF-β signaling in the control of hematopoietic stem cells. Blood 2015, 125, 3542–3550. [Google Scholar] [CrossRef]
- Gouwy, M.; Ruytinx, P.; Radice, E.; Claudi, F.; Van Raemdonck, K.; Bonecchi, R.; Locati, M.; Struyf, S. CXCL4 and CXCL4L1 Differentially Affect Monocyte Survival and Dendritic Cell Differentiation and Phagocytosis. PLoS ONE 2016, 11, e0166006. [Google Scholar] [CrossRef]
- Gray, A.L.; Karlsson, R.; Roberts, A.R.E.; Ridley, A.J.L.; Pun, N.; Khan, B.; Lawless, C.; Luís, R.; Szpakowska, M.; Chevigné, A.; et al. Chemokine CXCL4 Interactions with Extracellular Matrix Proteoglycans Mediate Widespread Immune Cell Recruitment Independent of Chemokine Receptors. Cell Rep. 2023, 42, 111930. [Google Scholar] [CrossRef] [PubMed]
- Zang, C.; Luyten, A.; Chen, J.; Liu, X.S.; Shivdasani, R.A. NF-E2, FLI1 and RUNX1 Collaborate at Areas of Dynamic Chromatin to Activate Transcription in Mature Mouse Megakaryocytes. Sci. Rep. 2016, 6, 30255. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Liu, Y.; Zhang, J.; Dong, J.; Zhao, Z. Transcription Factors in Megakaryocytes and Platelets. Front. Immunol. 2023, 14, 1140501. [Google Scholar] [CrossRef]
- Draper, J.E.; Sroczynska, P.; Tsoulaki, O.; Leong, H.S.; Fadlullah, M.Z.; Miller, C.; Kouskoff, V.; Lacaud, G. RUNX1B Expression Is Highly Heterogeneous and Distinguishes Megakaryocytic and Erythroid Lineage Fate in Adult Mouse Hematopoiesis. PLoS Genet. 2016, 12, e1005814, Erratum in PLoS Genet. 2016, 12, e1006084. [Google Scholar]
- Guan, L.; Voora, D.; Myers, R.; Del Carpio-Cano, F.; Rao, A.K. RUNX1 Isoforms Regulate RUNX1 and Target Genes Differentially in Platelets–Megakaryocytes: Association with Clinical Cardiovascular Events. J. Thromb. Haemost. 2024, 22, 3581–3598. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, K. Isoform-Specific Roles and Therapeutic Targeting of RUNX1 in Hematopoiesis and Leukemogenesis. Hemato 2025, 6, 33. [Google Scholar] [CrossRef]
- Machlus, K.R.; Italiano, J.E., Jr. The Incredible Journey: From Megakaryocyte Development to Platelet Formation. J. Cell Biol. 2013, 201, 785–796. [Google Scholar] [CrossRef]
- Valet, C.; Batut, A.; Vauclard, A.; Dortignac, A.; Bellio, M.; Payrastre, B.; Valet, P.; Severin, S. Adipocyte Fatty Acid Transfer Supports Megakaryocyte Maturation. Cell Rep. 2020, 32, 107875. [Google Scholar] [CrossRef]
- Guinard, I.; Nguyen, T.; Brassard-Jollive, N.; Weber, J.; Ruch, L.; Reininger, L.; Brouard, N.; Eckly, A.; Collin, D.; Lanza, F.; et al. Matrix Stiffness Controls Megakaryocyte Adhesion, Fibronectin Fibrillogenesis, and Proplatelet Formation through Itgβ3. Blood Adv. 2023, 7, 4003–4018. [Google Scholar] [CrossRef]
- Zhao, X.; Alibhai, D.; Walsh, T.G.; Tarassova, N.; Englert, M.; Birol, S.Z.; Li, Y.; Williams, C.M.; Neal, C.R.; Burkard, P.; et al. Highly Efficient Platelet Generation in Lung Vasculature Reproduced by Microfluidics. Nat. Commun. 2023, 14, 4026. [Google Scholar] [CrossRef]
- Livada, A.C.; McGrath, K.E.; Malloy, M.W.; Li, C.; Ture, S.K.; Kingsley, P.D.; Koniski, A.D.; Vit, L.A.; NolAN, K.E.; Mickelsen, D.; et al. Long-Lived Lung Megakaryocytes Contribute to Platelet Recovery in Thrombocytopenia Models. J. Clin. Investig. 2024, 134, e1811111. [Google Scholar] [CrossRef]
- Livada, A.C.; Pariser, D.N.; Morrell, C.N. Megakaryocytes in the Lung: History and Future Perspectives. Res. Pract. Thromb. Haemost. 2023, 7, 100053. [Google Scholar] [CrossRef]
- Yeung, A.K.; Murphy, G.J. The Lung Is a Megakaryocyte Outpost That Can Defend against Thrombocytopenic Attack. J. Clin. Investig. 2024, 134, e186111. [Google Scholar] [CrossRef]
- Pariser, D.N.; Hilt, Z.T.; Ture, S.K.; Blick-Nitko, S.K.; Looney, M.R.; Cleary, S.J.; Roman-Pagan, E.; Saunders, J.; Georas, S.N.; Veazey, J.; et al. Lung Megakaryocytes Are Immune Modulatory Cells. J. Clin. Investig. 2021, 131, e137377. [Google Scholar] [CrossRef] [PubMed]
- Gelon, L.; Fromont, L.; Lefrancais, E. Occurrence and Role of Lung Megakaryocytes in Infection and Inflammation. Front. Immunol. 2022, 13, 1029223. [Google Scholar] [CrossRef]
- Qiu, J.; Ma, J.; Dong, Z.; Ren, Q.; Shan, Q.; Liu, J.; Gao, M.; Liu, G.; Zhang, S.; Qu, G.; et al. Lung Megakaryocytes Engulf Inhaled Airborne Particles to Promote Intrapulmonary Inflammation and Extrapulmonary Distribution. Nat. Commun. 2024, 15, 12345. [Google Scholar] [CrossRef] [PubMed]
- Stone, A.P.; Nascimento, T.F.; Barrachina, M.N. The Bone Marrow Niche from the Inside Out: How Megakaryocytes Are Shaped by and Shape Hematopoiesis. Blood 2022, 139, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Asquith, N.L.; Carminita, E.; Camacho, V.; Rodriguez-Romera, A.; Stegner, D.; Freire, D.; Becker, I.C.; Machlus, K.R.; Khan, A.O.; Italiano, J.E. The Bone Marrow Is the Primary Site of Thrombopoiesis. Blood 2024, 143, 272–278. [Google Scholar] [CrossRef]
- Hua, T.; Zhang, G.; Yao, Y.; Jia, H.; Liu, W. Research Progress of Megakaryocytes and Platelets in Lung Injury. Ann. Med. 2024, 56, 2362871. [Google Scholar] [CrossRef]
- Heazlewood, S.Y.; Ahmad, T.; Cao, B.; Cao, H.; Domingues, M.; Sun, X.; Heazlewood, C.K.; Li, S.; Williams, B.; Fulton, M.; et al. High Ploidy Large Cytoplasmic Megakaryocytes Are Hematopoietic Stem Cell Regulators and Essential for Platelet Production. Nat. Commun. 2023, 14, 2099. [Google Scholar] [CrossRef]
- Jiang, S.; Levine, J.D.; Fu, Y.; Deng, B.; London, R.; Groopman, J.E.; Avraham, H. Cytokine Production by Primary Bone Marrow Megakaryocytes. Blood 1994, 84, 4151–4156. [Google Scholar] [CrossRef]
- Takeuchi, K.; Higuchi, T.; Yamashita, T.; Koike, K. Chemokine Production by Human Megakaryocytes Derived from CD34-Positive Cord Blood Cells. Cytokine 1999, 11, 424–434. [Google Scholar] [CrossRef]
- Finkielsztein, A.; Schlinker, A.C.; Zhang, L.; Miller, W.M.; Datta, S.K. Human Megakaryocyte Progenitors Derived from Hematopoietic Stem Cells of Normal Individuals Are MHC Class II-Expressing Professional APC That Enhance Th17 and Th1/Th17 Responses. Immunol. Lett. 2015, 163, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Cunin, P.; Bouslama, R.; Machlus, K.R.; Martinez-Bonet, M.; Lee, P.Y.; Wactor, A.; Nelson-Maney, N.; Morris, A.; Guo, L.; Weyrich, A.; et al. Megakaryocyte Emperipolesis Mediates Membrane Transfer from Intracytoplasmic Neutrophils to Platelets. eLife 2019, 8, e44031. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.Y.; Cunin, P.; Radtke, F.A.; Darbousset, R.; Grieshaber-Bouyer, R.; Nigrovic, P.A. Neutrophil Transit Time and Localization within the Megakaryocyte Define Morphologically Distinct Forms of Emperipolesis. Blood Adv. 2022, 6, 2081–2091. [Google Scholar] [CrossRef] [PubMed]
- Frydman, G.H.; Tessier, S.N.; Wong, K.H.K.; Vanderburg, C.R.; Fox, J.G.; Toner, M.; Tompkins, R.G.; Irimia, D. Megakaryocytes Contain Extranuclear Histones and May Be a Source of Platelet-Associated Histones during Sepsis. Sci. Rep. 2020, 10, 4621. [Google Scholar] [CrossRef]
- Hua, T.; Yao, F.; Wang, H.; Liu, W.; Zhu, X.; Yao, Y. Megakaryocyte in Sepsis: The Trinity of Coagulation, Inflammation and Immunity. Crit. Care 2024, 28, 442. [Google Scholar] [CrossRef]
- Boilard, E.; Machlus, K.R. Location Is Everything When It Comes to Megakaryocyte Function. J. Clin. Investig. 2021, 131, e144964. [Google Scholar] [CrossRef]
- Khatib-Massalha, E.; Mendez-Ferrer, S. Megakaryocyte Diversity in Ontogeny, Functions and Cell-Cell Interactions. Front. Oncol. 2022, 12, 840044. [Google Scholar] [CrossRef]
- Karnik, S.J.; Nazzal, M.K.; Kacena, M.A.; Bruzzaniti, A. Megakaryocyte-Secreted Factors Regulate Bone Marrow Niche Cells during Skeletal Homeostasis, Aging, and Disease. Calcif. Tissue Int. 2023, 113, 83–95. [Google Scholar] [CrossRef]
- Zhan, H.; Kaushansky, K. Megakaryocytes as the Regulator of the Hematopoietic Vascular Niche. Front. Oncol. 2022, 12, 912060. [Google Scholar] [CrossRef]
- Frydman, G.H.; Ellett, F.; Jorgensen, J.; Marand, A.L.; Zukerberg, L.; Selig, M.K.; Tessier, S.N.; Wong, K.H.K.; Olaleye, D.; Vanderburg, C.R.; et al. Megakaryocytes Respond during Sepsis and Display Innate Immune Cell Behaviors. Front. Immunol. 2023, 14, 1083339. [Google Scholar] [CrossRef]
- Petito, E.; Gresele, P. Immune Attack on Megakaryocytes in Immune Thrombocytopenia. Res. Pract. Thromb. Haemost. 2024, 8, 102345. [Google Scholar] [CrossRef]
- Takayama, N.; Eto, K. Pluripotent Stem Cells Reveal the Developmental Biology of Human Megakaryocytes and Provide a Source of Platelets for Clinical Application. Cell Mol. Life Sci. 2012, 69, 3419–3428. [Google Scholar] [CrossRef]
- Krisch, L.; Brachtl, G.; Hochmann, S.; Andrade, A.C.; Oeller, M.; Ebner-Peking, P.; Schallmoser, K.; Strunk, D. Improving Human Induced Pluripotent Stem Cell-Derived Megakaryocyte Differentiation and Platelet Production. Int. J. Mol. Sci. 2021, 22, 8224. [Google Scholar] [CrossRef]
- Estevez, B.; Borst, S.; Jarocha, D.; Sudunagunta, V.; Gonzalez, M.; Garifallou, J.; Hakonarson, H.; Gao, P.; Tan, K.; Liu, P.; et al. RUNX-1 Haploinsufficiency Causes a Marked Deficiency of Megakaryocyte-Biased Hematopoietic Progenitor Cells. Blood 2021, 137, 2662–2675. [Google Scholar] [CrossRef]
- Lee, K.; Ahn, H.S.; Estevez, B.; Poncz, M. RUNX1-Deficient Human Megakaryocytes Demonstrate Thrombopoietic and Platelet Half-Life and Functional Defects. Blood 2023, 141, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Moreau, T.; Evans, A.L.; Vasquez, L.; Tijssen, M.R.; Yan, Y.; Trotter, M.W.; Howard, D.; Colzani, M.; Arumugam, M.; Wu, W.H.; et al. Large-Scale Production of Megakaryocytes from Human Pluripotent Stem Cells by Chemically Defined Forward Programming. Nat. Commun. 2016, 7, 11208, Erratum in Nat. Commun. 2017, 8, 15076. [Google Scholar] [CrossRef]
- Sugimoto, N.; Eto, K. Platelet Production from Induced Pluripotent Stem Cells. J. Thromb. Haemost. 2017, 15, 1717–1727. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Nakamura, S.; Sugimoto, N.; Shigemori, T.; Kato, Y.; Ohno, M.; Sakuma, S.; Ito, K.; Kumon, H.; Hirose, H.; et al. Turbulence Activates Platelet Biogenesis to Enable Clinical Scale Ex Vivo Production. Cell 2018, 174, 636–648. [Google Scholar] [CrossRef] [PubMed]
- Borst, S.; Sim, X.; Poncz, M.; French, D.L.; Gadue, P. Induced Pluripotent Stem Cell-Derived Megakaryocytes and Platelets for Disease Modeling and Future Clinical Applications. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 2007–2013. [Google Scholar] [CrossRef]
- Thon, J.N.; Mazutis, L.; Wu, S.; Sylman, J.L.; Ehrlicher, A.; Machlus, K.R.; Feng, Q.; Lu, S.; Lanza, R.; Neeves, K.B.; et al. Platelet Bioreactor-on-a-Chip. Blood 2014, 124, 1857–1867. [Google Scholar] [CrossRef]
- Thon, J.N.; Dykstra, B.J.; Beaulieu, L.M. Platelet bioreactor: Accelerated evolution of design and manufacture. Platelets 2017, 28, 472. [Google Scholar] [CrossRef] [PubMed]
- Blin, A.; Le Goff, A.; Magniez, A.; Poirault-Chassac, S.; Teste, B.; Sicot, G.; Nguyen, K.A.; Hamdi, F.S.; Reyssat, M.; Baruch, D. Microfluidic model of the platelet-generating organ: Beyond bone marrow biomimetics. Sci. Rep. 2016, 6, 21700. [Google Scholar] [CrossRef]
- Hu, C.-M.J.; Fang, R.H.; Wang, K.C.; Luk, B.T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C.; Kroll, A.V.; et al. Nanoparticle Biointerfacing by Platelet Membrane Cloaking. Nat. Nanotechnol. 2015, 10, 331–336. [Google Scholar] [CrossRef]
- Wang, H.; Wu, J.; Williams, G.R.; Fan, Q.; Niu, S.; Wu, J.; Xie, X.; Zhu, L. Platelet-membrane-biomimetic nanoparticles for targeted antitumor drug delivery. J. Nanobiotechnol. 2019, 17, 60. [Google Scholar] [CrossRef]
- Han, H.; Bártolo, R.; Li, J.; Shahbazi, M.; Santos, H.A. Biomimetic platelet membrane-coated nanoparticles for targeted therapy. Eur. J. Pharm. Biopharm. 2022, 172, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Wang, K.; Zhang, X.; Ouyang, B.; Liu, H.; Pang, Z.; Yang, W. Platelet Membrane-Camouflaged Magnetic Nanoparticles for Ferroptosis-Enhanced Cancer Immunotherapy. Small. 2020, 16, e2001704. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Liu, Y.; Lu, R.; Fan, X.; Zeng, S.; Gan, P. Platelets in cancer and immunotherapy: Functional dynamics and therapeutic opportunities. Exp. Hematol. Oncol. 2025, 14, 83. [Google Scholar] [CrossRef]
- Burnouf, T.; Walker, T.L. The multifaceted role of platelets in mediating brain function. Blood 2022, 140, 815–827. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, Y. Full Reconstitution of Human Platelets in Humanized Mice after Macrophage Depletion. Blood 2012, 120, 1713–1716. [Google Scholar] [CrossRef]
- Perez, L.E.; Rinder, H.M.; Wang, C.; Tracey, J.B.; Maun, N.; Krause, D.S. Xenotransplantation of Immunodeficient Mice with Mobilized Human Blood CD34+ Cells Provides an In Vivo Model for Human Megakaryocytopoiesis and Platelet Production. Blood 2001, 97, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.W.; Murphy, G.J. Stem Cells, Megakaryocytes, and Platelets. Curr. Opin. Hematol. 2014, 21, 430–437. [Google Scholar] [CrossRef]
- Sim, X.; Poncz, M.; Gadue, P.; French, D.L. Identifying and Enriching Platelet-Producing Human Stem Cell–Derived Megakaryocytes Using Factor V Uptake. Blood 2017, 129, 3339–3349. [Google Scholar] [CrossRef]
- Yang, J.; Luan, J.; Shen, Y.; Chen, B. Developments in the Production of Platelets from Stem Cells (Review). Mol. Med. Rep. 2021, 23, 7. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.C.; Zhou, Y.; Bresciani, E.; Ozkaya, N.; Dulau-Florea, A.; Carrington, B.; Shin, T.H.; Baena, V.; Syed, Z.A.; Hong, S.G.; et al. A RUNX1-FPDMM Rhesus Macaque Model Reproduces the Human Phenotype and Predicts Challenges to Curative Gene Therapies. Blood 2023, 141, 231–237. [Google Scholar] [CrossRef]
- Garzon Dasgupta, A.K.; Pongérard, A.; Mallo, L.; Eckly, A.; Lanza, F.; Boiron, O.; Knapp, Y.; Strassel, C. Uniform Impact on Individual Megakaryocytes Is Essential for Efficient In Vitro Platelet Production. Sci. Rep. 2025, 15, 1809. [Google Scholar] [CrossRef]
- Di Buduo, C.A.; Miguel, C.P.; Balduini, A. Inside-to-Outside and Back to the Future of Megakaryopoiesis. Res. Pract. Thromb. Haemost. 2023, 7, 100197. [Google Scholar] [CrossRef]
- Robert, M.; Scherlinger, M. Platelets Are a Major Player and Represent a Therapeutic Opportunity in Systemic Lupus Erythematosus. Jt. Bone Spine 2024, 91, 105622. [Google Scholar] [CrossRef]
- Sowa, M.A.; Sun, H.; Wang, T.T.; Virginio, V.W.; Schlamp, F.; El Bannoudi, H.; Cornwell, M.; Bash, H.; Izmirly, P.M.; Belmont, H.M.; et al. Inhibiting the P2Y12 Receptor in Megakaryocytes and Platelets Suppresses Interferon-Associated Responses. JACC: Basic Transl. Sci. 2024, 9, 1126–1140. [Google Scholar] [CrossRef]
- Morena, L.; Cieri, I.F.; Mendes, D.M.; Suarez Ferreira, S.P.; Patel, S.; Ghandour, S.; Andrade, M.F.; Manchella, M.; Rodriguez, A.A.; Davies, H.; et al. The Impact of Platelets and Antiplatelets Medications on Immune Mediation. JVS-Vasc. Sci. 2024, 6, 100278. [Google Scholar] [CrossRef] [PubMed]

| Category | Functions | Key Factors | Notes | References | 
|---|---|---|---|---|
| Hematopoietic Homeostasis | MK maturation/ Platelet biogenesis | GATA2, TAL1 (SCL), SP1, EGR1 (early progenitor, lineage specification, maturation) Thrombopoietin (TPO)–MPL axis, RUNX1, GATA1, FOG1, NF-E2, FLI1 | Drive MK differentiation and maturation | [9,17,18,19,20,21,22] | 
| Proplatelet formation | Demarcation membrane system (DMS) | Provides membrane reservoirs for platelet generation | [20,22,23] | |
| Platelet release | Shear stress in bone marrow sinusoids & lung capillaries | 1000–3000 platelets per MK (bone marrow); up to ~20% platelet contribution in lung | [20,21] | |
| Immunity | Pathogen recognition | TLR1–6, NOD-like receptors, C-type lectins | Enable MKs to sense Pathogen-Associated Molecular Patterns (PAMPs)/Damage-Associated Molecular Patterns (DAMPs) | [9,21,22] | 
| Antigen presentation | MHC class I & II, CD80, CD86, CD40 | Some subsets present antigens to CD4+ T cells | [9,21,22,23] | |
| Cytokine & chemokine secretion/Granule exocytosis, microparticles | IL-6, TNF-α, TGF-β, CXCL4 (PF4) VAMP-8/syntaxin-mediated release microparticles carry proteins/lipids/nucleic acids | Modulate immune cell recruitment and activation | [9,21,22,24,25,26,27,28,29,30] | |
| Direct immune defense | Phagocytosis, extracellular chromatin webs (NET-like), emperipolesis | Entrap pathogens; cell–cell material exchange with neutrophils | [9,21] | |
| Lung-specific immune surveillance | High immune gene expression, antigen processing, phagocytosis, CXCL1, TNF-α, IL-1 α | Lung MKs act as frontline sentinels in pulmonary capillaries enhancing secretion of cytokines, immune cell migration, contributing to tissue remodeling | [21,22] | |
| Niche regulation | HSC maintenance | CXCL4 (PF4), TGF-β1 | Maintain HSC quiescence and stability | [20,22,23] | 
| Regeneration under stress | FGF1, IGF-1, VEGF | Promote HSC proliferation and recovery | [21,23] | |
| Pathological remodeling | PDGF, excessive TGF-β | Drive fibrosis in diseases like myelofibrosis | [21,22] | |
| Anatomical positioning | Localization near arteriolar HSC niches | Enable direct regulation of hematopoietic stem/ progenitor cells | [21,22] | |
| Crosstalk with stromal/endothelial cells | IL-6, IL-11, SCF | Cooperate with niche cells via cytokine networks; critical in emergency hematopoiesis | [9,20,21,22] | 
| Feature | Lung MKs | BM MKs | References | 
|---|---|---|---|
| Lifespan/ Origin | Longer-lived (up to months in mouse models) May be seeded from BM HSPCs but also possible lung-resident HSPCs | Short-lived (days to a week) Arise from BM HSPCs exclusively | [10,40,42] | 
| Maturity/ Proliferation | Higher proportion of mature MKs High ploidy Higher expression of maturation genes (Tubb1, Gp1ba) Lower enrichment for proliferation | Mixed, typically lower average ploidy Variable; ABM-1 cluster shows high Tubb1, Gp1ba, but proportions of mature MKs are lower Some clusters (ABM-2, ABM-3) enriched for cell division/DNA processing genes (immature profile) | [3,7,10,17] | 
| Immunity/ Inflammation | Enriched for immune-related signatures; higher TLR2, TLR4, MHCII, Cd74, CCR7 antigen presentation genes chemokines | Less immune marker enrichment; lower TLRs, MHCII, and chemokine expression Lower levels of antigen presentation genes | [21,43,44] | 
| Platelet Production Potential | Skewed toward efficient platelet production due to high maturation marker expression | BM ABM-1 is likewise skewed, but with overall lower proportions of terminally mature MKs | [7,17,40,44] | 
| Environmental Phenotype Plasticity | BM MKs acquire immune phenotype after lung residency | MKL retain/express high immune markers in lung environment | [42,44,45,46] | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Lee, K. Emerging Roles of Megakaryocytes in Immune Regulation and Potential Therapeutic Prospects. Cells 2025, 14, 1677. https://doi.org/10.3390/cells14211677
Kim S, Lee K. Emerging Roles of Megakaryocytes in Immune Regulation and Potential Therapeutic Prospects. Cells. 2025; 14(21):1677. https://doi.org/10.3390/cells14211677
Chicago/Turabian StyleKim, Seungjun, and Kiwon Lee. 2025. "Emerging Roles of Megakaryocytes in Immune Regulation and Potential Therapeutic Prospects" Cells 14, no. 21: 1677. https://doi.org/10.3390/cells14211677
APA StyleKim, S., & Lee, K. (2025). Emerging Roles of Megakaryocytes in Immune Regulation and Potential Therapeutic Prospects. Cells, 14(21), 1677. https://doi.org/10.3390/cells14211677
 
        


 
       